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logistics/summary

Logistics:

• We have almost finished grading the midterm. Will return
grades tomorrow evening and tests in class on Thursday.

Last Class:

• No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V ∈ Rd×k for that
subspace.

• Using that VTV is an identity matrix and VVT is a projection
matrix to argue this, and understand low-rank matrix
approximation.

• ‘Dual view’ of low-rank approximation: data points that can
be reconstructed from a few basis vectors vs. linearly
dependent features.
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last class: embedding with assumptions

Set Up: Assume that data points x⃗1, . . . , x⃗n ∈ Rd lie in some
k-dimensional subspace V of Rd.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

∥VTx⃗i − VTx⃗j∥22 = ∥⃗xi − x⃗j∥22.
Letting x̃i = VTx⃗i, we have a perfect embedding from V into Rk.
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projection view

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = XVVT (Implies rank(X) ≤ k)

• VVT is a projection matrix, which projects the rows of X (the data
points x⃗1, . . . , x⃗n onto the subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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properties of projection matrices

Quick Exercise 1 : Show that VVT is idempotent. I.e.,
(VVT)(VVT)⃗y = (VVT)⃗y for any y⃗ ∈ Rd.

Quick Exercise 2: Show that VVT(I− VVT) = 0 ( the projection is
orthogonal to its complement).
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pythagorean theorem

Pythagorean Theorem: For any orthonormal V ∈ Rd×k and any
y⃗ ∈ Rd,

∥⃗y∥22 = ∥(VVT)⃗y∥22 + ∥⃗y− (VVT)⃗y∥22.
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embedding with assumptions

Main Focus of Today: Assume that data points x⃗1, . . . , x⃗n lie close to
any k-dimensional subspace V of Rd.

Letting v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns, VTx⃗i ∈ Rk is still a good
embedding for xi ∈ Rd. The key idea behind low-rank approximation
and principal component analysis (PCA).

• How do we find V and V?
• How good is the embedding? 6



best fit subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

How do we find V (equivilantly V)?

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F =
∑
i,j

(Xi,j − (XVVT)i,j)2 =
n∑
i=1

∥⃗xi − VVTx⃗i∥22 argmin
orthonormal V∈Rd×k

∥X∥2F − ∥XVVT∥2F =
n∑
i=1

∥⃗xi∥22 − ∥VVTx⃗i∥22 argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 7



best fit subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

How do we find V (equivalently V)?

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XV∥2F.

8



solution via eigendecomposition

V minimizing ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XV∥2F =
n∑
i=1

∥VTx⃗i∥22 =
k∑
j=1

∥X⃗vj∥22

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

∥X⃗v∥22v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

These are exactly the top k eigenvectors of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 9



review of eigenvectors and eigendecomposition

Eigenvector: x⃗ ∈ Rd is an eigenvector of a matrix A ∈ Rd×d if
A⃗x = λ⃗x for some scalar λ (the eigenvalue corresponding to x⃗).

• That is, A just ‘stretches’ x.
• If A is symmetric, can find d orthonormal eigenvectors
v⃗1, . . . , v⃗d. Let V ∈ Rd×d have these vectors as columns.

AV =

 | | | |
A⃗v1 A⃗v2 · · · A⃗vd
| | | |

 =

 | | | |
λ1⃗v1 λ2v⃗2 · · · λ⃗vd
| | | |

 = VΛ

Yields eigendecomposition: AVVT = A = VΛVT.
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review of eigenvectors and eigendecomposition

Typically order the eigenvectors in decreasing order:
λ1 ≥ λ2 ≥ . . . ≥ λd.
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courant-fischer principal

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TA⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TA⃗v.

. . .

v⃗d = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<d

v⃗TA⃗v.

• v⃗Tj A⃗vj = λj · v⃗Tj v⃗j = λj, the jth largest eigenvalue.
• The first k eigenvectors of XTX (corresponding to the largest k
eigenvalues) are exactly the directions of greatest variance in X
that we use for low-rank approximation. 12



low-rank approximation via eigendecomposition

13



low-rank approximation via eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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