COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 23

LOGISTICS

- Problem Set 4 is due tomorrow at 11:59pm.

- Problem Set 5 and grades for Problem Set 3 will be released
in the next few days.

SUMMARY

Last Two Classes: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a matrix.

- High level overview of more advanced iterative methods for top
eigenvector computation.

Final Three Classes:

- General iterative algorithms for optimization, specifically gradient
descent and its variants.

- What are these methods, when are they applied, and how do you
analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

+ Unconstrained convex and non-convex optimization.

+ Linear programming, quadratic programming, semidefinite
programming

CONTINUOUS OPTIMIZATION EXAMPLES

AN O eR = 6 € R

6 € R?

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

f(6,) = minf(6) + ¢
geRrd

Typically up to some small approximation factor.
Often under some constraints:
C (16l <1 18] <1
- AG<b, 0TA6>0.
L00) < c

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

+ Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

OPTIMIZATION IN ML

Example: Linear Regression
Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).
Parameter Vector: § € R? (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..
(the rows of data matrix X € R"<9) and labels y1,...,y, € R, ﬁnd
minimizing the loss function:

(0) = LG X)) = Zf (%), vi)

- Xn
0.

where ¢ is some measurement of how far M(X;) is from y;.

UMy(%),yi) = (Mg
- yi € {=1,1} and £(Mz(X}),yi) = In (1 + exp(—yiMz(X;))) (logistic
regression)

(X;) — y,-) (least squares regression)

OPTIMIZATION IN ML

Ly 7(0) = Z UMz(X)), Vi)

- Supervised means we have labels y4,...,y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

—

+ Generalization tries to explain why minimizing the loss Ly (@) on
the training points minimizes the loss on future test points. l.e,
makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

=

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e.g, ||4]| < c).

- Computational constraints, such as memory constraints.
n
Ly (8) = D eMs(%:), 1)
i=1

What are some popular optimization algorithms?

GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

- Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in the
function that is can - in the opposite direction of the gradient.

MULTIVARIATE CALCULUS REVIEW

Let & € R? denote the it standard basis vector,
& =10,0,1,0,0,...,0]

1at position i

Partial Derivative:

of i [0+ &) —f6)
|

89() e—0 €
Directional Derivative:

Dy f(8) = lim
e—0

A6+ &) — f(6)

1

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.

vie) = | 7

Directional Derivative in Terms of the Gradient:

— —

Dy f(6) = (V, VA(9)).

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(f) for any 6.

Gradient Evaluation: Can compute V£(4) for any 6.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).

13

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

fOU=D +).
Dy f(9) = lim w.nﬁ(éﬁﬂ)) ~ lim OV + 6\76) — fEY)

So for small »:

fBV) — FBUD) = fOU + @) — f(BU7) ~ - DA(V)
=1 (7, V')

We want to choose v minimizing (v, VA(6U=)) - i.e, pointing in the
direction of Vf(AU~") but with the opposite sign.

14

GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 4.
- Fori=1,...,t
. 5(/) _ 5([—1) _ nvf({f(1))

- Return A, as an approximate minimizer of f(f).

Step size i is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

15

WHEN DOES GRADIENT DESCENT WORK?

BeER Vf(O) ER

A r

N £(6)
\

f(6)
_ /.
NS R

v 9* v

Gradient Descent Update: 6, = 6; — V(0

16

