COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 18

LOGISTICS

- · Problem Set 3 is due Monday at 11:59pm.
- · No quiz due Monday.
- · Problem Set 2 grands are posted.

Last Class

- The Singular Value Decomposition (SVD) and its connection to eigendecomposition of $\mathbf{X}^T\mathbf{X}$ and $\mathbf{X}\mathbf{X}^T$, and low-rank approximation.
- Low-rank matrix completion (predicting missing measurements using low-rank structure).

This Class: More applications of Low-Rank Approximation

- Entity embeddings.
- Low-rank approximation for non-linear dimensionality reduction.
- · Eigendecomposition to partition graphs into clusters.

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

Classic Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$X_{i,a} \approx (YZ^T)_{i,a} = \underbrace{\langle \vec{y}_i, \vec{z}_a \rangle}.$$

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y_i}, \vec{z_a} \rangle \approx 1$ when $\underline{doc_i}$ contains $\underline{word_a}$.

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- · If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$

Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much $word_a$ associates with that topic.

• Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^{\mathsf{T}} = \mathbf{\Sigma}_k \mathbf{V}_{\underline{K}}^{\mathsf{T}}$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z}^{\mathsf{T}} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\mathsf{T}}$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .
- Claim: ZZ^T is the best rank-k approximation of X^TX . I.e., arg $\min_{rank-k} \|X^TX B\|_F$

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

Note: (word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization,* Levy and Goldberg.

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible. Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

A common way of automatically identifying this non-linear structure is to connect data points in a graph. E.g., a *k*-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they are more similar.

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$

In LSA example, when \mathbf{X} is the term-document matrix, $\mathbf{X}^T\mathbf{X}$ is like an adjacency matrix, where $word_a$ and $word_b$ are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

Project onto the top k eigenvectors of $A^TA = A^2$. These are

just the eigenvectors of **A**.

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$. These are just the eigenvectors of \mathbf{A} .
- $A \approx AVV^T$. The rows of AV can be thought of as 'embeddings' for the vertices.
- · Similar vertices (close with regards to graph proximity) should have similar embeddings.

SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^d .

Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^k .

Step 3: Work with the data in the embedded space. Where distances represent distances in your original 'non-linear space.'

SPECTRAL EMBEDDING

What other methods do you know for embedding or representing data points with non-linear structure?

