COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 23



LOGISTICS

- Problem Set 4 is due tomorrow at 11:59pm.

- Problem Set 5 and grades for Problem Set 3 will be released
in the next few days.

,Exm AU N @\,\lpv

2116
—



SUMMARY

Last Two Classes: Fast computation of the SVD/eigendecomposition.

Y% X!

- Power method for approximating the top eigenvector of a matrix.

°| High level overview of more advanced iterative methods for top
eigenvector computation.

Final Three Classes:

* General iterative algorithms for optimization, specifically gradient
descent and its variants.

- What are these methods, when are they applied, and how do you
analyze their performance?

- Small taste of what you can find in COMPS Q0P or 6900P.



DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
\

+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

+ Unconstrained convex and non-convex optimization.

+ Linear programming, quadratic programming, semidefinite
programming



CONTINUOUS OPTIMIZATION EXAMPLES

= &

N £(6)

< 0 eER




MATHEMATICAL SETUP

Given some function f:‘I,Ri‘j R, find 6, with:



MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

f(6) +

/
Typically up to some small approximation factor.

f(g*) =

e

'3

in
€Rd

>



MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

Typically up to some small approximation factor.

Often under some constraints:

16l <1, [16]h < 7. | o
({Aiéb, 0'A0 > 0. »q/JNwa L prdyemiay
L) <c

I

[y pro b/ AN bl



WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neu@ﬂvp_rk, linearfunction, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
redictions on your training data. G/W\P‘f‘ cd N )11 m‘A\m\%}‘N

This training step is typically formulated as a continuous
optimization problem.



OPTIMIZATION IN ML

Example: Linear Regression



OPTIMIZATION IN ML

Example: Linear Regression

Model: Mz : RY — R with Mz(X) L. %)




OPTIMIZATION IN ML

Example: Linear Regression

—

Model: M, : RY — R with M Z)dEf 0.%) = 0(1) X(1) + ... + 6(d) - X(d).



OPTIMIZATION IN ML

Example: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).

Parameter Vector: § € RY (the regression coefﬁcients)



OPTIMIZATION IN ML

Example: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients) J

el

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

L@‘)_(’Z) - Zé(%l) y/)

where ¢ is some measurement of how far Mz(X;) is from y;.



OPTIMIZATION IN ML

Example: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

n
LEXP = D M5(E))
1=
where ¢ is some measurement of how far Mz(X;) is from y;.

UMK, yi) = JMg(%i) - y,-)'Z (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)



OPTIMIZATION IN ML

Example: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

LX) = D M), )

where ¢ is some measurement of how far Mz(X;) is from y;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)



OPTIMIZATION IN ML

W\W’OO o= B
ny ZK

,1>

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

- Generalization tries to explain why minimizing the loss ny@ on
the training points minimizes the loss on future test points. l.e,,
makes us have good predictions on future inputs.



OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for mlmmlzmgf( ) [l depend on
many things: (
LX.UW)
+ The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e, [|4]| < o).

- Computational constraints, such as memory constraints.

y 9) = Zg(Me()_(’») Y/)

\———[:1\’/



OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing f(¢ ) [l depend on
many things:

+ The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e, [|4]| < o).

- Computational constraints, such as memory constraints.

= ZKMQ()_{») Y/)

What are some popular optmuzatwom algorithms?

G2t hsay (PDa “iﬁi'QS
Ve Jemdeny DSPa0 | LBFeC

S)fo J(\C,,S'\\ C DV\A)JP( AQS L‘}(\3‘ ‘ ((f\)u\k ‘MN)



GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in the
function that is can - in the opposite direction of the gradient.

10



MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].

1at position i



MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0]. st

1at position i ]

Partial Derivative:

of _ [0+ &) —f0)
a6(i) 0 € ‘

=

-



MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].

1at position i i
Partial Derivative: & o
of _ o f0+e &) —f(0)
o6(i) 0 €

Directional Derivative:



MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.

L N
W apt | o

211)



MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of

20(1)

VOE 85{; LGOI
: ]
a0(d)

Directional Derivative in Terms of the Gradient:

R e 7 f(8) = (v, Vf(8)).
_\) \é;\g‘ Ev/f(j) (V, Vf())

e
AN

D@Eﬂ@ “5e 5

@



FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(#) for any 6.

Gradient Evaluation: Can compute @5) for any .



FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can comput q}‘or any 0.

Gradient Evaluation: Can compute\Vf(#) for any 6.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

@;diﬂnt_e&w_ation is called a backward pass (compute the
gradient via chain rule, using backpropagation).
D



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 8%, in each iteration let 6’ () = 9(’ RS nv where 7 is a
(small) ‘step size’ and Vis a direction chosen to minimize

(81D + 7).

14



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
61D + 0.

L A+ el) - f(0
0 — tim 10D —f(0)

e—0 €

D

<i

14



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O + ).

Dy f#-1) = fim TE " V) — B0

e—0 €

14



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration le_tujﬂ\?, where nis a
(small) ‘step size’ and Vis a direction chosen to minimize
O + ).

Dy f#-1) = fim TE " V) — B0

e—0 €

: Y
So for smaﬂg \l/

FED) = FOU) = F(OU + @) — f(O' )

—_—

14



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O + ).

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

FOV) — B0 = OV @) — (VD) ~ 0y DA(O)
no= 0

14



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize

AOUD + ).
7 () T fOU=1) + ev) — f(OU- \
D i) =1 € \/ VH/@)

So for small n:

9_’(/') _f(é’(f—1)) _ f(é’(i—ﬂ + ,'7\-/') _f(é’(i—ﬁ)) a7 va(é'(f—1))
WAy g 5w\ﬂ — - (CIAETY).

-

\\ N <%mﬂl 1 o\
° i e
JV 14




GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O + ).

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

FOV) — G0 = OV @) — (VD) - DAOY)
=1 (7, V')

We want to choose V minimizing (v, VA(U=")) - i.e, pointing in the
direction of V(AU=") but with the opposite sign.

VR VA (SN I )



GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 69,

- Fori=1,...,t X
et

.l — 91:1) — pVAOU-M)

- Return 61, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)



GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 69,
- Fori=1,...,t
- g0 = gu=1 — el

- Return 61, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.



WHEN DOES GRADIENT DESCENT WORK?

(SO £ (o)
= 6€ER Vf(H) ER A
ﬁbjéﬁv“‘ A
S R, N }(9)
\ w g = O\ "
ce £(6) o)
~
< \S(‘a—/ < = >
\*@/@ ke 6

o

Gradient Descent Update: §,+1 =6 — //Tf(@)
——

—

16



