COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 14

- We will be grading midterms soon, and plan to return before the add/drop deadline.
- No quiz this week.

Last Few Classes:

The Johnson-Lindenstrauss Lemma

- Reduce *n* data points in any dimension *d* to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 \delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than low-dimensional space.
- $\cdot\,$ How the JL Lemma can still work.

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- \cdot Reduce *d*-dimesional data points to a smaller dimension *m*.
- Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- · Can give better compression than random projection.

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

- Randomization is an important tool in working with large datasets.
- Lets us solve 'easy' problems that get really difficult on massive datasets. Fast/space efficient look up (hash tables and bloom filters), distinct items counting, frequent items counting, near neighbor search (LSH), etc.
- The analysis of randomized algorithms leads to complex output distributions, which we can't compute exactly.
- We've covered many of the key ideas used through a small number of example applications/algorithms.
- We use concentration inequalities to bound these distributions and behaviors like accuracy, space usage, and runtime.
- Concentration inequalities and probability tools used in randomized algorithms are also fundamental in statistics, machine learning theory, probabilistic modeling of complex systems, etc.

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

• $\mathbf{V}^{\mathsf{T}} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$: $\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_i\|_2 = \|\vec{x}_i - \vec{x}_i\|_2.$

EMBEDDING WITH ASSUMPTIONS

Main Focus of Upcoming Classes: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- \cdot How do we find ${\cal V}$ and V?
- How good is the embedding?

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.

Claim: $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- **X** can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1, \ldots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : *k*-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^T V = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

PROJECTION VIEW

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{C}\mathbf{V}^T\mathbf{X}\mathbf{V}\mathbf{V}^T.$

• $\mathbf{W}\mathbf{V}^{\mathsf{T}}$ is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathrm{T}}$

Note: XVV^{T} has rank k. It is a low-rank approximation of X.

$$\mathbf{XVV}^{\mathsf{T}} = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\arg\min} \|\mathbf{X} - \mathbf{B}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - \mathbf{B}_{i,j})^{2}$$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\mathcal V}$ and correspondingly V.

Quick Exercise: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

$$\|\vec{y}\|_2^2 = \|(\mathbf{V}\mathbf{V}^T)\vec{y}\|_2^2 + \|\vec{y} - (\mathbf{V}\mathbf{V}^T)\vec{y}\|_2^2$$

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

784 dimensional vectors

projections onto 15 dimensional space

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

							_	
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		bedrooms
home 1	2	2	1800	2	200,000	195,000	home 1	2
home 2	4	2.5	2700	1	300,000	310,000	home 2	4
						•		
•		•		•	•		•	
		•		•	•	•		•
home n	5	3.5	3600	3	450,000	450,000	home n	5 ¹⁶