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LOGISTICS

- Problem Set 3 is due Monday at 11:59pm.
- No quiz due Monday.
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SUMMARY

Last Class >< - Q Z \/T

- The Singular Value Decompo3ftion (SVD) and its connection
to eigendecomposition of XX and XX', and low-rank
approximation.

—_—

-] Low-rank matrix completion (predicting missing
measurements using low-rank structure).

This Class: More applications of Low-Rank Approximation

- Entity embeddings.

- Low-rank approximation for non-linear dimensionality
reduction.

-|Eigendecomposition to partition graphs into clusters.



ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into R
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network



ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- If the error ||X — YZT||¢ is small, then on average,
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Xiq =~ (YZT)i,a = <Viaza>-
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Term Document Matrix X Low-Rank Approximation via SVD
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If the error ||X — YZT||¢ is small, then on average,
Xiq =~ (YZT)i,a = <Viaza>-

le., (Vi,Zq) =~ 1 when doc; contains word,.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low- I;a\nk Approximation via SVD

@ b0 . %, o @,“5 c\ %

doc_1 0 I

: )
1o [T Em-
1 ! >

doc_2

slolr]o]e
ololr|eo|e

1
0
0
0
0

olofn|r]|o
o|lo|o|o|e

1)1
1|0
oo
oo
oo

[ S P S

N

- If the error ||X — YZT||¢ is small, then on average,
Xiq =~ (YZT)i,a = <Viaza>-

e., (i, Zq) = 1 when doc; contains word,.

* If doc; and dog; both contain worda, (Vi Za) = (Vj,Za) = 1.
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If doc; and doc; both contain wordy, (Vi,Za) ~ (Vj,Za) =~ 1




EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc; and doc; both contain wordy, (Vi,Za) ~ (Vj,Za) =~ 1
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Another View: Each column of Y represents a ‘topic’ yi(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and wordy, appear in many of the same
documents.



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and wordy, appear in many of the same
documents.

- In an SVD decomposition we set Z" = V],

- The columns of V, are equivalently: the top k eigenvectors of X'X.
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EXAMPLE: LATENT SEMANTIC ANALYSIS
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- In an SVD decomposition we set Z" = X,VJ.
- The columns of V, are equivalently: the top k eigenvectors of X"X.

- Claim: ZZ" is the best rank-k approximation of X’X. l.e,

argmin o —k g ||XTX - B”F 1 L X 3 \/K kTR
X —



2 Z= Ty

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (XTXZG b IS

the number ofdocuments that both word, and word, appear in.
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.
- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.

- Think about XX as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.
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- Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.



EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into_k;dimensional space.

- Embedding is via low-rank approximation of X'X: where (X'X)q 1, is
the number of documents that both word, and word, appear in.

- Think about XX as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.

- Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X'X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.



EXAMPLE: WORD EMBEDDING
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EXAMPLE: WORD EMBEDDING
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Note:&vord2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrixd\leuml word embedding as implicit
matrix factorization, Levy and Goldberg.

—_—



NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressibleZ Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace of R?.)

10
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NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace of R?.)

A common way of automatically identifying this non-linear structure

is to connect data points in a graph. E.g, a k-nearest neighbor graph.

-+ Connect items to similar items, possibly with higher weight edges
when they are more similar.
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j



LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j

X, A
0100
X4 101 1
X
2 IR
0110
X3

In LSA example, when X is the term-document matrix, X'X is like an
adjacency matrix, where word, and word,, are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).



ADJACENCY MATRIX EIGENVECTORS
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How do we compute an optimal low—raqk approximation of A?
A=A —
- Project onto the top k eigenvectors of ATA = A%, These are
just the eigenvectors of A. L V,\L\/T

k\) A



ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?
- Project onto the top k eigenvectors of ATA = A?. These are
just the eigenvectors of A.

__A~ AW/’ The rows of Y| can be thought of as ‘embeddings’
for the vertices.

- Similar vertices (close with regards to graph proximity)
should have similar embeddings.



SPECTRAL EMBEDDING

Step 1: Produce a nearest
neighbor graph based on your
input data in RY.

Step 2: Apply low-rank
approximation to the graph
adjacency matrix to produce
embeddings in R,

Step 3: Work with the data in
the embedded space. Where
distances represent distances
in your original ‘non-linear
space!




SPECTRAL EMBEDDING

What other methods do you
know for embedding or
representing data points with
non-linear structure?
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