COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 16

- Problem Set 3 is posted. Due Monday 11/8, 11:59pm.
- I strongly encourage you to work together on the problems, rather than split them up.
- Midterms can be collected after class today. Solutions were posted in Moodle. The class average was a 34/40.
- Quiz this week due Monday at 8pm.

Last Class: Optimal Low-Rank Approximation

• When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

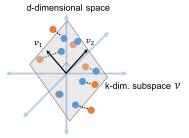
$$\mathbf{X}\mathbf{V}\mathbf{V}^{T} = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\operatorname{arg min}} \|\mathbf{X} - \mathbf{B}\|_{F}^{2}.$$

• Optimal **V** maximizes $||\mathbf{XVV}^T||_F$ and can be found greedily. Equivilantly by computing the top *k* eigenvectors of $\mathbf{X}^T \mathbf{X}$.

This Class:

- $\cdot\,$ How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

Reminder of Set Up: Assume that $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.



Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- · $X \approx X(VV^T)$. Gives the closest approximation to X with rows in \mathcal{V} .

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

 $\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg min}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X} \mathbf{V}\|_{F}^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v}_{j}\|_{2}^{2}$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top k eigenvectors of $X^T X$,

$$\mathbf{V}_{k} = \operatorname*{arg\,max}_{\text{orthonormal}\,\mathbf{V} \in \mathbb{R}^{d \times k}} \|\mathbf{X}\mathbf{V}\|_{F}^{2}$$

- Proof via Courant-Fischer and greedy maximization.
- How accurate is this low-rank approximation? Can understand using eigenvalues of X^TX.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Let $\vec{v}_1, \ldots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

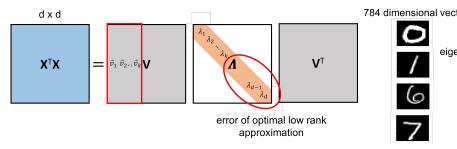
$$\begin{aligned} \|\mathbf{X} - \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} &= \|\mathbf{X}\|_{F}^{2} \operatorname{tr}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \|\mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} \operatorname{tr}(\mathbf{V}_{k}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}_{k}) \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{v}_{i} \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) \end{aligned}$$

• Exercise: For any matrix A, $\|A\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = tr(A^T A)$ (sum of diagonal entries = sum eigenvalues).

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of **X**^T**X** is:

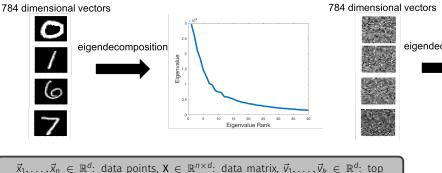
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^T\mathbf{X})$$



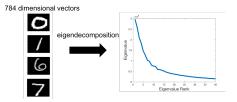
• Choose *k* to balance accuracy/compression – often at an 'elbow'.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top

Plotting the spectrum of $\mathbf{X}^T \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).



 $x_1, \ldots, x_n \in \mathbb{R}^{\omega}$: data points, $\mathbf{X} \in \mathbb{R}^{m \times \omega}$: data matrix, $v_1, \ldots, v_k \in \mathbb{R}^{\omega}$: to eigenvectors of $\mathbf{X}^T \mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.



Exercises:

- 1. Show that the eigenvalues of $\mathbf{X}^T \mathbf{X}$ are always positive. Hint: Use that $\lambda_j = \vec{v}_j^T \mathbf{X}^T \mathbf{X} \vec{v}_j$.
- 2. Show that for symmetric **A**, the trace is the sum of eigenvalues: $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i(\mathbf{A})$. Hint: First prove the cyclic property of trace, that for any MN, $tr(\mathbf{MN}) = tr(\mathbf{NM})$ and then apply this to **A**'s eigendecomposition.

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

 $\max_{\text{orthonormal }V} \|XV\|_{\text{F}}^2.$

- · Greedy solution via eigendecomposition of $X^T X$.
- · Columns of V are the top eigenvectors of $X^T X$.
- Error of best low-rank approximation (compressibility of data) is determined by the tail of X^TX's eigenvalue spectrum.

Recall: Low-rank approximation is possible when our data features are correlated.

10000, pathooms+ 10, (sd. irr) = ust buce						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	•	·	•	·		
•	•	•	•	•	•	·
	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of $X^T X$.

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{\Lambda}_{k}$

 $C^{\mathsf{T}}C$ is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Runtime to compute an optimal low-rank approximation:

- Computing $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \ldots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T \mathbf{X})^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \ldots, \vec{v}_k$.

- \cdot Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.