COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 15

LOGISTICS/SUMMARY

Logistics:

- We have almost finished grading the midterm. Will return grades tomorrow evening and tests in class on Thursday.

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $V \in \mathbb{R}^{d \times k}$ for that subspace.
- Using that $\mathbf{V}^{\top} \mathbf{V}$ is an identity matrix and $\mathbf{V} \mathbf{V}^{\top}$ is a projection matrix to argue this, and understand low-rank matrix approximation.
- 'Dual view' of low-rank approximation: data points that can be reconstructed from a few basis vectors vs. linearly dependent features.

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$
\left\|\mathrm{V}^{\top} \vec{x}_{i}-\mathrm{V}^{\top} \vec{x}_{j}\right\|_{2}^{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2} .
$$

Letting $\tilde{x}_{i}=\mathbf{V}^{\top} \vec{x}_{i}$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^{k}.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X V V}^{\top}(\text { Implies } \operatorname{rank}(\mathrm{X}) \leq k)
$$

- VV^{\top} is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}:$ data points. $\mathrm{X} \in \mathbb{R}^{n \times d}:$ data matrix. \vec{v}_{1},
$\vec{V}_{b} \in \mathbb{R}^{d}$: orthogo-

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that VV^{\top} is idempotent. I.e., $\left(\mathbf{V V}^{\top}\right)\left(\mathbf{V V}^{\top}\right) \vec{y}=\left(\mathbf{V V}^{\top}\right) \vec{y}$ for any $\vec{y} \in \mathbb{R}^{d}$.

Quick Exercise 2: Show that $\mathrm{VV}^{\top}\left(\mathrm{I}-\mathrm{VV}^{\top}\right)=0$ (the projection is orthogonal to its complement).

PYTHAGOREAN THEOREM

Pythagorean Theorem: For any orthonormal $\mathrm{V} \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^{d}$,

$$
\|\vec{y}\|_{2}^{2}=\left\|\left(\mathbf{V V}^{\top}\right) \vec{y}\right\|_{2}^{2}+\left\|\vec{y}-\left(\mathbf{V V}^{\top}\right) \vec{y}\right\|_{2}^{2}
$$

EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and V ?
- How good is the embedding?

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivilantly V)?

$\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X V V ^ { T }}\right\|_{F}^{2}=\sum_{i, j}\left(\mathbf{X}_{i, j}-\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i, j}\right)^{2}=\sum_{i=1}^{n}\left\|\vec{x}_{i}-\mathbf{V V}^{T} \vec{X}_{i}\right\|_{2}^{2} \quad$ arthono
d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{v}_{k}$.

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivalently V)?

SOLUTION VIA EIGENDECOMPOSITION

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{\mathrm{F}}^{2}$ is given by:

$$
\underset{i=1}{\operatorname{nong} \max _{\operatorname{mal}}^{\operatorname{ar} \in \mathbb{R}^{d \times R}}}\|\mathrm{XV}\|_{F}^{2}=\sum_{i=1}^{n}\left\|V^{\top} \vec{x}_{\|_{2}}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|X \vec{V}_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{v}}_{1}, \ldots, \overrightarrow{\mathrm{v}}_{k}$ greedily.

$$
\vec{v}_{1}=\underset{\vec{v} \text { with }}{\arg \max \|=1} \|\left\langle\vec{V} \|_{2}^{2} \vec{v}^{\top} X^{\top} X \vec{v} .\right.
$$

$$
\vec{v}_{2}=\underset{\vec{v} \text { with }\| \| v \| 2=1,\langle\vec{v}, \vec{v}\rangle=0}{\operatorname{argmax}} \vec{v}^{\top} X^{\top} X \vec{v} .
$$

$$
\vec{V}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{V}, \vec{v}_{j}\right\rangle=0 \forall j<k}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} X \vec{V} .
$$

These are exactly the top k eigenvectors of $X^{\top} X$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if
$A \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If A is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathrm{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$
\mathbf{A V}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{A} \vec{v}_{1} & \mathbf{A} \vec{v}_{2} & \cdots & \mathbf{A} \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\mathrm{V} \boldsymbol{\Lambda}
$$

Yields eigendecomposition: $\mathrm{AVV}^{\top}=\mathrm{A}=\mathrm{V} \wedge \mathrm{V}^{\top}$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Typically order the eigenvectors in decreasing order:
$\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}$.

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$
\begin{aligned}
& \vec{v}_{1}=\underset{\vec{v} \text { with }}{\|v\|_{2}=1} \arg \max \vec{v}^{\top} \vec{v} . \\
& \vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \overrightarrow{v_{1}}\right\rangle=0}{\arg \max } \vec{v}^{\top} A \vec{v} . \\
& \vec{v}_{d}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{A} \vec{v} .
\end{aligned}
$$

- $\vec{v}_{j}^{\top} A \vec{v}_{j}=\lambda_{j} \cdot \vec{v}_{j}^{\top} \vec{v}_{j}=\lambda_{j}$, the $j^{\text {th }}$ largest eigenvalue.
- The first k eigenvectors of $X^{\top} \mathbf{X}$ (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in X that we use for low-rank approximation.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_{k} have columns $\overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}, \mathrm{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathrm{X}-\mathrm{XV} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}
$$

This is principal component analysis (PCA).
How accurate is this low-rank approximation? Can understand using eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

