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- | released Problem Set 4 this am. Due Wednesda§ 12/1.§

- At least one group is looking to add a third teammate. if you are
working alone and would like to join a group for Problem Set 4, let
me know.

* Problem Set 5 will be released right after break and will be
optimal extra credit.

+ No quiz this week.

* This is the last day of our spectral unit. Then will have 3-4 classes
on optimization + a possible review class before the end of the
semester.

+ I'am holding hybrid office hours today at 5-6pm, so feel free to

come by in person if you like. C 5 ng ‘



SUMMARY

Last Few Classes: Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
+ Provable guarantees for stochastic block model.

-@alized analysis in class. See slides for full analysis.
This Class: Computing the SVD/eigendecomposition.

- Efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.

- High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.
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Upshot: The second smallest eigenvector of E[L] is xg ¢ — the
indicator vector for the cut between the communities.

- If the random graph G (equivalently A and L) were exactly
equal to its expectation, partitioning using this eigenvector
(i.e., spectral clustering) would exactly recover the two
communities B apd C. — eLond SMJ\L&
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Upshot: The second smallest eigenvector of E[L] is xg ¢ — the
indicator vector for the cut between the communities.

- If the random graph G (equivalently A and L) were exactly
equal to its expectation, partitioning using this eigenvector
(i.e., spectral clustering) would exactly recover the two
communities B and C.

How do we show that a matrix (e.g.,, A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs,

ebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.



EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as
ways to compress data, to embed entities like words and
documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on
massive datasets?



COMPUTING THE SVD

Basic Algorithm: To compute the SVD of full-rank X € R”Xd ><
X=U YTX S
- bi o een EEX%[H L

{/Compute XX - O(nd2) runtime.
+[ Find elgendecozm position X'X —!VI\VT ) runtime.

- Compute L = XV - Q(rd?) runtime. Note that L = UX.
P XNV -'\Jg\/qv )= )2 -
* Set o; = ||Li||> and U; = L;/||Lj||.. = O(nd) runtime.

Total runtime: O(nd? + d®) = O(nd?) (assume w.Lo.g. n > d)

C SND(X)



COMPUTING THE SVD

Basic Algorithm: To compute the SVD of full-rank X € R"*9,
X=UxV"
- Compute XX - O(nd?) runtime.
- Find eigendecomposition XX = VAVT - O(d?) runtime.
- Compute L = XV - O(nd?) runtime. Note that L = UX.
* Set o; = ||Lil|; and U; = Lj/||L||2- = O(nd) runtime.
Total runtime: O(nd? + d®) = O(nd?) (assume w.Lo.g. n > d)

E)

- If we have/n = 10 million images with 200 x 200 x 3 = 120,000
pixel values each, runtime;LS._‘l@Q17 operations!



COMPUTING THE SVD

Basic Algorithm: To compute the SVD of full-rank X € R"*9,
X=UxV"
- Compute XX - O(nd?) runtime.
- Find eigendecomposition XX = VAVT - O(d?) runtime.
- Compute L = XV - O(nd?) runtime. Note that L = UX.
+ Set o; = ||Lil| and U; = Lj/||L||2. = O(nd) runtime.
Total runtime: O(nd? + d3)\@(assume w.lo.g n>d)
| If we have n = 10 million images with 200 x 200 x 3 = 120, 000
pixel values each, runtime is 1.5 x 10" operations!

+ The worlds fastest super computers compute at ~ 100 petaFLOPS
=10" FLOPS (floating point operations per second).

* This is a relatively easy task for them — but no one else.



FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the
fact that we typically only care about computi fthe top (or
bottom) k singular vectors of a matrix X € R"™Rfor k <« d.

\—’—

- Suffices to compute V, € R9** and then compute
UpEy, = XV,

- Use an iterative algorithm to compute an approximation to
the top k singular vectors Vg (the top k eigenvectors of X’X.)

g
- Runtime will be roughly O(ndk) instead ofqo(ndz).



FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X € R"*k for k < d.

- Suffices to compute V, € Rk and then compute
UpX), = XVp.
- Use an iterative algorithm to compute an approximation to
the top k singular vectors V,, (the top k eigenvectors of X’X.)
- Runtime will be roughly O(ndR) ¢

Sparse (iterative) vs. Direct Method
Cx—— —
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POWER METHOD

Power Method: The most fundamental iterative method for

approximate SVD/eigendecomposition. Applies to computing

k =1 eigenvectors, but can he generalized to larger k.
—_ 7 XTX

Goal: Given symmetric A € R9%9, with eigendecomposition
A = VAV', find Zx Vj - the top eigenvector of A.
CErey udimn



POWER METHOD

Power Method: The most fundamental iterative method for
PR

approximate SVD/eigendecomposition. Applies to computing

kR = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A € R9%9, with eigendecomposition
— VAVT 2T -
A =VAV' find.Z ~ v; - the top eigenvector of A.

- Initialize: 7(0) 70)(j) ~
Initialize: Chooseg*randomly.éE.g. z\_(—/) N(0,1).

For i=1,. D -
I: %5 \|;;>\Iz 0

Retum il ¢



POWER METHOD
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POWER METHOD
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POWER METHOD
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POWER METHOD ANALYSIS

Write 29 in A’s eigenvector basis:

70 = C1\71 + C2\72 +...+ Cdvd-

A € RY%d: input matrix with eigendecomposition A = VAV'. ¥;: top eigenvec-
tor, being computed, Z0): iterate at step i, converging to .




POWER METHOD ANALYSIS

Write 29 in A’s eigenvector basis:

!i 70 = C1\71 + C2\72 +...+ Cdvd-

T
\j\ ((_\\!\

2 L
cl \/;Y\“ -G \\V(H-L

Update step: 70 = A- Z0=") = VAV’ . Z0-7) (then normaliz &
—
dxd dxl 4 — T
VT?(O) = c'L \ILT
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A € RY%d: input matrix with eigendecomposition A = VAV'. ¥;: top eigenvec-
tor, being computed, Z0): iterate at step i, converging to .




POWER METHOD ANALYSIS

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

A € R9%%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .

10



POWER METHOD ANALYSIS

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

——

2 1 T(1 x L
20 = pD VAT = 0 ATy C N Ve +

A € R9%%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .
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POWER METHOD ANALYSIS

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

72 — A7) — yavTZ) =

Claim 2:

f(t):Cq-)\%\71—|—C2‘)\g\72+...+Cd')\é\7d.

_—

o\
\

1

A € R9%%: input matrix with eigendecomposition A = VAV'. V;: top eigenvec-
tor, being computed, Z0: iterate at step i, converging to .

10



POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

70 =i+ vy + ...+ iy = 70 = AT + QAW + .+ CaAglg

[ —_—



POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1)\%\71 + Cz)\g\_/} + ...+ Cd)\g\_/'d

Iteration 0
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component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1)\%\71 + Cz)\g\_/} + ...+ Cd)\g\_/'d

Iteration 2




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1)\%\71 + Cz)\g\_/} + ...+ Cd)\g\_/'d
- .

Iteration 3
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POWER METHOD CONVERGENCE
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1)\%\71 + Cz)\g\_/} + ...+ Cd)\g\_/'d

Iteration 6
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
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components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other

components. NI s
Z(O) = C1\71 + C2\72 4+ ...+ Cdvd — z(t) = C1)\%\71 + Cz)\g\_/} + ...+ Cd)\g\_/'d
. - t R
)\\_ |‘ }\\‘_ \ teration 12 A‘ i )\I
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other
components.

70 = iUy + oy + ...+ gy = 70 @‘72 @+®d

A 1001
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When will convergence be slow?



POWER METHOD SLOW CONVERGENCE

Slow Case: A has eigenvalues: Ay =1,\ =.99, A3 = .9,\, = .8,...

Z(O) = C1\71 + C2\72 + ...+ CdVd — Z(t) = C1/\%\71 + Cz/\g\72 + ...+ Cd/\gvd



POWER METHOD SLOW CONVERGENCE

Slow Case: A has eigenvalues: Ay =1,\ =.99, A3 = .9,\, = .8,...
-
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Z(O) = C1\71 + C2\72 + ...+ CdVd — Z(t) = C1/\%\71 + Cz/\g\72 + ...+ Cd/\gvd

Iteration 0
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POWER METHOD SLOW CONVERGENCE

Slow Case: A has eigenvalues: Ay =1,\ =.99, A3 = .9,\, = .8,...
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POWER METHOD SLOW CONVERGENCE

Slow Case: A has eigenvalues: Ay =1,\ =.99, A3 = .9,\, = .8,...
m\

Z(O) = C1\71 + C2\72 + ...+ CdVd — Z(t) = C1/\%\71 + Cz/\g\72 + ...+ Cd/\gvd

% = %3\1\* \§§3d1’
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