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LOGISTICS

- Week 11 Quiz will be due Monday 11/15.

s
-\_ﬁc_) class or office hours this Thursday due to Veteran’/s——d/_ayj

- | will hold Office Hours in person after class on Tuesday
instead. 2:30pm-3:30pm. S
\



SUMMARY

Last Class: Applications of Low-Rank Approximation
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*| Entity Embeddings.

* Non-linear dimensionality reduction via low-rank approximation

of near-neighbor graphs
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SUMMARY

Last Class: Applications of Low-Rank Approximation

- Entity Embeddings.

* Non-linear dimensionality reduction via low-rank approximation
of near-neighbor graphs

- Start on spectral graph theory.
This Class: Spectral Clustering and the Stochastic Block Model

- Start on graph clustering for community detection and non-linear
clustering.

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

- Start on Stochastic block model: A simple clustered graph model
where we can prove the effectiveness of spectral clustering.



SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.
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SPECTRAL CLUSTERING

A very common task is to partition or cluster vertices in a
graph based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition.
First - motivate why this type of approach makes sense.



CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph
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(a) Zachary Karate Club Graph
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Simple Idea: Partition clusters along minimum cut in graph
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(a) Zachary Karate Club Graph

Small cuts are often not informative.
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Simple Idea: Partition clusters along minimum cut in graph
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(a) Zachary Karate Club Graph

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph



CUT MINIMIZATION

Simple Idea: Partition clusters along minimum cut in graph
n
Ta = N
V7 2

o

(a) Zachary Karate Club Graph

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph
~

Let V€ R” be a cut indicator: V(i) =1ifie S. V(i) = —1ifi e T.
Want  to have roughly equal numbers of 1s and —1s. l.e., V1~ 0.
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THE LAPLACIAN VIEW
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For a graph with adjacency matrix A and degree matrix D, L=D — A is
the graph Laplacian.
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THE LAPLACIAN VIEW

For a cut indicator vector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1. v =% ijyee(V(i) = V(j))? = 4 - cut(S, T).

\‘d

<.
/

E,@ \/)): <\ )} & :
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For a cut indicator vector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 e (Vi) = V()))? = 4 - cut(S,T),
2. vT1 = V| —|S].
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For a cut indicator vector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 e (Vi) = V()))? = 4 - cut(S, 7).
2\l m - 1s1.|

Want to minimize both V'LV (cut size) and[VTTﬁimbalance).



THE LAPLACIAN VIEW

For a cut indicator vector V € {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 e (Vi) = V()))? = 4 - cut(S,T),

2. V1T =1|V| -S|

Want to minimize both V'LV (cut size) and v'T (imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



SMALLEST LAPLACIAN EIGENVECTOR
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The smallest eigenvector of the Laplacianis: — —
- 1T
Vg = —=-1=

. =T -
argmin V'LV -
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = arg min VILV.
——  VeR" with ||7||=1, V7=0

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.
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By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = arg min VILV.
VER™ with ||7)|=1, T7=0"""
=

n
@nq were in {—ﬁ, ﬁ } it would have:

VLV = \% - cut(S,T) as small as possible given that
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = arg min VILV.
VER™ with ||7]|=1, 7T7=0

— . n .
@ere in {—ﬁ, ﬁ} it would have:
.

Vo 4LVp_q = \if -cut(S,T) as small as possible given that
\7};7“\7n — 7\7; »‘/I = \T\H\S\ = O

- l.e, Vo1 would indicate the smallest perfectly balanced cut.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:
SR Vn1 = argmin V'LV.
éilﬁﬁc_/ ~—= VeR"with |V|=1, FV=0

n
If V,_1 were in {—ﬁ, L } it would have:
. oT

Vo 4LVp_q = \if -cut(S,T) as small as possible given that
VIV = \}vﬁ ﬂ = \T\H\S\ =0.
- l.e, Vo1 would indicate the smallest perfectly balanced cut.
- The eigenvector V,_1 € R" is not generally binary, but still

satisfies a ‘relaxed’ version of this property.

S

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

Vo1 = argmin VILV.
veRdwith ||7]|=1, V1=0

Set S to be all nodes with V,_1(i) < 0, T to be all with V(i) > 0.



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing
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o2

o U

) i)

(0\.”



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

Vo1 = argmin VILV.
veRdwith ||7]|=1, V1=0

Set S to be all nodes with V,_1(i) < 0, T to be all with V(i) > 0.




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal

degree matrix, L € R"*": Laplacian matrix L = A — D. 10




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we vvant to spllt

the graph into more than two parts?
Spectral Clustering:
- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p of L.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 10
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The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split_ k
the graph into more than two parts? N [

Spectral Clustering:

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p of L.
- Represent each node by its corresponding row in V € R7*k
whose rows are Vp_1,...V,_p.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 10




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p of L.

- Represent each node by its corresponding row in V € R7*k
whose rows are Vp_1,...V,_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 10
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The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e, minimize
VL = ) [(0) = V()P
(ij)ek
Embedding points with coordinates given by
[Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.



LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e, minimize

V=3 ) - W)
(i,j)eE
Embedding points with coordinates given by
[Va_1(), Vn—2(j), - - -, Va_r(j)] ensures that coordinates connected by

edges have minimum total squared Euclidean distance.

+ Spectral Clustering

- Laplacian Eigenmaps

- Locally linear embedding
+ Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian)




LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING
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LAPLACIAN EMBEDDING

Embedding with eigenvectors vV,,_1,V,_,: (linearly separable)




