COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 19

LOGISTICS

- · Week 11 Quiz will be due Monday 11/15.
- No class or office hours this Thursday due to Veteran's day.
- · I will hold Office Hours in person after class on Tuesday instead. 2:30pm-3:30pm. $\subset S$ 23 Υ

SUMMARY

Last Class: Applications of Low-Rank Approximation

- · | Entity Embeddings.
- Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs

Start on spectral graph theory.

Last Class: Applications of Low-Rank Approximation

- Entity Embeddings.
- Non-linear dimensionality reduction via low-rank approximation of near-neighbor graphs
- · Start on spectral graph theory.

This Class: Spectral Clustering and the Stochastic Block Model

- Start on graph clustering for community detection and non-linear clustering.
- Spectral clustering: finding good cuts via Laplacian eigenvectors.
- Start on Stochastic block model: A simple clustered graph model where we can prove the effectiveness of spectral clustering.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First – motivate why this type of approach makes sense.

Simple Idea: Partition clusters along minimum cut in graph.

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let $\vec{v} \in \mathbb{R}^n$ be a cut indicator: $\vec{v}(i) = 1$ if $i \in S$. $\vec{v}(i) = -1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of 1s and -1s. I.e., $\vec{v}^T \vec{1} \approx 0$.

4

For a graph with adjacency matrix $\bf A$ and degree matrix $\bf D$, $\bf L = \bf D - \bf A$ is the graph Laplacian.

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

$$2. \ \underline{\vec{\mathsf{v}}^\mathsf{T}\vec{\mathsf{1}}} = |\mathsf{V}| - |\mathsf{S}|.$$

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

$$2. \left| \vec{\mathbf{v}}^T \vec{\mathbf{1}} \right| = \left| \mathbf{\Psi} \right| - \left| \mathbf{S} \right|.$$

Want to minimize both $\vec{v}^T \mathbf{L} \vec{v}$ (cut size) and $|\vec{v}^T \vec{1}|$ (imbalance).

For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1.
$$\vec{v}^T L \vec{V} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S,T).$$

2.
$$\vec{v}^T \vec{1} = |V| - |S|$$
.

Want to minimize both $\vec{v}^T L \vec{v}$ (cut size) and $\vec{v}^T \vec{1}$ (imbalance).

Next Step: See how this dual minimization problem is naturally solved (sort of) by eigendecomposition.

SMALLEST LAPLACIAN EIGENVECTOR

$$\vec{\underline{v}_n} = \frac{1}{\sqrt{n}} \cdot \vec{1} = \underset{v \in \mathbb{R}^n \text{ with } ||\vec{v}|| = 1}{\text{arg min}} \vec{v}^T L \vec{v}$$
with eigenvalue $\lambda_n(L) = \vec{v}_n^T L \vec{v}_n = 0$. Why?

\\[\langle \l

n: number of nodes in graph, $\mathbf{A} \in \mathbb{R}^{n \times n}$: adjacency matrix, $\mathbf{D} \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $\mathbf{L} \in \mathbb{R}^{n \times n}$: Laplacian matrix $\mathbf{L} = \mathbf{A} - \mathbf{D}$.

LV= XV

By Courant-Fischer, the second smallest eigenvector is given by:

$$\underline{\vec{v}_{n-1}} = \underset{v \in \mathbb{R}^n \text{ with } ||\vec{v}|| = 1, \ \vec{v}_n^T \vec{v} = 0}{\text{arg min}} \vec{v}^T \mathbf{L} \vec{V}.$$

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{\mathsf{v}}_{n-1} = \underset{\mathsf{v} \in \mathbb{R}^n \text{ with } ||\vec{\mathsf{v}}|| = 1, \ \vec{\mathsf{v}}_n^T \vec{\mathsf{v}} = 0}{\arg\min} \ \vec{\mathsf{v}}^T \mathsf{L} \vec{\mathsf{v}}.$$

$$||\vec{\mathsf{v}}_{n-1}| \text{ were in } \left\{ -\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \right\}^n \text{ it would have:}$$

$$\cdot \vec{\mathsf{v}}_{n-1}^T \mathsf{L} \vec{\mathsf{v}}_{n-1} = \frac{4}{\sqrt{n}} \cdot \underbrace{cut(S, T)}_{n} \text{ as small as possible given that}$$

$$|\vec{\mathsf{v}}_{n-1}^T \vec{\mathsf{v}}_n = \frac{1}{\sqrt{n}} \vec{\mathsf{v}}_{n-1}^T \vec{\mathsf{1}} = \underbrace{|T| - |S|}_{n} = 0.$$

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{V}_{n-1} = \underset{v \in \mathbb{R}^n \text{ with } ||\vec{v}|| = 1, \ \vec{v}_n^T \vec{v} = 0}{\text{arg min}} \vec{V}^T L \vec{V}.$$

$$(f\vec{v}_{n-1})$$
 were in $\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\}^n$ it would have:

- $\vec{v}_{n-1}^T L \vec{v}_{n-1} = \frac{4}{\sqrt{n}} \cdot cut(S, T) \text{ as small as possible given that}$ $\vec{v}_{n-1}^T \vec{v}_n = \frac{1}{\sqrt{n}} \vec{v}_{n-1}^T \vec{1} = \frac{|T| |S|}{n} = 0.$
- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.

By Courant-Fischer, the second smallest eigenvector is given by:

If
$$\vec{v}_{n-1}$$
 were in $\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^n$ it would have:

- $\vec{v}_{n-1}^T L \vec{v}_{n-1} = \frac{4}{\sqrt{n}} \cdot cut(S,T)$ as small as possible given that $\vec{v}_{n-1}^T \vec{v}_n = \frac{1}{\sqrt{n}} \vec{v}_{n-1}^T \vec{1} = \frac{|T| |S|}{n} = 0.$
- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.
- The eigenvector $\vec{v}_{n-1} \in \mathbb{R}^n$ is not generally binary, but still satisfies a 'relaxed' version of this property.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

$$\vec{V}_{n-1} = \underset{v \in \mathbb{R}^d \text{ with } ||\vec{v}|| = 1, \ \vec{v}^T \vec{1} = 0}{\text{arg min}} \vec{v}^T L \vec{V}.$$

Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

$$\sqrt[4]{V_0} \stackrel{= 0}{\Longrightarrow} \sqrt[6]{1} \stackrel{= 0}{\Longrightarrow} \sqrt[6]{V_{n-1}} = \underset{v \in \mathbb{R}^d \text{ with } ||\vec{v}|| = 1, \ v \in \mathbb{R}^d \text{ with } ||\vec{v}$$

Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.

Va=1=0

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

$$\vec{V}_{n-1} = \underset{v \in \mathbb{R}^d \text{ with } ||\vec{v}|| = 1, \ \vec{v}^T \vec{1} = 0}{\text{arg min}} \vec{v}^T L \vec{V}.$$

Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\bar{L} = D^{-1/2}LD^{-1/2}$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

· Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split k the graph into more than two parts?

Spectral Clustering:

- · Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$ whose rows are $\vec{\mathbf{v}}_{n-1}, \dots \vec{\mathbf{v}}_{n-k}$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- · Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$ whose rows are $\vec{v}_{n-1}, \dots \vec{v}_{n-k}$.
- Cluster these rows using *k*-means clustering (or really any clustering method).

The smallest eigenvectors of $\mathbf{L}=\mathbf{D}-\mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\vec{\mathbf{v}}^{\mathsf{T}} \mathbf{L} \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^{2}.$$

The smallest eigenvectors of $\mathbf{L} = \mathbf{D} - \mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\vec{\mathbf{v}}^T \mathbf{L} \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

The smallest eigenvectors of $\mathbf{L} = \mathbf{D} - \mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\vec{\mathbf{v}}^T \mathbf{L} \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

- Spectral Clustering
- · Laplacian Eigenmaps
- · Locally linear embedding
- Isomap
- Node2Vec, DeepWalk, etc. (variants on Laplacian)

Original Data: (not linearly separable)

Embedding with eigenvectors $\vec{v}_{n-1}, \vec{v}_{n-2}$: (linearly separable)

