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logistics

• Problem Set 3 is due next Monday 11/8, 12:59pm.

• For Piazza participation credit, posts must be public. It is ok if they
are anonymous to your classmates (none are anonymous to us).

• A number of people asked for mid-level practice questions
bridging the quizzes and homeworks. I will try to post more of
those. I will post some linear algebra ones in a few days.

• When tackling the homework problems, before you begin trying to
prove anything, really make sure you understand the definitions
(E.g., are variables scalars or matrices. If matrices, what dimension
are they? If scalars, what possible range of values could they
take?) To me it is always helpful to draw out examples.
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summary

Last Few Classes: Low-Rank Approximation and PCA

• Compress data that lies close to a k-dimensional subspace.

• Equivalent to finding a low-rank approximation of the data matrix
X: X ≈ XVVT for orthonormal V ∈ Rd×k.

• Optimal solution via eigendecomposition of XTX.
• Error analysis by looking at the eigenvalue spectrum of XTX.
minB:rank(B)≤k ∥X− B∥2F =

∑d
i=k+1 λi(XTX).

This Class: The SVD and Applications of low-rank approximation.

• The singular value decompostion (SVD) and its connections to
eigendecomposition and low-rank approximation.

• Matrix completion and collaborative filtering

• Entity embeddings (word embeddings, node embeddings, etc.)

2



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns u⃗1, . . . , u⃗r ∈ Rn (left singular vectors).
• V has orthonormal columns v⃗1, . . . , v⃗r ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).

The ‘swiss army knife’ of modern linear algebra. 3



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we know that
XVkVTk is the best rank-k approximation to X (given by PCA).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.
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the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX = UkΣkVTk
Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk
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Applications of low-rank approximation beyond
compression.
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matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Solve: Y = argmin
rank−k B

∑
observed (j,k)

[
Xj,k − Bj,k

]2
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.
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Questions?
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