COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 23

LOGISTICS

- · Problem Set 4 is due tomorrow at 11:59pm.
- Problem Set 5 and grades for Problem Set 3 will be released in the next few days.

Last Two Classes: Fast computation of the SVD/eigendecomposition.

- · Power method for approximating the top eigenvector of a matrix.
- High level overview of more advanced iterative methods for top eigenvector computation.

Final Three Classes:

- General iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- · Small taste of what you can find in COMPSCI 5900P or 6900P.

DISCRETE VS. CONTINUOUS OPTIMIZATION

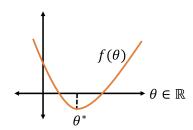
Discrete (Combinatorial) Optimization: (traditional CS algorithms)

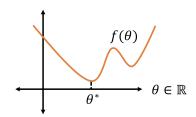
- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

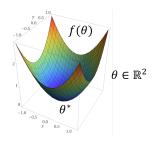
Continuous Optimization: (maybe seen in ML/advanced algorithms)

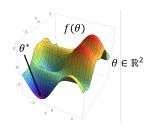
- · Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming

CONTINUOUS OPTIMIZATION EXAMPLES









MATHEMATICAL SETUP

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in R^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small approximation factor.

Often under some constraints:

- $\|\vec{\theta}\|_{2} \le 1, \|\vec{\theta}\|_{1} \le 1.$
- $\cdot \ \ A\vec{ heta} \leq \vec{b}, \ \ \vec{ heta}^{T} A\vec{ heta} \geq 0.$
- $\cdot \sum_{i=1}^{d} \vec{\theta}(i) \leq c.$

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Example: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \dots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_1, \dots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L_{X,y}(\vec{\theta}) = L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x_i})$ is from y_i .

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) y_i)^2$ (least squares regression)
- $y_i \in \{-1,1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

- Supervised means we have labels y_1, \ldots, y_n for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- Generalization tries to explain why minimizing the loss $L_{X,\vec{y}}(\vec{\theta})$ on the *training points* minimizes the loss on future *test points*. I.e., makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $||\vec{\theta}|| < c$).
- · Computational constraints, such as memory constraints.

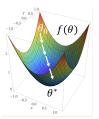
$$L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{\mathbf{x}}_i), \mathbf{y}_i)$$

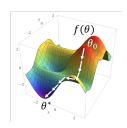
What are some popular optimization algorithms?

GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can – in the opposite direction of the gradient.





MULTIVARIATE CALCULUS REVIEW

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = \underbrace{[0,0,1,0,0,\ldots,0]}_{1 \text{ at position } i}$.

Partial Derivative:

$$\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$$

Directional Derivative:

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.$$

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Directional Derivative in Terms of the Gradient:

$$D_{\vec{v}} f(\vec{\theta}) = \langle \vec{v}, \vec{\nabla} f(\vec{\theta}) \rangle.$$

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon} . D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.$$

So for small η :

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{\mathsf{v}}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot \mathsf{D}_{\vec{\mathsf{v}}} f(\vec{\theta}^{(i-1)})$$
$$= \eta \cdot \langle \vec{\mathsf{v}}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle.$$

We want to choose \vec{v} minimizing $\langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle$ – i.e., pointing in the direction of $\vec{\nabla} f(\vec{\theta}^{(i-1)})$ but with the opposite sign.

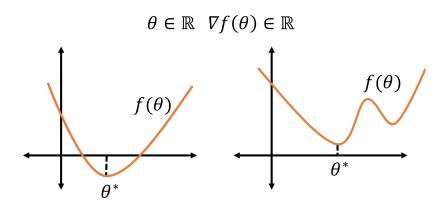
Gradient Descent

- Choose some initialization $\vec{\theta}^{(0)}$.
- For i = 1, ..., t• $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} - \eta \nabla f(\vec{\theta}^{(i-1)})$
- Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

 \cdot For now assume η stays the same in each iteration.

WHEN DOES GRADIENT DESCENT WORK?



Gradient Descent Update: $\vec{\theta_{i+1}} = \vec{\theta_{i}} - \eta \nabla f(\vec{\theta_{i}})$