COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.
Lecture 21

LOGISTICS

- | released Problem Set 4 this am. Due Wednesday 12/1.

- At least one group is looking to add a third teammate. if you are
working alone and would like to join a group for Problem Set 4, let
me know.

 Problem Set 5 will be released right after break and will be
optimal extra credit.

- No quiz this week.

- This is the last day of our spectral unit. Then will have 3-4 classes
on optimization + a possible review class before the end of the
semester.

- I'am holding hybrid office hours today at 5-6pm, so feel free to
come by in person if you like.

SUMMARY

Last Few Classes: Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
* Provable guarantees for stochastic block model.

- Idealized analysis in class. See slides for full analysis.
This Class: Computing the SVD/eigendecomposition.

- Efficient algorithms for SVD/eigendecomposition.
+ Iterative methods: power method, Krylov subspace methods.

- High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.

SBM WRAPUP

Upshot: The second smallest eigenvector of E[L] is xg ¢ — the
indicator vector for the cut between the communities.

- If the random graph G (equivalently A and L) were exactly
equal to its expectation, partitioning using this eigenvector
(i.e., spectral clustering) would exactly recover the two
communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

- Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.

EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as
ways to compress data, to embed entities like words and
documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on
massive datasets?

COMPUTING THE SVD

Basic Algorithm: To compute the SVD of full-rank X € R"*¢,
X=UxV":
- Compute XX - O(nd?) runtime.
- Find eigendecomposition X'X = VAV" - O(d?) runtime.
- Compute L = XV - O(nd?) runtime. Note that L = UX.
+ Set o7 = ||Lj]|» and U; = L;/||Li||>. = O(nd) runtime.
Total runtime: O(nd? + d®) = O(nd?) (assume w.Lo.g. n > d)
- If we have n = 10 million images with 200 x 200 x 3 = 120,000
pixel values each, runtime is 1.5 x 10V operations!

- The worlds fastest super computers compute at ~ 100 petaFLOPS
= 10" FLOPS (floating point operations per second).

- This is a relatively easy task for them — but no one else.

FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X € Rk for k < d.

- Suffices to compute V), € R*F and then compute
U,Xp = XVp.

- Use an iterative algorithm to compute an approximation to
the top k singular vectors V,, (the top k eigenvectors of X'X.)

- Runtime will be roughly O(ndk) instead of O(nd?).

Sparse (iterative) vs. Direct Method. svd vs. svds.

POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing
kR = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A € R9*9 with eigendecomposition
A =VAV', find Z ~ V; - the top eigenvector of A.

- Initialize: Choose Z(% randomly. E.g. ZO(i) ~ A(0,1).

- Fori=1,...,t
- Z0 = A 205D
c 7= 2
S VO B

Return Z

POWER METHOD

+ unit circle

POWER METHOD ANALYSIS

Write Z) in A’s eigenvector basis:

Z(O) — C1_/’1 + C2\72 + ...+ Cd\7d.

Update step: 20 = A . 201 = VAVT . ZU=1 (then normalize)
VA9 =
AV'ZO =

D —yavT . A0 —

A € R9%9: input matrix with eigendecomposition A = VAV'. ¥: top eigenvec-
tor, being computed, 7(): iterate at step i, converging to v;.

POWER METHOD ANALYSIS

Claim 1: Writing 29 = ¢V + coVy + ... + CyVy,

Z‘(W):C1-)\1\71+C2')\2\72+-~-+Cd'/\d\7d'

72 — A7) — yavTZ() =

Claim 2:

Z(t):q-)\g\71+C2'/\5\72+...—|—Cd'/\é\7d.

tor, being computed, Z(): iterate at step i, converging to .

A € RY%9: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-]

POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1_/’1 + C2\72 + ...+ Cdvd — Z(K) = C]/\%_/’q + Cz/\g_/’z + ...+ Cd)\é_/d

Iteration 0 Iteration 1

08

When will convergence be slow? B

POWER METHOD SLOW CONVERGENCE

Slow Case: A has eigenvalues: Ay =1,A) = .99, 3 = .9,\, = .8, ...

70 = GV + GV + ...+ cd\7d = 70 = C1/\%_/'1 + Cz)\é_/'z + ...+ cd/\(d\7d

Iteration 0

POWER METHOD CONVERGENCE RATE

70 = Vi + GV + ...+ CdVd = 70 = C1/\%_/'1 + Cz)\é_/} + ...+ Cd)\%_/d

: rm A=A

Write |As| = (1=)|\ for ‘gap v = | 1‘|M|‘ 2]

How many iterations t does it take to have [A|" < 1|\ |2 1/4.
How many iterations t does it take to have [X;|t < & |\]'? m(LJ.

Will have for alli > 1, IN]F < A < 8- [\

How small must we set ¢ to ensure that c;A! dominates all other
components and so 2 is very close to v;?

—

A € RY%9: input matrix with eigendecomposition A = VAV’. V;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .

13

RANDOM INITIALIZATION

Claim: When z(9 is chosen with random Gaussian entries, writing
720 = V) 4+ ¥y + ... + ¢4V, with very high probability, for all i:

0(1/d%) < |ci| < O(logd)
Corollary:

91 < o(c? log d).

max
¢ i

J

—

A € RY%d: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .

14

RANDOM INITIALIZATION

Claim 1: When z{% is chosen with random Gaussian entries, writing
70 = Vi 4+ oV + ... + c4Vy, with very high probability,
max;)) < 0(d? logd)

o t
Claim 2: Forgap v = M, and t = M, A—; < ¢ foralli.
[A] ¥ AL
ﬁ(t) B C]/\t\71 + ...+ CdAng
HC1AtV1 +...+ CdAEde||2
. AV +...+c)\t\7 .
120 =il < | =2 S
[c1 A VA ll2)
cz)\zq caA, A CaN, 5
) Nlrd S <6 -0(d*logd
A2 +/\§ , quJr i A (d*logd)

Setting & = O (grisgg) gives 70— Will> < e

A € RY%d: input matrix with eigendecomposition A = VAV’. ¥;: top eigenvec-
tor, being computed, Z(): iterate at step i, converging to .

15

POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let~v = % be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector V) then, with high probability, after t = O (%) steps:

129 =, <.

Total runtime: O(t) matrix-vector multiplications. If A = X'X:
0 (nnz(x) . “‘@’/6)) ~0 (nd. W'Ve)) _
Y v
How is e dependence?
How is v dependence?

16

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate \q from \; for i > 2.

- Power method: power up to A} and AL

- Krylov methods: apply a better degree t polynomial T¢(-) to
the eigenvalues to separate Ti(A1) from T¢(\;).

- Still requires just t matrix vector multiplies. Why?

17

KRYLOV SUBSPACE METHODS

24
762

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

18

GENERALIZATIONS TO LARGER R

- Block Power Method (a.k.a. Simultaneous Iteration,
Subspace Iteration, or Orthogonal Iteration)

- Block Krylov methods

Runtime: O (ndfe- I”E%e))

to accurately compute the top k singular vectors.

€

‘Gapless’ Runtime: O <ndk : %)

if you just want a set of vectors that gives an e-optimal
low-rank approximation when you project onto them.

19

Connection Between Random Walks,
Eigenvectors, and Power Method
(Bonus Material)

20

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at 2

I RPN ey T PR SR PR el T PR SR S

CONNECTION TO RANDOM WALKS

Let p® € R” have ™" entry 5,“) = Pr(walk at node i at step t).

+ Initialize: 5 =[1,0,0,...,0].

+ Update:

Pr(walk at i atstept) = Z Pr(walk at j at step t-1) - #
L degree())
jeneigh(i)

_ Z'Tﬁ(t—w)

where Z(j) = for all j € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree)
- Zis the it row of the right normalized adjacency matrix AD—".

- p® =AD" 'pE") = AD~'AD"...AD' 5(®

ttimes

22

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' p®).

t times

D71/25(t) _ (D71/2AD71/2)(D71/2AD71/2) o (D71/2AD7W/2)(D71/25(O)).

t times

- D-/2p(® is exactly what would obtained by applying t/2 iterations
of power method to D~"/2p()1

- Will converge to the top eigenvector of the normalized adjacency
matrix D~'/2AD~"/2, Stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the gap

between the top two eigenvalues of D~"/2AD~"/2. The spectral gap.
23

