
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 22

0

logistics

• Problem Set 4 due December 1.
• No quiz this week.
• We’re going to start on optimization after break. And just
cover a bit less material.

1

summary

Last Class:

• Efficient algorithms for SVD/eigendecomposition.

• Start on iterative methods: intuition behind the power method.

This Class:

• Finish power method analysis.

• Krylov subspace methods.

• Connections to random walks and Markov chains.

2

power method

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing
k = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A ∈ Rd×d, with eigendecomposition
A = VΛVT, find z⃗ ≈ v⃗1 – the top eigenvector of A.

• Initialize: Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t
• z⃗(i) := A · z⃗(i−1)
• z⃗i := z⃗(i)

∥⃗z(i)∥2

Return z⃗t

3

power method

4

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1λt1v⃗1 + c2λt2v⃗2 + . . .+ cdλtdv⃗d

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5

power method convergence rate

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1λt1v⃗1 + c2λt2v⃗2 + . . .+ cdλt2v⃗d

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ 1
e · |λ1|

t? 1/γ .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t? ln(1/δ)
γ .

Will have for all i > 1, |λi|t ≤ |λ2|t ≤ δ · |λ1|t.

How small must we set δ to ensure that c1λt1 dominates all other
components and so z⃗(t) is very close to v⃗1?

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . v⃗1 : top eigenvec-
tor, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

6

random initialization

Claim: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d, with very high probability, for all i:

O(1/d2) ≤ |ci| ≤ O(logd)

Corollary:

max
j

∣∣∣∣ cjc1
∣∣∣∣ ≤ O(d2 logd).

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . v⃗1 : top eigenvec-
tor, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

7

random initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d, with very high probability,
maxj

∣∣∣ cjc1 ∣∣∣ ≤ O(d2 logd).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λtiλt1 ∣∣∣ ≤ δ for all i.

z⃗(t) :=
c1λt1v⃗1 + . . .+ cdλtdv⃗d

∥c1λt1v⃗1 + . . .+ cdλtdv⃗d∥2
=⇒

∥⃗z(t) − v⃗1∥2 ≤
∥∥∥∥c1λt1v⃗1 + . . .+ cdλtdv⃗d

∥c1λt1v⃗1∥2
− v⃗1

∥∥∥∥
2

=

∥∥∥∥c2λt2c1λt1
v⃗2 + . . .+

cdλtd
λt1

v⃗d
∥∥∥∥
2
=

∣∣∣∣c2λt2c1λt1

∣∣∣∣+ . . .+

∣∣∣∣cdλtdλt1

∣∣∣∣ ≤ δ · O(d2 logd) · d.

Setting δ = O
(

ϵ
d3 log d

)
gives ∥⃗z(t) − v⃗1∥2 ≤ ϵ.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . v⃗1 : top eigenvec-
tor, being computed, z⃗(i) : iterate at step i, converging to v⃗1 . 8

power method theorem

Theorem (Basic Power Method Convergence)

Let γ = |λ1|−|λ2|
|λ1| be the relative gap between the first and second

eigenvalues. If Power Method is initialized with a random Gaussian
vector v⃗(0) then, with high probability, after t = O

(
ln(d/ϵ)

γ

)
steps:

∥⃗z(t) − v⃗1∥2 ≤ ϵ.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ϵ)

γ
·
)

= O
(
nd · ln(d/ϵ)

γ

)
.

How is ϵ dependence?

How is γ dependence?

9

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ϵ)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt1 and λti .
• Krylov methods: apply a better degree t polynomial Tt(·) to
the eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

10

krylov subspace methods

vs.

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

11

generalizations to larger k

• Block Power Method (a.k.a. Simultaneous Iteration,
Subspace Iteration, or Orthogonal Iteration)

• Standard Krylov methods (i.e., svds/eigs)
• Block Krylov methods

Runtime: O
(
ndk · ln(d/ϵ)√

γ

)
to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · ln(d/ϵ)√

ϵ

)
if you just want a set of vectors that gives an ϵ-optimal
low-rank approximation when you project onto them.

12

Connection Between Random Walks,
Eigenvectors, and Power Method

13

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at
random from the neighbors of the current vertex.

14

connection to random walks

Let p⃗(t) ∈ Rn have ith entry p⃗(t)i = Pr(walk at node i at step t).

• Initialize: p⃗(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= z⃗Tp⃗(t−1)

where z⃗(j) = 1
degree(j) for all j ∈ neigh(i), z⃗(j) = 0 for all j /∈ neigh(i).

• z⃗ is the ith row of the right normalized adjacency matrix AD−1.

• p⃗(t) = AD−1p⃗(t−1) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

p⃗(0)

15

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

p⃗(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

p⃗(0).

D−1/2p⃗(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2p⃗(0)).

• D−1/2p⃗(t) is exactly what would obtained by applying t/2 iterations
of power method to D−1/2p⃗(0)!

• Will converge to the top eigenvector of the normalized adjacency
matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the gap
between the top two eigenvalues of D−1/2AD−1/2. The spectral gap.

16

random walking as power method

A small spectral gap for D−1/2AD−1/2 corresponds to a small
second smallest eigenvalue for the normalized Laplacian
D−1/2LD−1/2. Why?

Why does this make sense intuitively given what we know
about the second smallest eigenvalue of the Laplacian?

17

