COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 18

- Problem Set 3 is due Monday at 11:59pm.
- No quiz due Monday.

SUMMARY

Last Class

- The Singular Value Decomposition (SVD) and its connection to eigendecomposition of **X**^T**X** and **XX**^T, and low-rank approximation.
- Low-rank matrix completion (predicting missing measurements using low-rank structure).

This Class: More applications of Low-Rank Approximation

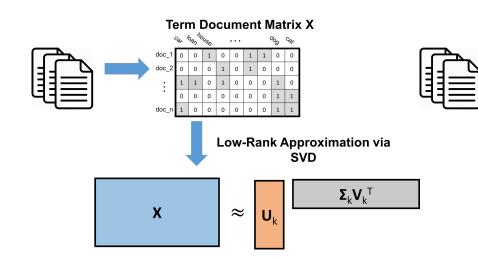
- Entity embeddings.
- Low-rank approximation for non-linear dimensionality reduction.
- Eigendecomposition to partition graphs into clusters.

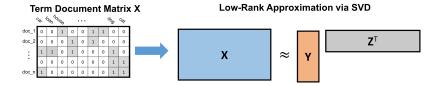
Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- \cdot Nodes in a social network

Classic Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

EXAMPLE: LATENT SEMANTIC ANALYSIS





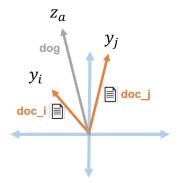
• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

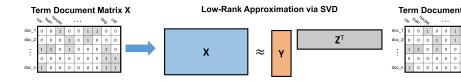
- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$.

EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$



Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic *j*. $\vec{z_a}(j)$ indicates how much word_a associates with that topic.

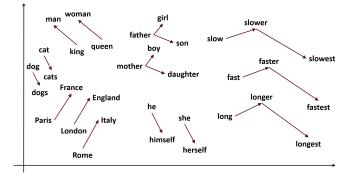


- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_a and *word*_b appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{T} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of $X^T X$.
- **Claim:** ZZ^T is the best rank-*k* approximation of X^TX . I.e., arg min_{rank-k} $_B ||X^TX B||_F$

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^T \mathbf{X}$: where $(\mathbf{X}^T \mathbf{X})_{a,b}$ is the number of documents that both *word*_a and *word*_b appear in.
- Think about $X^T X$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing **X**^T**X** with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

EXAMPLE: WORD EMBEDDING

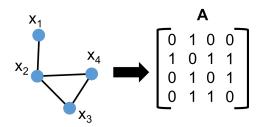


Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

NON-LINEAR DIMENSIONALITY REDUCTION

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j}$ = edge weight between nodes *i* and *j*

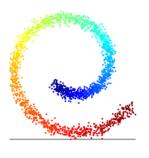


In LSA example, when **X** is the term-document matrix, $\mathbf{X}^T \mathbf{X}$ is like an adjacency matrix, where *word*_a and *word*_b are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$. These are just the eigenvectors of \mathbf{A} .
- $\mathbf{A} \approx \mathbf{A} \mathbf{V} \mathbf{V}^{T}$. The rows of $\mathbf{A} \mathbf{V}$ can be thought of as 'embeddings' for the vertices.
- Similar vertices (close with regards to graph proximity) should have similar embeddings.

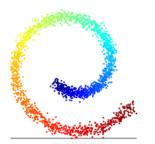
SPECTRAL EMBEDDING



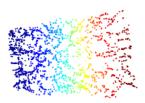


Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^d . Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^k . Step 3: Work with the data in the embedded space. Where distances represent distances in your original 'non-linear space.

SPECTRAL EMBEDDING



What other methods do you know for embedding or representing data points with non-linear structure?



Questions?