COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 12

LOGISTICS

- Problem Set 2 is due Friday, 11:59pm.
- Quiz 6 is due today at 8 pm .
- The exam will be held next Tuesday in class. Let me know ASAP if you need accommodations (e.g., extended time).
- We will do some midterm review in class on Thursday. I will also hold additional office hours for midterm prep, next Monday, $4-6 p m$, and potentially Friday afternoon as well.

SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.

This Class:

- Finish Up proof of the JL lemma.
- Example applications to classification and clustering.
- Discuss connections to high dimensional geometry.

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ and $\epsilon>0$ there exists a linear map $\boldsymbol{\Pi}: \mathbb{R}^{d} \rightarrow R^{m}$ such that $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ and letting $\tilde{x}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$:

$$
\text { For all } i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

Further, if $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1 / m)$ and $m=O\left(\frac{\log n / \delta}{\epsilon^{2}}\right), \boldsymbol{\Pi}$ satisfies the guarantee with probability $\geq 1-\delta$.

DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:
Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2} .
$$

Main Idea: Union bound over $\binom{n}{2}$ difference vectors $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$.

DISTRIBUTIONAL JL PROOF

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let $\tilde{\boldsymbol{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{\mathbf{n}}^{d}{ }_{i=1} g_{i} \cdot \vec{y}(i)$ where $\boldsymbol{g}_{i} \sim \mathcal{N}(0,1 / m)$.

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. d : original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

DISTRIBUTIONAL JL PROOF

- Let $\tilde{\mathbf{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \boldsymbol{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $g_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$: normally distributed with variance $\frac{\vec{V}(i)^{2}}{m}$.

\boldsymbol{g}_{i}

$\boldsymbol{g}_{i} \cdot y(i)$

$\widetilde{\boldsymbol{y}}(j)=\left[\boldsymbol{g}_{1} \cdot y(1)+\boldsymbol{g}_{2} \cdot y(2)\right.$

What is the distribution of $\tilde{y}(j)$? Also Gaussian!
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \Pi(j)$: $j^{\text {th }}$ row of Π, d : original dimension. m : com-

DISTRIBUTIONAL JL PROOF

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{\mathbf{y}}(j)=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i) \text { where } \mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right) .
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}(j) \sim \mathcal{N}\left(0, \frac{\vec{y}(1)^{2}}{m}+\frac{\vec{y}(2)^{2}}{m}+\ldots+\frac{\vec{y}(d)^{2}}{m} \frac{\|\vec{y}\|_{2}^{2}}{m}\right)$ l.e., \tilde{y} itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}:$ random

DISTRIBUTIONAL JL PROOF

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]$?

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{\mathbf{y}}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

So \tilde{y} has the right norm in expectation.

How is $\|\tilde{y}\|_{2}^{2}$ distributed? Does it concentrate?

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

DISTRIBUTIONAL IL PROOF

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{\mathrm{y}}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{\mathbf{y}}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{\mathbf{y}}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|Z-\mathbb{E} Z| \geq \epsilon \mathbb{E} Z] \leq 2 e^{-m \epsilon^{2} / 8} .
$$

EXAMPLE APPLICATION: k-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.

Write in terms of distances:
$\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$

EXAMPLE APPLICATION: k-MEANS CLUSTERING

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$
If we randomly project to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \Longrightarrow
$$

$$
\begin{aligned}
& \text { Letting } \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\tilde{\mathrm{x}}_{1}, \tilde{\tilde{x}}_{2} \in \mathcal{C}_{k}}\left\|\tilde{\mathrm{x}}_{1}-\tilde{\mathrm{x}}_{2}\right\|_{2}^{2} \\
& (1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)
\end{aligned}
$$

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$. The optimal set of clusters will have true cost within $1+C \epsilon$ times the true optimal. Good exercise to prove this.

The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

- High-dimensional Euclidean space looks very different from low-dimensional space. So how can JL work?
- Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)

ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in d-dimensional space?
a) 1
b) $\log d$
c) \sqrt{d}
d) d

NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle\vec{x}, \vec{y}\rangle| \leq \epsilon$? (think $\epsilon=.01$)
a) d
b) $\Theta(d)$
c) $\Theta\left(d^{2}\right)$
d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

ORTHOGONAL VECTORS PROOF

Claim: $2^{\Theta\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle\vec{x}, \vec{y}\rangle| \leq \epsilon$ (be nearly orthogonal) with high probability.

Proof: Let $\vec{x}_{1}, \ldots, \vec{x}_{t}$ each have independent random entries set to $\pm 1 / \sqrt{d}$.

- What is $\left\|\vec{x}_{i}\right\|_{2}$? Every \vec{x}_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle\right]$? $\mathbb{E}\left[\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle\right]=0$
- By a Chernoff bound, $\operatorname{Pr}\left[\left|\left\langle\vec{x}_{i}, \vec{x}_{j}\right\rangle\right| \geq \epsilon\right] \leq 2 e^{-\epsilon^{2} d / 6}$ (great exercise).
- If we chose $t=\frac{1}{2} e^{\epsilon^{2} d / 12}$, using a union bound over all $\binom{t}{2} \leq \frac{1}{8} e^{\epsilon^{2} d / 6}$ possible pairs, with probability $\geq 3 / 4$ all will be nearly orthogonal.

CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of $2^{\Theta\left(\epsilon^{2} d\right)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon=.01$)

$$
\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2}=\left\|\vec{x}_{i}\right\|_{2}^{2}+\left\|\vec{x}_{j}\right\|_{2}^{2}-2 \vec{x}_{i} \vec{x}_{j} \in[1.98,2.02] .
$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

- One version of the 'curse of dimensionality'.
- If all your distances are roughly the same, distance based methods (k-means clustering, nearest neighbors, SVMs, etc.) aren't going to work well.
- Distances are only meaningful if we have lots of structure and our data isn't just independent random vectors.

CURSE OF DIMENSIONALITY

Distances for MNIST Digits:

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad model for actual input data.

