## COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 15

## LOGISTICS/SUMMARY

# Logistics:

• We have almost finished grading the midterm. Will return grades tomorrow evening and tests in class on Thursday.

### Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis  $\mathbf{V} \in \mathbb{R}^{d \times k}$  for that subspace.
- Using that V<sup>T</sup>V is an identity matrix and VV<sup>T</sup> is a projection matrix to argue this, and understand low-rank matrix approximation.
- 'Dual view' of low-rank approximation: data points that can be reconstructed from a few basis vectors vs. linearly dependent features.

#### LAST CLASS: EMBEDDING WITH ASSUMPTIONS

**Set Up:** Assume that data points  $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$  lie in some *k*-dimensional subspace  $\mathcal{V}$  of  $\mathbb{R}^d$ .



Let  $\vec{v}_1, \ldots, \vec{v}_k$  be an orthonormal basis for  $\mathcal{V}$  and  $\mathbf{V} \in \mathbb{R}^{d \times k}$  be the matrix with these vectors as its columns.

$$\|\mathbf{V}^{\mathsf{T}}\vec{x}_{i}-\mathbf{V}^{\mathsf{T}}\vec{x}_{j}\|_{2}^{2}=\|\vec{x}_{i}-\vec{x}_{j}\|_{2}^{2}.$$

Letting  $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$ , we have a perfect embedding from  $\mathcal{V}$  into  $\mathbb{R}^k$ .

### PROJECTION VIEW

**Claim:** If  $\vec{x}_1, \ldots, \vec{x}_n$  lie in a *k*-dimensional subspace  $\mathcal{V}$  with orthonormal basis  $\mathbf{V} \in \mathbb{R}^{d \times k}$ , the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}$  (Implies rank( $\mathbf{X}$ )  $\leq k$ )

•  $\mathbf{W}^{\mathsf{T}}$  is a projection matrix, which projects the rows of **X** (the data points  $\vec{x}_1, \ldots, \vec{x}_n$  onto the subspace  $\mathcal{V}$ .



 $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ ; data points,  $\mathbf{X} \in \mathbb{R}^{n \times d}$ ; data matrix,  $\vec{v_1}, \ldots, \vec{v_k} \in \mathbb{R}^d$ ; orthogo-

**Quick Exercise 1:** Show that  $VV^T$  is idempotent. I.e.,  $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$  for any  $\vec{y} \in \mathbb{R}^d$ .

Quick Exercise 2: Show that  $VV^{T}(I - VV^{T}) = 0$  (the projection is orthogonal to its complement).

**Pythagorean Theorem:** For any orthonormal  $\mathbf{V} \in \mathbb{R}^{d \times k}$  and any  $\vec{y} \in \mathbb{R}^d$ ,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}.$$

**Main Focus of Today:** Assume that data points  $\vec{x_1}, \ldots, \vec{x_n}$  lie close to any *k*-dimensional subspace  $\mathcal{V}$  of  $\mathbb{R}^d$ .



Letting  $\vec{v}_1, \ldots, \vec{v}_k$  be an orthonormal basis for  $\mathcal{V}$  and  $\mathbf{V} \in \mathbb{R}^{d \times k}$  be the matrix with these vectors as its columns,  $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$  is still a good embedding for  $x_i \in \mathbb{R}^d$ . The key idea behind low-rank approximation and principal component analysis (PCA).

- · How do we find  ${\cal V}$  and V?
- How good is the embedding?

If  $\vec{x}_1, \ldots, \vec{x}_n$  are close to a *k*-dimensional subspace  $\mathcal{V}$  with orthonormal basis  $\mathbf{V} \in \mathbb{R}^{d \times k}$ , the data matrix can be approximated as  $\mathbf{XVV}^T$ . **XV** gives optimal embedding of **X** in  $\mathcal{V}$ .

How do we find  $\mathcal{V}$  (equivilantly V)?

$$\underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\text{arg min}} \|X - XVV^T\|_F^2 = \sum_{i,j} (X_{i,j} - (XVV^T)_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - VV^T \vec{x}_i\|_2^2 \text{ arg orthonormal } V \in \mathbb{R}^{d \times k}$$

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ : data points,  $\mathbf{X} \in \mathbb{R}^{n \times d}$ : data matrix,  $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$ : orthogonal basis for subspace  $\mathcal{V}$ .  $\mathbf{V} \in \mathbb{R}^{d \times k}$ : matrix with columns  $\vec{v}_1, \ldots, \vec{v}_k$ .

If  $\vec{x}_1, \ldots, \vec{x}_n$  are close to a *k*-dimensional subspace  $\mathcal{V}$  with orthonormal basis  $\mathbf{V} \in \mathbb{R}^{d \times k}$ , the data matrix can be approximated as  $\mathbf{XVV}^T$ . **XV** gives optimal embedding of **X** in  $\mathcal{V}$ .





**V** minimizing  $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$  is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \|\mathbf{X}\vec{v}_{j}\|_{2}^{2}$$

Surprisingly, can find the columns of V,  $\vec{v}_1, \ldots, \vec{v}_k$  greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\arg \max} \|\mathbf{X}\vec{v}\|_2^2 \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|\|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\operatorname{arg max}} \vec{V}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_k = \arg \max_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < k} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

These are exactly the top k eigenvectors of  $X^T X$ .

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ : data points,  $\mathbf{X} \in \mathbb{R}^{n \times d}$ : data matrix,  $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$ : orthogonal basis for subspace  $\mathcal{V}$ .  $\mathbf{V} \in \mathbb{R}^{d \times k}$ : matrix with columns  $\vec{v}_1, \ldots, \vec{v}_k$ .

**Eigenvector:**  $\vec{x} \in \mathbb{R}^d$  is an eigenvector of a matrix  $\mathbf{A} \in \mathbb{R}^{d \times d}$  if  $\mathbf{A}\vec{x} = \lambda \vec{x}$  for some scalar  $\lambda$  (the eigenvalue corresponding to  $\vec{x}$ ).

- That is, **A** just 'stretches' x.
- If **A** is symmetric, can find *d* orthonormal eigenvectors  $\vec{v}_1, \ldots, \vec{v}_d$ . Let  $\mathbf{V} \in \mathbb{R}^{d \times d}$  have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v}_1 & \mathbf{A}\vec{v}_2 & \cdots & \mathbf{A}\vec{v}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 & \cdots & \lambda\vec{v}_d \\ | & | & | & | \end{bmatrix} = \mathbf{VA}$$

Yields eigendecomposition:  $AVV^T = A = VAV^T$ .



Typically order the eigenvectors in decreasing order:  $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_d.$  **Courant-Fischer Principal:** For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{v}_{1} = \operatorname*{arg\,max}_{\vec{v} \text{ with } \|v\|_{2}=1} \vec{v}^{T} \mathbf{A} \vec{v}.$$

$$\vec{v}_{2} = \operatorname*{arg\,max}_{\vec{v} \text{ with } \|v\|_{2}=1, \ \langle \vec{v}, \vec{v}_{1} \rangle = 0} \vec{v}^{T} \mathbf{A} \vec{v}.$$

$$\cdots$$

$$\vec{v}_{d} = \operatorname*{arg\,max}_{\vec{v} \text{ with } \|v\|_{2}=1, \ \langle \vec{v}, \vec{v}_{j} \rangle = 0 \ \forall j < d} \vec{v}^{T} \mathbf{A} \vec{v}$$

- $\vec{v}_j^T \mathbf{A} \vec{v}_j = \lambda_j \cdot \vec{v}_j^T \vec{v}_j = \lambda_j$ , the  $j^{th}$  largest eigenvalue.
- The first *k* eigenvectors of **X**<sup>T</sup>**X** (corresponding to the largest *k* eigenvalues) are exactly the directions of greatest variance in **X** that we use for low-rank approximation.



**Upshot:** Letting  $V_k$  have columns  $\vec{v}_1, \ldots, \vec{v}_k$  corresponding to the top k eigenvectors of the covariance matrix  $X^T X$ ,  $V_k$  is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2,$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of **X**<sup>T</sup>**X**.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ : data points,  $\mathbf{X} \in \mathbb{R}^{n \times d}$ : data matrix,  $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$ : top eigenvectors of  $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$ : matrix with columns  $\vec{v}_1, \ldots, \vec{v}_k$ .