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LOGISTICS

- We will be grading midterms soon, and plan to return before
the add/drop deadline.

- No quiz this week.
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Last Few Classes: ‘ %0 s m

The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to O loi—?”)
dimensions and preserve (with probability > 1—6) all
pairwise distances up to 1+ e.

- Compression Is linear via multiplication with a random, data
oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than
low-dimensional space.

- How the JL Lemma can still work.
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Next Few Classes: Low-rank approximation, the SVD, and
principal component analysis (PCA).

- Reduce d-dimesional data points to a smaller dimension m.
- Like JL, compression is linear = by applying a matrix.

- Chose this matrix carefully, taking into account structure of
the dataset.

- Can give better compression than random projection.

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc.



RANDOMIZED ALGORITHMS UNIT TAKEAWAYS

- Randomization is an important tool in working with large datasets.

- Lets us solve ‘easy’ problems that get really difficult on massive
datasets. Fast/space efficient look up (hash tables and bloom
filters), distinct items counting, frequent items counting, near
neighbor search (LSH), etc.

* The analysis of randomized algorithms leads to complex output
distributions, which we can’'t compute exactly.

- We've covered many of the key ideas used through a small
number of example applications/algorithms.

- We use concentration inequalities to bound these distributions
and behaviors like accuracy, space usage, and runtime.

- Concentration inequalities and probability tools used in
randomized algorithms are also fundamental in statistics, machine
learning theory, probabilistic modeling of complex systems, etc.



EMBEDDING WITH ASSUMPTIONS

Assume that data points X1, ..., X, lie in any kR-dimensional subspace
Y of RY.
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EMBEDDING WITH ASSUMPTIONS

Assume that data points X1, ..., X, lie in any kR-dimensional subspace
d
V of RY, d-dimensional space
5\;\ \lL\!z N
Claim: Let Vi, ..., Vi be an orthonormal basis for V and V € R9** pe

the matrix with these vectors as its columns. For all X;, X;:
VX = VIXll2 = 1% = Xll2.
/_\_/

- VI e R**4 is a linear embedding of X;, ..., X, into k dimensions
with no distortion.
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EMBEDDING WITH ASSUMPTIONS

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of RY.
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and principal component analysis (PCA).



EMBEDDING WITH ASSUMPTIONS

Main Focus of Upcoming Classes: Assume that data points Xi,..., X,

lie close to any k-dimensional subspace V of RY.
d-dimensional space

k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x; € R%. The key idea behind low-rank approximation
and principal component analysis (PCA).

- How do we find V and V?

* How good is the embedding? v



LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R™<9 has rank < k.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

Letting Vi, ...,V be an orthonormal basis for V, can write any X; as:
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LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Letting ¥, ..., V), be an orthonormal basis for V, can write any X; as:
)?,'ZVE,‘ZC,‘J -\_/}1+C,‘,2-\72+...+C,'7k-\7k.
* SoV4,..., Vg span the rows of X and thus rank(X) < k.
r d dimensions
X' =Cjq+ vy +
n data points— X Cio+ v, +
: +
Ci,k" VkT
X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., v, € R%: orthogo-
nal basis for subspace V. V e R9>*: matrix with columns V4, ...,V 8




Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R™<9 has rank < k.

- Every data point X; (row of X) can be written as
)_(‘,‘:VE,‘:C,‘J '\71+...+C;,k~\7;?.

Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥;,...,V, €
RY: orthogonal basis for V. V € RY*k: matrix with columns ¥, .. . , V.




Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Every data point X; (row of X) can be written as
)_(‘,‘:VE,‘:C,'J '\71+...+C;,;?~\7k.

- . k parameters
X, = VC P \ d dimensions
—_ [ \ r 1
T- 1y
x“ C oV v
- xT | o
~—
n data points X C
Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥;,...,V, €

RY: orthogonal basis for V. V € R4*k: matrix with columns v, . .., V.




Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Every data point X; (row of X) can be written as
)_(‘,‘:VE,‘:C,'J '\71+...+C;,;?~\7k.
k parameters

L d dimlensions
[ \r 1
VT
XIT — CIT
n data points X C

- X can be represented by (n + d) - k parameters vs. n - d.

Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥;,...,V, €
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Claim: X;,..., %X, € R? lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Every data point X; (row of X) can be written as
)_(‘,‘:VE,‘:C,'J '\71+...+C;7;?~\7k.
k parameters

L d dimlensions
- [ \r 1
@T
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n data points X C \/\/

+ X can be represented by (n + d) - k parameters vs. n - d.

+ The rows of X are spanned by k vectors: the columns of V. = the
columns of X are spanned by k vectors: the columns of C.

Xi,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥;,...,V, €
RY: orthogonal basis for V. V € R4*k: matrix with columns v, . .., V.




LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

VT
X7 =| o
n data points X C
Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.

10



LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

VT
XiT - ciT
n data points X Cc
\ Hint: Use that VIV = I.
Al
Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.

10



LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

\i

.T T

n data points X C

Hint: Use that VIV = I.

3y
X=0V = xvzcvfo

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.

10



LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.

k parameters

d dimensions
{_Jl_\ —

\i

T

n data points X C

Hint: Use that VIV = I.

I
X=0V — xvzcvﬁ =

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.
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LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.

k parameters

—
X7 ¢
n data points X V1T ¢ c'=xv =xT
i =VTx; =%

Hint: Use that VIV = I.

cX=CV = XV=QV'V =

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.
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PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as
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PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
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PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as
X = XW'.
-

- W/ is a projection matrix, which projects the rows of X (the data
points X1, ..., X, onto the subspace V.

d-dimensional space
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LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9*% the data matrix can be approximated as:
X &~ X'
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nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.




LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9*% the dataématrix can be approximated as:
X
X ~ XV’
——

d-dimensional space

k-dim. subspace V

Note: )_QI/VT has rank k. It is a low-rank approximation of X.

nx\c kxd
X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V. H




LOW-RANK APPROXIMATION

Claim: If X, ..., X, lie a k-dimensional subspace V with
orthonormal basis V € R9*k the data matrix can be
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X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V. H




LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:

X =~ XV,

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.




LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal ba5|s V € RY%* the data matrix can be ap o><|mated as:
X~ XVV'.

This is the closest approximation to X with rows in V ( |e in th
column span of V).

* Letting (XVV');, (XWV); be the i" and j" projected data pomts
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X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:
X~ XVV'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
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- Can use XV € R"** as a compressed approximate data set.
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LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:
X~ XVV'.

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
IXWVT); — (XWT)jl2 = [II(XV); — (XV)IVT Il = 1T(XV) = (X))

- Can use XV € R"** as a compressed approximate data set.

Key question is how to find the subspace V and corr ndingly V.

—_

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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Quick Exercise: Show that W/ is idempor@nt. le,
(W) (WT)y = (W')y for any y € RY. v \l\/
/’\—_‘

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

7115 = IWIYI2 + 1Y = (W2

14



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,...,X, € RY to lie close to a
k-dimensional subspace?
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basis of k vectors.



A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,...,X, € RY to lie close to a
k-dimensional subspace?
- The rows of X can be approximately reconstructed from a

basis of k vectors.

projections onto_15
784 dimensional vectors  dimensional space  orthonormal basis vy,...,V5

—
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;,...,X, € R? to lie close to a
k-dimensional subspace?
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X, x\ x,, € R? to lie close to a
k-dimensional subspace? &

- Equivalently, the columns ofX are approx. spanned by k vectors.
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors| list price|sale price

home 1 2 2 1800 [ 2 | 200,000 | 195,000
4 25 2700 | 1 | 300,000 | 310,000

home 2

home n 5 3.5 3600 3 450,000 | 450,000
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Question: Why might we expect X;, ..., X, € RY to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
-

100095/ 10* ~

bedroomé \ floors; ) €| sale price
home 1 2 2 195,000
home 2 4 1 310,000
home n 5 3 450,000
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