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LOGISTICS

- Problem Set 4 due December 1.

- No quiz this week.

- We're going to start on optimization after break. And just
cover a bit less material.



SUMMARY

Last Class:

- Efficient algorithms for SVD/eigendecomposition.

- Start on iterative methods: intuition behind the power method.
This Class:

- Finish power method analysis.
- Krylov subspace methods.

- Connections to random walks and Markov chains.



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing
kR = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A € R9*9 with eigendecomposition
A =VAV', find Z ~ V; - the top eigenvector of A.

- Initialize: Choose Z(% randomly. E.g. ZO(i) ~ N(0,1).

- Fori=1,...,t
- Z0 = A 205D
c 7= 2
S VOl P

Return Z



POWER METHOD

+ unit circle




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\_/’1 + C2\72 + ...+ Cdvd — Z(K) = C]/\%\_/’q + Cz/\g\_/’z + ...+ Cd)\é\_/d

Iteration 0 Iteration 2




POWER METHOD CONVERGENCE RATE

70 = Vi + GV + ...+ CdVd = 70 = C1/\%\_/'1 + Cz)\é\_/} + ...+ Cd)\%\_/d

: rm A=A

Write |As| = (1= )|\ for ‘gap v = | 1‘|M|‘ 2]

How many iterations t does it take to have [A|" < 1|\ |2 1/4.
How many iterations t does it take to have [X;|t < & |\]'? m(LJ.

Will have for alli > 1, IN]F < A < 8- [\

How small must we set ¢ to ensure that c;A! dominates all other
components and so 2 is very close to v;?

—

A € RY%9: input matrix with eigendecomposition A = VAV’. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .




RANDOM INITIALIZATION

Claim: When z(9 is chosen with random Gaussian entries, writing
720 = V) 4+ ¥y + ... + ¢4V, with very high probability, for all i:

0(1/d%) < |ci| < O(logd)
Corollary:

91 < o(c? log d).

max
¢ i

J

—

A € RY%d: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .




RANDOM INITIALIZATION

Claim 1: When z{% is chosen with random Gaussian entries, writing
70 = Vi 4+ oV + ... + c4Vy, with very high probability,
max; ) ) < 0(d? logd)

o t
Claim 2: Forgap v = M, and t = M, A—; < ¢ foralli.
[A] ¥ AL
ﬁ(t) B C]/\t\71 + ...+ CdAng
HC1AtV1 +...+ CdAEde||2
. AV +...+c)\t\7 .
120 =il < | =2 S
[c1 A VA ll2 )
cz)\zq caA, A CaN, 5
) Nlrd S <6 -0(d*logd
A2 +/\§ , quJr i A (d*logd)

Setting & = O ( grisgg ) gives 70— Will> < e

A € RY%d: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .




POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let~v = % be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O (%) steps:

129 =, <.

Total runtime: O(t) matrix-vector multiplications. If A = X'X:
0 (mz(x) . W'Vﬁ)) _0 (nd. ln(d/e)) _
Y v
How is e dependence?

How is v dependence?



KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \q from \; for i > 2.

- Power method: power up to A} and AL

- Krylov methods: apply a better degree t polynomial T¢(-) to
the eigenvalues to separate Ti(A1) from T¢(\;).

- Still requires just t matrix vector multiplies. Why?



KRYLOV SUBSPACE METHODS

24
762

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.
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GENERALIZATIONS TO LARGER R

- Block Power Method (a.k.a. Simultaneous Iteration,
Subspace Iteration, or Orthogonal Iteration)

- Standard Krylov methods (i.e, svds/eigs)
- Block Krylov methods

Runtime: O (ndl?- %)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O <ndfe : %)

if you just want a set of vectors that gives an e-optimal
low-rank approximation when you project onto them.



Connection Between Random Walks,
Eigenvectors, and Power Method
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CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at 1%

I RPN ey T PR SR PR el T PR SR S



CONNECTION TO RANDOM WALKS

Let p® € R” have ™" entry 5,“) = Pr(walk at node i at step t).

+ Initialize: 5 =[1,0,0,...,0].

+ Update:

Pr(walk at i atstept) = Z Pr(walk at j at step t-1) - #
L degree())
jeneigh(i)

_ Z'Tﬁ(t—w)

where Z(j) = for all j € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree )
- Zis the it row of the right normalized adjacency matrix AD—".

- p® =AD" 'pE") = AD~'AD"...AD' 5(®

ttimes
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' p®).

t times

D71/25(t) _ (D71/2AD71/2)(D71/2AD71/2) o (D71/2AD7W/2)(D71/25(O)).

t times

- D-/2p(® is exactly what would obtained by applying t/2 iterations
of power method to D~"/2p()1

- Will converge to the top eigenvector of the normalized adjacency
matrix D~'/2AD~"/2, Stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the gap

between the top two eigenvalues of D~"/2AD~"/2. The spectral gap.
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RANDOM WALKING AS POWER METHOD

A small spectral gap for D~/2AD~"/2 corresponds to a small
second smallest eigenvalue for the normalized Laplacian
D—'/2LD~/2. Why?

Why does this make sense intuitively given what we know
about the second smallest eigenvalue of the Laplacian?
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