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LOGISTICS

- Problem Set 5 is due Dec 13. Can be used to replace your
lowest problem set grade.

- Problem Set 4 solutions are posted.
- Exam is next Thursday Dec 16, from 10:30am-12:30pm in class.

- See course website/Moodle/Piazza for exam review guide,
practice exam, additional office hours schedule.

- It would be really helpful if you could fill out SRTIs for this
class (they close Dec 18).

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.


http://owl.umass.edu/partners/courseEvalSurvey/uma/
http://owl.umass.edu/partners/courseEvalSurvey/uma/

Question 6: was on a topic we will cover today (convex sets). It
will count only as bonus.

Question 5:

Consider the function f(é) = %10 for

x = [1, 2, —2]. Give the minimum value of
G such that f(é) is G-Lipschitz. Give you
answer to 2 decimal places.



SUMMARY

Last Class:
- Analysis of gradient descent for convex and Lipschitz functions.
This Class:

- Extend gradient descent to constrained optimization via projected
gradient descent.

- Course wrap up and review.



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
— A 6\7['
and starting point within radius R of 6,, outputs 6 satisfying:

f(9) < f(6.) + e
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

g = argminf(f),
des

where S is a convex set.

Definition — Convex Set: A set S C RY is convex if and only if,
forany 6;,6, € Sand A € [0,1]:

(1=Nb+X-6, eS8

Eg S={0eR?:|d], <1}



PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

* Ps(¥) = argming_ |16 — ¥ll..
- ForS = {6 e R : 4], < 1} what is Ps(})?

- For S being a k dimensional subspace of RY, what is Ps(V)?

Projected Gradient Descent

- Choose some initialization ; and set 5 = ci\/z‘

s Fori=1,...,t—1

é(i?t = 97' - nﬁf(é})

S
\_/

- Return § = argming f(6;



CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRY andf e s,

IPs(¥) = 6l < |IY - 6ll..




PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > &£ jterations, n = %,

€2

and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(6.) + e = minf(8) + ¢
0eS

.

Recall: 6%, = 0 — - Vf(d) and 6. = Ps(5[%}").

Step 1: For all i, f(6) — f(6.
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Step 2: 1320 f(6) — f(0,) < % + @ = Theorem.



RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if you
want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.



DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value
decomposition, projection, norm transformations.



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

+ Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

- Lots that we didn’t cover: online and stochastic gradient descent,
accelerated methods, adaptive methods, second order methods
(quasi-Newton methods), practical considerations. Gave
mathematical tools to understand these methods.
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Thanks for a great semester!

It felt really good to be back teaching in person,
especially with all the participation in this class.
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FINAL EXAM QUESTIONS/REVIEW
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