COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2021.

Lecture 14

LOGISTICS

- We will be grading midterms soon, and plan to return before the add/drop deadline.
- · No quiz this week.
- · No office hors today.

Last Few Classes:

[T] = [X]

The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1-\delta$) all pairwise distances up to $1\pm\epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than low-dimensional space.
- · How the IL Lemma can still work.

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

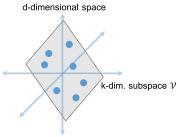
- \cdot Reduce d-dimesional data points to a smaller dimension m.
- · Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- · Can give better compression than random projection.

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

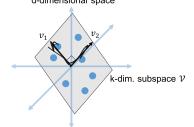
RANDOMIZED ALGORITHMS UNIT TAKEAWAYS

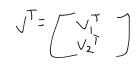
- · Randomization is an important tool in working with large datasets.
- Lets us solve 'easy' problems that get really difficult on massive datasets. Fast/space efficient look up (hash tables and bloom filters), distinct items counting, frequent items counting, near neighbor search (LSH), etc.
- The analysis of randomized algorithms leads to complex output distributions, which we can't compute exactly.
- We've covered many of the key ideas used through a small number of example applications/algorithms.
- We use concentration inequalities to bound these distributions and behaviors like accuracy, space usage, and runtime.
- Concentration inequalities and probability tools used in randomized algorithms are also fundamental in statistics, machine learning theory, probabilistic modeling of complex systems, etc.

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace $\mathcal V$ of $\mathbb R^d$.

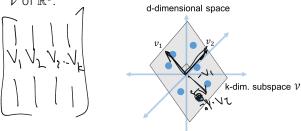




Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}_{\mathbf{J}}^{\mathsf{T}}\vec{\mathbf{x}}_{i}-\mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{i}\|_{2}=\|\vec{\mathbf{x}}_{i}-\vec{\mathbf{x}}_{j}\|_{2}.$$

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{i} - \mathbf{V}^{\mathsf{T}}\vec{\mathbf{x}}_{j}\|_{2} = \|\vec{\mathbf{x}}_{i} - \vec{\mathbf{x}}_{j}\|_{2}.$$

• $\mathbf{V}^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.

DOT PRODUCT TRANSFORMATION

1 | ci - c; ||2 = 1 | V(ci - cj)||2

Claim: Let
$$\vec{v}_1, \ldots, \vec{v}_k$$
 be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$:

$$\begin{aligned}
\mathbf{V} &\in \mathbb{R}^{d \times k} &\text{ be the matrix with these vectors as its columns. For all } \vec{x}_i, \vec{x}_j \in \mathcal{V}$$
:

$$\begin{aligned}
\mathbf{V} &\in \mathbb{R}^{d \times k} &\text{ be the matrix with these vectors as its columns. For all } \vec{x}_i, \vec{x}_j \in \mathcal{V}$$
:

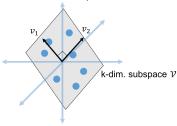
$$\begin{aligned}
\mathbf{V} &\in \mathbb{R}^{d \times k} &\text{ be the matrix with these vectors as its columns. For all } \vec{x}_i, \vec{x}_j \in \mathcal{V}$$
:

$$\begin{aligned}
\mathbf{V} &\in \mathbb{R}^{d \times k} &\text{ be the matrix with these vectors as its columns. For all } \vec{x}_i, \vec{x}_j \in \mathcal{V}$$
:

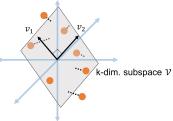
$$\begin{aligned}
\mathbf{V} &\in \mathbb{R}^{d \times k} &\text{ be the matrix with these vectors as its columns. For all } \vec{x}_i, \vec{x}_j \in \mathcal{V}$$
:

$$\begin{aligned}
\mathbf{V} &\in \mathbb{R}^{d \times k} &\text{ be the matrix with these vectors as its columns. For all } \vec{x}_j \in \mathcal{V} \\
\vec{x}_i &= \mathbf{V}_i \cdot \vec{x}_j = \mathbf{V$$

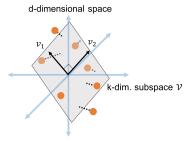
Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

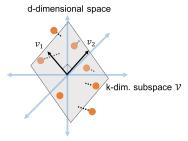


Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



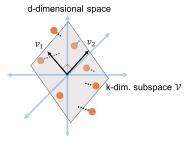
Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

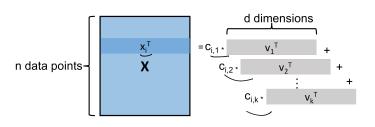
- How do we find \mathcal{V} and \mathbf{V} ?
- · How good is the embedding?

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

· Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{X}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{V}_1 + c_{i,2} \cdot \vec{V}_2 + \ldots + c_{i,k} \cdot \vec{V}_k.$$

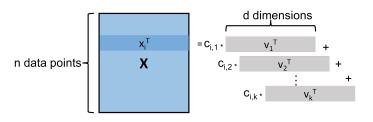


Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

· Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

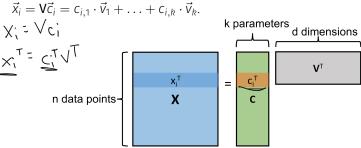
$$\vec{X}_i = V\vec{c}_i = c_{i,1} \cdot \vec{V}_1 + c_{i,2} \cdot \vec{V}_2 + \ldots + c_{i,k} \cdot \vec{V}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.

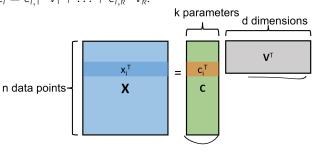


• Every data point \vec{x}_i (row of **X**) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

- Every data point $\vec{x_i}$ (row of X) can be written as

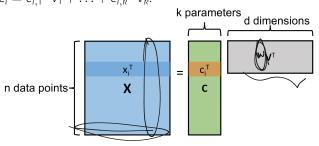


• Every data point \vec{x}_i (row of X) can be written as $\vec{x}_i = V\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.



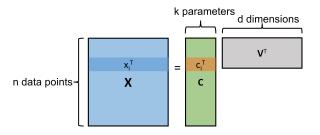
• X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.

• Every data point \vec{x}_i (row of **X**) can be written as $\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

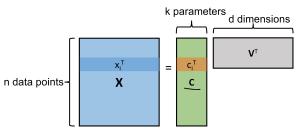


- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \Longrightarrow$ the columns of X are spanned by k vectors: the columns of C.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.



Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.



Exercise: What is this coefficient matrix C? Hint: Use that $V^TV = I$.

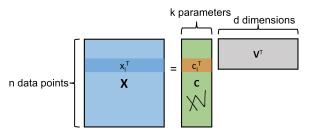
Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.



Exercise: What is this coefficient matrix C? Hint: Use that $V^TV = I$.

$$\cdot X = CV^{T} \implies XV = CV^{T}V^{T}$$

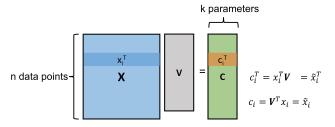
Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.



Exercise: What is this coefficient matrix C? Hint: Use that $V^TV = I$.

$$X = CV^{T} \implies XV = CV^{T} \implies XV = C$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.



Exercise: What is this coefficient matrix C? Hint: Use that $V^TV = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = CV^T$$
.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^{T}$$
.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^{T}$$
.

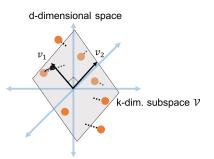
• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

d-dimensional space $v_1 \\ v_2 \\ \text{k-dim. subspace } \mathcal{V}$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$\underline{X} = XVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .



Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

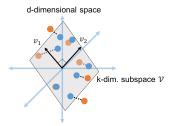
$$X = XVV^T$$
.

• $\mathbf{V}\mathbf{V}^T$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace \mathcal{V} .

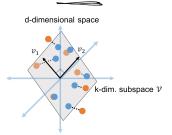
d-dimensional space v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_8 $v_$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$$



Claim: If $\vec{x}_1, ..., \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:



Note: XVV^T has rank k. It is a low-rank approximation of X.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

Figure 1 to k and the subspace
$$X \approx XVV^T$$
 and $X \approx XVV^T$ an

$$XVV^{T} = \underset{B \text{ with rows in } \mathcal{V}}{\text{arg min}} \|X - B\|_{F}^{2} = \sum_{i,j} (X_{i,j} - B_{i,j})^{2}. = \sum_{i=1}^{C} \|X_{i} - b_{i}\|_{2}^{2}$$

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^{T}$$
.

This is the closest approximation to \mathbf{X} with rows in \mathcal{V} (i.e., in the column span of \mathbf{V}).

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to \mathbf{X} with rows in \mathcal{V} (i.e., in the column span of \mathbf{V}).

Letting
$$(\mathbf{XVV}^T)_i$$
, $(\mathbf{XVV}^T)_j$ be the i^{th} and j^{th} projected data points,
$$\|(\mathbf{XVV}^T)_i - (\mathbf{XVV}^T)_j\|_2 = \underbrace{\|[(\mathbf{XV})_i - (\mathbf{XV})_j]\mathbf{V}^T\|_2}_{\|\mathbf{Y}^T\|_2} = \underbrace{\|[(\mathbf{XV})_i - (\mathbf{XV})_j]\|_2}_{\|\mathbf{Y}^T\|_2}.$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to ${\bf X}$ with rows in ${\bf \mathcal{V}}$ (i.e., in the column span of ${\bf V}$).

- Letting $(XVV^T)_i$, $(XVV^T)_j$ be the i^{th} and j^{th} projected data points, $\|(XVV^T)_i (XVV^T)_j\|_2 = \|[(XV)_i (XV)_j]V^T\|_2 = \|[(XV)_i (XV)_j]\|_2.$
- · Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to ${\bf X}$ with rows in ${\bf \mathcal{V}}$ (i.e., in the column span of ${\bf V}$).

- Letting $(XVV^T)_i$, $(XVV^T)_j$ be the i^{th} and j^{th} projected data points, $\|(XVV^T)_i (XVV^T)_j\|_2 = \|[(XV)_i (XV)_j]V^T\|_2 = \|[(XV)_i (XV)_j]\|_2.$
- · Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace $\mathcal V$ and correspondingly $\mathbf V$.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

PROPERTIES OF PROJECTION MATRICES

 $\begin{cases} (vv)y \\ y v v \end{cases}$

Quick Exercise: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

$$||\vec{y}||_{2}^{2} = ||(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}||_{2}^{2} + ||\vec{y} - (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}||_{2}^{2}.$$

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

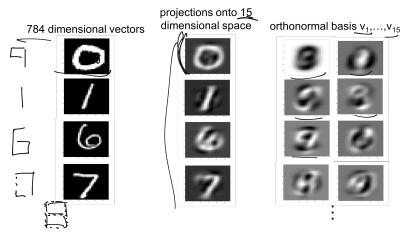
Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of *k* vectors.

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of *k* vectors.



Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

Question: Why might we expect $\vec{x}_1, \vec{x}_k, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

 \cdot Equivalently, the columns of **X** are approx. spanned by k vectors.

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
	•	•			•		
	•	•		•	•		
home n	5	3.5	3600	3	450,000	450,000	

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	ba t hrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
	0					
				•		
•	•	•		•	•	•
•	•	•		•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
		•			•	
		•	•		•	
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathroom	S	sq.ft.	floors	list price	sale price
home 1	2	2		1800	2	200,000	195,000
home 2	4	2.5		2700	1	300,000	310,000
				1		\	
•					. \	•	•
•	•	•		•	. \	•	•
•	•	•		•	•	•	•
	1					\	
		/					
home n	5	3.5		3600	3	450,000	450,000