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LOGISTICS

- Problem Set 3 is posted. Due Monday 11/8, 11:59pm.

- | strongly encourage you to work together on the problems,
rather than split them up.

- Midterms can be collected after class today. Solutions were
posted in Moodle. The class average was a 34/40.

- Quiz this week due Monday at 8pm.



SUMMARY

Last Class: Optimal Low-Rank Approximation

- When data lies close to V, the optimal embedding in that
space is given by projecting onto that space.

XW! = argmin ||X - B|

B with rows in V

- Optimal V maximizes |XVV'||r and can be found greedily.
Fquivilantly by computing the top k eigenvectors of X'X.

This Class:

- How do we assess the error of this optimal V.

- Connection to the singular value decomposition.



BASIC SET UP

Reminder of Set Up: Assume that X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

- W’ e R¥%9 s the projection matrix onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

k
H T2 2 712
argmin [X-XWE=  argmax [XVIE =3 [X7[3
orthonormal VERIx* orthonormal VER®xF =1
Solution via eigendecomposition: Letting V, have columns V4,. ..,V

corresponding to the top k eigenvectors of XX,

Ve=  argmax  |XV|?

orthonormal VERA Xk

* Proof via Courant-Fischer and greedy maximization.

+ How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V.




SPECTRUM ANALYSIS

Let V4, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XViVEIIE = [IX[IFtr(XTX) — [IXVEVE |7 tr(VEXTXV)
d kR
=D A(XTX) =) VXXV,
i=1 i=1

d k d
=STN0) = Yo A X) = S XX

I=R+1

© Exercise: For any matrix A, [A||Z = 7 (|2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

Xi,...,% € RY data points, X € R"*9: data matrix, v4,...,V, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVeVE[E = > X(X'X)

i=k+1
dxd 784 dimensional vec
g =]
2
eige
error of optimal low rank
approximation 7
- Choose k to balance accuracy/compression - often at an ‘elbow’.
6

[ X1,...,% € RY: data points, X € R"*d: data matrix, ¥4,...,v, € RY: top ]



SPECTRUM ANALYSIS

Plotting the spectrum of X7X (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
X1,...,X, are to a low-dimensional subspace).

784 dimensional vectors 784 dimensional vectors

eigendecomposition
T RE e

Xi,...,% € RY data points, X € R"*9: data matrix, v4,...,V, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.

eigende

Eigenvalue




SPECTRUM ANALYSIS

784 dimensional vectors

eigendecomposition ' )

—
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Exercises:

1. Show that the eigenvalues of XX are always positive. Hint:
Use that ); = VX'V,

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) = Y"1, A;(A). Hint: First prove the cyclic
property of trace, that for any MN, tr(MN) = tr(NM) and then
apply this to A’s eigendecomposition.



SUMMARY

- Many (most) datasets can be approximated via projection
onto a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV||%.
orthonormal V

- Greedy solution via eigendecomposition of X'X.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of
data) is determined by the tail of X'X's eigenvalue spectrum.



INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features

10000* 10* =
are correlated.
floors sale price
home 1 2 2 195,000
home 2 a 1 310,000
home n 3 3 450,000

Our compressed dataset is C = XV, where the columns of Vj, are the
top k eigenvectors of X'X.

Observe that C'C = A,

C'Cis diagonal. l.e, all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

Xi,...,%X € RY data points, X € R">9: data matrix, v4,...,¥, € R top
eigenvectors of XX, V,, € RY>k: matrix with columns V4, ..., V.




ALGORITHMIC CONSIDERATIONS

Runtime to compute an optimal low-rank approximation:

- Computing X'X requires O(nd?”) time.
- Computing its full eigendecomposition to obtain vy,...,V,
requires O(d”) time (similar to the inverse (X"X)™7).

Many faster iterative and randomized methods. Runtime is

roughly O(ndk) to output just to top k eigenvectors v, . . ., V.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical
computation.

X,...,%n € R data points, X € R"™ % data matrix, V,...,V, € R% top
eigenvectors of X'X, Vi, € R?%F: matrix with columns v, . . ., V. 1




