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logistics

• Problem Set 3 is posted. Due Monday 11/8, 11:59pm.
• I strongly encourage you to work together on the problems,
rather than split them up.

• Midterms can be collected after class today. Solutions were
posted in Moodle. The class average was a 34/40.

• Quiz this week due Monday at 8pm.
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summary

Last Class: Optimal Low-Rank Approximation

• When data lies close to V , the optimal embedding in that
space is given by projecting onto that space.

XVVT = argmin
B with rows in V

∥X− B∥2F.

• Optimal V maximizes ∥XVVT∥F and can be found greedily.
Equivilantly by computing the top k eigenvectors of XTX.

This Class:

• How do we assess the error of this optimal V.
• Connection to the singular value decomposition.
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basic set up

Reminder of Set Up: Assume that x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .
• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



low-rank approximation via eigendecomposition

V minimizing ∥X− XVVT∥2F is given by:

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XV∥2F =
k∑
j=1

∥X⃗vj∥22

Solution via eigendecomposition: Letting Vk have columns v⃗1, . . . , v⃗k
corresponding to the top k eigenvectors of XTX,

Vk = argmax
orthonormal V∈Rd×k

∥XV∥2F

• Proof via Courant-Fischer and greedy maximization.
• How accurate is this low-rank approximation? Can understand
using eigenvalues of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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spectrum analysis

Let v⃗1, . . . , v⃗k be the top k eigenvectors of XTX (the top k principal
components). Approximation error is:

∥X− XVkVTk∥2F = ∥X∥2F tr(XTX)− ∥XVkVTk∥2F tr(VTkXTXVk)

=
d∑
i=1

λi(XTX)−
k∑
i=1

v⃗Ti XTX⃗vi

=
d∑
i=1

λi(XTX)−
k∑
i=1

λi(XTX) =
d∑

i=k+1

λi(XTX)

• Exercise: For any matrix A, ∥A∥2F =
∑d

i=1 ∥a⃗i∥22 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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spectrum analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of XTX is:

∥X− XVkVTk∥2F =
d∑

i=k+1

λi(XTX)

• Choose k to balance accuracy/compression – often at an ‘elbow’.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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spectrum analysis

Plotting the spectrum of XTX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
x⃗1, . . . , x⃗n are to a low-dimensional subspace).

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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spectrum analysis

Exercises:

1. Show that the eigenvalues of XTX are always positive. Hint:
Use that λj = v⃗Tj XTX⃗vj.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) =

∑n
i=1 λi(A). Hint: First prove the cyclic

property of trace, that for any MN, tr(MN) = tr(NM) and then
apply this to A’s eigendecomposition.
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summary

• Many (most) datasets can be approximated via projection
onto a low-dimensional subspace.

• Find this subspace via a maximization problem:

max
orthonormal V

∥XV∥2F.

• Greedy solution via eigendecomposition of XTX.
• Columns of V are the top eigenvectors of XTX.
• Error of best low-rank approximation (compressibility of
data) is determined by the tail of XTX’s eigenvalue spectrum.
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interpretation in terms of correlation

Recall: Low-rank approximation is possible when our data features
are correlated.

Our compressed dataset is C = XVk where the columns of Vk are the
top k eigenvectors of XTX.

Observe that CTC = Λk

CTC is diagonal. I.e., all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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algorithmic considerations

Runtime to compute an optimal low-rank approximation:

• Computing XTX requires O(nd2) time.
• Computing its full eigendecomposition to obtain v⃗1, . . . , v⃗k
requires O(d3) time (similar to the inverse (XTX)−1).

Many faster iterative and randomized methods. Runtime is
roughly Õ(ndk) to output just to top k eigenvectors v⃗1, . . . , v⃗k.

• Will see in a few classes (power method, Krylov methods).
• One of the most intensively studied problems in numerical
computation.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 11


