COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 22

LOGISTICS

- Problem Set 4 due December 1.
- No quiz this week.
- We're going to start on optimization after break. And just cover a bit less material.

SUMMARY

Last Class:

- Efficient algorithms for SVD/eigendecomposition.
- Start on iterative methods: intuition behind the power method.

This Class:

- Finish power method analysis.
- Krylov subspace methods.
- Connections to random walks and Markov chains.

POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing $k=1$ eigenvectors, but can be generalized to larger k.

Goal: Given symmetric $A \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathrm{A}=\mathrm{V} \boldsymbol{\Lambda} \mathrm{V}^{\top}$, find $\vec{z} \approx \vec{V}_{1}$ - the top eigenvector of A .

- Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0,1)$.
- For $i=1, \ldots, t$
- $\vec{z}^{(i)}:=A \cdot \vec{z}^{(i-1)}$
- $\vec{z}_{i}:=\frac{z^{(i)}}{\left\|z^{(i)}\right\|_{2}}$

Return \vec{z}_{t}

POWER METHOD

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE RATE

$\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{2}^{t} \vec{v}_{d}$
Write $\left|\lambda_{2}\right|=(1-\gamma)\left|\lambda_{1}\right|$ for 'gap' $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.
How many iterations t does it take to have $\left|\lambda_{2}\right|^{t} \leq \frac{1}{e} \cdot\left|\lambda_{1}\right|^{t}$? $1 / \gamma$.
How many iterations t does it take to have $\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$? $\frac{\ln (1 / \delta)}{\gamma}$.
Will have for all $i>1,\left|\lambda_{i}\right|^{t} \leq\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$.
How small must we set δ to ensure that $c_{1} \lambda_{1}^{t}$ dominates all other components and so $\vec{z}^{(t)}$ is very close to \vec{v}_{1} ?
$A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A=V \boldsymbol{N} V^{\top}$. \vec{V}_{1} : top eigenvector, being computed, $z^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}$, with very high probability, for all i :

$$
O\left(1 / d^{2}\right) \leq\left|c_{i}\right| \leq O(\log d)
$$

Corollary:

$$
\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)
$$

$A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A=V \boldsymbol{N} V^{\top}$. \vec{V}_{1} : top eigenvector, being computed, $z^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}$, with very high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\begin{gathered}
\vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}} \Longrightarrow \\
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq\left\|\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}\right\|_{2}}-\vec{v}_{1}\right\|_{2} \\
=\left\|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}} \vec{v}_{2}+\ldots+\frac{c_{d} \lambda_{d}^{t}}{\lambda_{1}^{t}} \vec{v}_{d}\right\|_{2}=\left|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}}\right|+\ldots+\left|\frac{c_{d} \lambda_{d}^{t}}{\lambda_{1}^{t}}\right| \leq \delta \cdot O\left(d^{2} \log d\right) \cdot d .
\end{gathered}
$$

Setting $\delta=O\left(\frac{\epsilon}{d^{3} \log d}\right)$ gives $\left\|\vec{Z}^{(t)}-\vec{V}_{1}\right\|_{2} \leq \epsilon$.
 tor, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t=O\left(\frac{\ln (d / \epsilon)}{\gamma}\right)$ steps:

$$
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq \epsilon
$$

Total runtime: $O(t)$ matrix-vector multiplications. If $\mathrm{A}=\mathrm{X}^{\top} \mathrm{X}$:

$$
O\left(n n z(X) \cdot \frac{\ln (d / \epsilon)}{\gamma} \cdot\right)=O\left(n d \cdot \frac{\ln (d / \epsilon)}{\gamma}\right) .
$$

How is ϵ dependence?
How is γ dependence?

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need $t=O\left(\frac{\ln (d / \epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_{1} from λ_{i} for $i \geq 2$.

- Power method: power up to λ_{1}^{t} and λ_{i}^{t}.
- Krylov methods: apply a better degree t polynomial $T_{t}(\cdot)$ to the eigenvalues to separate $T_{t}\left(\lambda_{1}\right)$ from $T_{t}\left(\lambda_{i}\right)$.
- Still requires just t matrix vector multiplies. Why?

KRYLOV SUBSPACE METHODS

Optimal 'jump' polynomial in general is given by a degree t Chebyshev polynomial. Krylov methods find a polynomial tuned to the input matrix that does at least as well.

GENERALIZATIONS TO LARGER k

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Standard Krylov methods (i.e., svds/eigs)
- Block Krylov methods

$$
\text { Runtime: } O\left(n d k \cdot \frac{\ln (d / \epsilon)}{\sqrt{\gamma}}\right)
$$

to accurately compute the top k singular vectors.

$$
\text { ‘Gapless' Runtime: } O\left(n d k \cdot \frac{\ln (d / \epsilon)}{\sqrt{\epsilon}}\right)
$$

if you just want a set of vectors that gives an ϵ-optimal low-rank approximation when you project onto them.

Connection Between Random Walks, Eigenvectors, and Power Method

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step $t)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\begin{aligned}
\operatorname{Pr}(\text { walk at } i \text { at step } t) & =\sum_{j \in \text { neigh(i) }} \operatorname{Pr}(\text { walk at } j \text { at step } t-1) \cdot \frac{1}{\operatorname{degree}(j)} \\
& =\vec{z}^{T} \vec{p}^{(t-1)}
\end{aligned}
$$

where $\vec{z}(j)=\frac{1}{\text { degree(}()}$ for all $j \in$ neigh $(i), \vec{z}(j)=0$ for all $j \notin$ neigh (i).

- \vec{z} is the $i^{\text {th }}$ row of the right normalized adjacency matrix ${A D^{-1}}^{\text {. }}$.

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\vec{p}^{(t)}=\underbrace{A D^{-1} A D^{-1} \ldots A D^{-1}}_{t \text { times }} \vec{p}^{(0)} .
$$

$$
D^{-1 / 2} \vec{p}^{(t)}=\underbrace{\left(D^{-1 / 2} A D^{-1 / 2}\right)\left(D^{-1 / 2} A D^{-1 / 2}\right) \ldots\left(D^{-1 / 2} A D^{-1 / 2}\right)}_{t \text { times }}\left(D^{-1 / 2} \vec{p}^{(0)}\right)
$$

- $D^{-1 / 2} \vec{p}^{(t)}$ is exactly what would obtained by applying $t / 2$ iterations of power method to $\mathrm{D}^{-1 / 2} \vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $D^{-1 / 2} A D^{-1 / 2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of $D^{-1 / 2} A D^{-1 / 2}$. The spectral gap.

RANDOM WALKING AS POWER METHOD

A small spectral gap for $\mathrm{D}^{-1 / 2} A D^{-1 / 2}$ corresponds to a small second smallest eigenvalue for the normalized Laplacian $\mathrm{D}^{-1 / 2} \mathrm{LD}^{-1 / 2}$. Why?

Why does this make sense intuitively given what we know about the second smallest eigenvalue of the Laplacian?

