COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 22

- Problem Set 4 due December 1.
- No quiz this week.
- We're going to start on optimization after break. And just cover a bit less material.

Last Class:

- Efficient algorithms for SVD/eigendecomposition.
- $\cdot\,$ Start on iterative methods: intuition behind the power method.

This Class:

- Finish power method analysis.
- Krylov subspace methods.
- Connections to random walks and Markov chains.

Power Method: The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing k = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric $\mathbf{A} \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{A} \mathbf{V}^{T}$, find $\vec{z} \approx \vec{v}_{1}$ – the top eigenvector of \mathbf{A} .

- Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.
- For $i = 1, \ldots, t$
 - $\vec{z}^{(i)} := \mathbf{A} \cdot \vec{z}^{(i-1)}$ • $\vec{z}_i := \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}$

Return $ec{z}_t$

POWER METHOD

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

 $\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$

$$\begin{split} \vec{z}^{(0)} &= c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_2^t \vec{v}_d \\ \text{Write } |\lambda_2| &= (1 - \gamma) |\lambda_1| \text{ for 'gap' } \gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}. \\ \text{How many iterations } t \text{ does it take to have } |\lambda_2|^t \leq \frac{1}{e} \cdot |\lambda_1|^t? \quad 1/\gamma. \\ \text{How many iterations } t \text{ does it take to have } |\lambda_2|^t \leq \delta \cdot |\lambda_1|^t? \quad \frac{\ln(1/\delta)}{\gamma}. \\ \text{Will have for all } i > 1, \ |\lambda_i|^t \leq |\lambda_2|^t \leq \delta \cdot |\lambda_1|^t. \end{split}$$

How small must we set δ to ensure that $c_1 \lambda_1^t$ dominates all other components and so $\vec{z}^{(t)}$ is very close to \vec{v}_1 ?

 $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = V\Lambda V^T$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

RANDOM INITIALIZATION

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, for all *i*: $O(1/d^2) \le |c_i| \le O(\log d)$

Corollary:

$$\max_{j} \left| \frac{c_{j}}{c_{1}} \right| \leq O(d^{2} \log d).$$

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

RANDOM INITIALIZATION

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_1^t}\right| \le \delta$ for all *i*.

$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$$

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\|\frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1\right\|_2$$

$$= \left\|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d\right\|_2 = \left|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t}\right| + \ldots + \left|\frac{c_d \lambda_d^t}{\lambda_1^t}\right| \le \delta \cdot O(d^2 \log d) \cdot d.$$
Setting $\delta = O\left(\frac{\epsilon}{d^3 \log d}\right)$ gives $\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \epsilon.$

 $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = V\Lambda V^T$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \epsilon.$$

Total runtime: O(t) matrix-vector multiplications. If $\mathbf{A} = \mathbf{X}^T \mathbf{X}$:

$$O\left(\operatorname{nnz}(\mathbf{X})\cdot \frac{\ln(d/\epsilon)}{\gamma}\cdot\right) = O\left(nd\cdot \frac{\ln(d/\epsilon)}{\gamma}\right).$$

How is ϵ dependence?

How is γ dependence?

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \ge 2$.

- Power method: power up to λ_1^t and λ_i^t .
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$.
- Still requires just *t* matrix vector multiplies. Why?

KRYLOV SUBSPACE METHODS

Optimal 'jump' polynomial in general is given by a degree *t* Chebyshev polynomial. Krylov methods find a polynomial tuned to the input matrix that does at least as well.

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Standard Krylov methods (i.e., svds/eigs)
- Block Krylov methods

Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$$

to accurately compute the top k singular vectors.

'Gapless' Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\epsilon}}\right)$$

if you just want a set of vectors that gives an ϵ -optimal low-rank approximation when you project onto them.

Connection Between Random Walks, Eigenvectors, and Power Method

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at

14

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node i at step t})$.

• Initialize:
$$\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$$

· Update:

Pr(walk at i at step t) =
$$\sum_{j \in neigh(i)}$$
 Pr(walk at j at step t-1) $\cdot \frac{1}{degree(j)}$
= $\vec{z}^T \vec{p}^{(t-1)}$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the *i*th row of the right normalized adjacency matrix AD⁻¹.

•
$$\vec{p}^{(t)} = AD^{-1}\vec{p}^{(t-1)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{t \text{ times}}\vec{p}^{(0)}$$

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{\mathsf{A}\mathsf{D}^{-1}\mathsf{A}\mathsf{D}^{-1}\dots\mathsf{A}\mathsf{D}^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$\mathsf{D}^{-1/2}\vec{p}^{(t)} = \underbrace{(\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2})(\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2})\dots(\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2})}_{t \text{ times}}(\mathsf{D}^{-1/2}\vec{p}^{(0)}).$$

- $\mathbf{D}^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $\mathbf{D}^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $D^{-1/2}AD^{-1/2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of $D^{-1/2}AD^{-1/2}$. The spectral gap.

A small spectral gap for $D^{-1/2}AD^{-1/2}$ corresponds to a small second smallest eigenvalue for the normalized Laplacian $D^{-1/2}LD^{-1/2}$. Why?

Why does this make sense intuitively given what we know about the second smallest eigenvalue of the Laplacian?