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LOGISTICS

- Week 11 Quiz will be due Monday 11/15.
- No class or office hours this Thursday due to Veteran's day.

- I will hold Office Hours in person after class on Tuesday
instead. 2:30pm-3:30pm.



SUMMARY

Last Class: Applications of Low-Rank Approximation

+ Entity Embeddings.

- Non-linear dimensionality reduction via low-rank approximation
of near-neighbor graphs

- Start on spectral graph theory.
This Class: Spectral Clustering and the Stochastic Block Model
- Start on graph clustering for community detection and non-linear
clustering.
- Spectral clustering: finding good cuts via Laplacian eigenvectors.

- Start on Stochastic block model: A simple clustered graph model
where we can prove the effectiveness of spectral clustering.



SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Community detection in naturally occurring networks.




CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph.
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Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

Let Ve R" be a cut indicator: V(i) =1ifi € S. V(i) = -1ifi e T.
Want v to have roughly equal numbers of 1s and —1s. l.e,, V1 ~ 0.



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D —A is
the graph Laplacian.
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For any vector v, its ‘smoothness’ over the graph is given by:

70 - () = VL.



THE LAPLACIAN VIEW

For a cut indicator vector Ve {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 jyee(V(0) = V())? = 4 - cut(S, T).
2. V1T =|V|—S|
Want to minimize both V'LV (cut size) and v¥'1 (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:
- 1T - . I
Vp=—=-1= argmin V'LV
vn vER™ with [|7]|=1

with eigenvalue (L) = V] LV, = 0. Why?

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Voq = argmin VILV.
vERN with ||V||=1, V],v=0

n
If V,_1 were in {—%, i} it would have:

v vV 4

=75 - cut(S, T) as small as possible given that
Vh_a¥n = J=vh 7= 2Bl =

- l.e., Vo_q; would indicate the smallest perfectly balanced cut.
- The eigenvector V,_; € R" is not generally binary, but still

satisfies a ‘relaxed’ version of this property.

S

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

Vn_q = argmin VILV.
veRdwith ||7]|=1, VI1=0

Set S to be all nodes with V,,_1(i) < 0, T to be all with V,(i) > 0.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~'/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?
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Spectral Clustering:
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LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e., minimize

VLY = Z[v ) = V(j

(ij)eE
Embedding points with coordinates given by
Vo—1()), Va—2(j), - - -, Va_r(j)] €nsures that coordinates connected by

edges have minimum total squared Euclidean distance.

+ Spectral Clustering

- Laplacian Eigenmaps

* Locally linear embedding
* Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian)
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces. But it is difficult to give any formal guarantee on
the ‘quality’ of the partitioning in general graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data analysis/machine
learning (can be used to justify least squares regression,
k-means clustering, PCA, etc.)
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