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LOGISTICS/SUMMARY

Logistics:

- We have almost finished grading the midterm. Will return
grades tomorrow evening and tests in class on Thursday.

Last Class:

- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V € R?*¥ for that
subspace.

- Using that V'V is an identity matrix and VW' is a projection
matrix to argue this, and understand low-rank matrix
approximation.

- ‘Dual view’ of low-rank approximation: data points that can
be reconstructed from a few basis vectors vs. linearly
dependent features.



LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X;, ..., X, € RY lie in some
k-dimensional subspace V of RY.

d-dimensional space

k-dim. subspace V

Let Vi, ..., Vi, be an orthonormal basis for V and V € R9*% be the
matrix with these vectors as its columns.

IVTX; = VX3 = [I% — %12

Letting X; = V'X;, we have a perfect embedding from V into R*.



PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as

X = XW' (Implies rank(X) < k)

- W' is a projection matrix, which projects the rows of X (the data
points X1, ..., X, onto the subspace V.

d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V
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PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that W/ is idempotent. l.e,
(WNH(WT)y = (WT)y for any y € RY.

Quick Exercise 2: Show that W'(I — W') = 0 ( the projection is
orthogonal to its complement).



PYTHAGOREAN THEOREM

Pythagorean Theorem: For any orthonormal V € R9*% and any
yeRr,
1715 = WIS + (1Y — (W5



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X, ..., X, lie close to
any k-dimensional subspace V of RY.

d-dimensional space

k-dim. subspace V

Letting V4, ..., Vi, be an orthonormal basis for V and V € R¥*F be the
matrix with these vectors as its columns, V'X; € R¥ is still a good
embedding for x; € RY. The key idea behind low-rank approximation

and principal component analysis (PCA).
* How do we find V and V?
* How good is the embedding? 6



BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with

orthonormal basis V € RY** the data matrix can be approximated as

XVVT. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?

n
argmin X = XWT[[F = " (Xi; — (XW);;)? = 1% — WIX[3
i=1

orthonormal VERd Xk ij

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-

nal basis for subspace V. V. € R4*k: matrix with columns ¥4, . . ., V.
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € R%** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivalently V)?
argmin X =XWT|2= argmax  |[XV|%

orthonormal VERY %k orthonormal VERd Xk
d-dimensional space

k-dim. subspace V



SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:

" k
argmax IXVI[E =D IVIEIS =D IXV3
i=1 J=1

orthonormal VERYX
Surprisingly, can find the columns of V, V4, ...V}, greedily.

Vi = argmax || Xv|3vV'X"Xv.
Fwith [[v],=1

v = arg max VIXTXV.
7with [[Vi=1, (7,7)=0

Ve = arg max VIXTXV.
Fwith [[vil,=1, (7,7)=0 Vj<k

These are exactly the top k eigenvectors of X'X.

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R%: orthogo-
nal basis for subspace V. V e R9>k: matrix with columns V4, .. ., V. 9




REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € RY is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar A (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,..., V4. Let V € R4 have these vectors as columns.

[ N B | | |
AV = |AV; A, - AVl = [NV A oo AV =VA

Yields eigendecomposition: AW = A = VAV’



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal

A
22

Typically order the eigenvectors in decreasing order:
M> A > . > g

1



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

Vi = argmax V'AV.
7 with ||v]|,=1

v, = arg max VAV
Vwith ||v]|,=1, (V,V1)=0
Vg = arg max VTAV.

Fwith [|v|l;=1, (7,7,)=0 Vj<d

© VIAV; = \; - VTV, = ), the j" largest eigenvalue.

- The first k eigenvectors of XX (corresponding to the largest k
eigenvalues) are exactly the directions of greatest variance in X
that we use for low-rank approximation. 12



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

XX =|%%|V A A

6 d-dimensional space

k-dim. subspace V

o & b o
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LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns 4, ...,V corresponding to
the top k eigenvectors of the covariance matrix X’X, Vj, is the
orthogonal basis minimizing

X — XVRVE|[,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X’X.

X1,...,% € R data points, X € R"%%: data matrix, V4,...,V, € R% top
eigenvectors of X'X, Vi, € R9XF: matrix with columns v, . . ., V.
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