
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 12

0

logistics

• Problem Set 2 is due Friday, 11:59pm.
• Quiz 6 is due today at 8pm.
• The exam will be held next Tuesday in class. Let me know
ASAP if you need accommodations (e.g., extended time).

• We will do some midterm review in class on Thursday. I will
also hold additional office hours for midterm prep, next
Monday, 4-6pm, and potentially Friday afternoon as well.

1

summary

Last Class: The Johnson-Lindenstrauss Lemma

• Low-distortion embeddings for any set of points via random
projection.

• Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

• Finish Up proof of the JL lemma.
• Example applications to classification and clustering.
• Discuss connections to high dimensional geometry.

2

the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points
x⃗1, . . . , x⃗n ∈ Rd and ϵ > 0 there exists a linear mapΠ : Rd → Rm
such that m = O

(
log n
ϵ2

)
and letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m) and m = O

(
log n/δ

ϵ2

)
, Π satisfies the guarantee with

probability ≥ 1− δ.

3

distributional jl

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2.

Main Idea: Union bound over
(n
2
)
difference vectors y⃗ij = x⃗i − x⃗j.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob.

4

distributional jl proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⃗⟩ =

∑d
i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 5

distributional jl proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⃗⟩ =

∑d
i=1 gi · y⃗(i) where gi ∼ N (0, 1/m).

• gi · y⃗(i) ∼ N (0, y⃗(i)
2

m): normally distributed with variance y⃗(i)2
m .

What is the distribution of ỹ(j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.

6

distributional jl proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) =
d∑
i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N
(
0, y⃗(i)

2

m

)
.

Stability of Gaussian Random Variables. For independent a ∼
N (µ1, σ

2
1) and b ∼ N (µ2, σ

2
2) we have:

a+ b ∼ N (µ1 + µ2, σ
2
1 + σ22)

Thus, ỹ(j) ∼ N (0, y⃗(1)
2

m + y⃗(2)2
m + . . .+ y⃗(d)2

m
∥⃗y∥22
m) I.e., ỹ itself is a random

Gaussian vector. Rotational invariance of the Gaussian distribution.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable

7

distributional jl proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

ỹ(j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥ỹ∥22]?

E[∥ỹ∥22] = E

 m∑
j=1

ỹ(j)2
 =

m∑
j=1

E[ỹ(j)2]

=
m∑
j=1

∥⃗y∥22
m = ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable 8

distributional jl proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

ỹ(j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥ỹ∥22 =

∑m
i=1 ỹ(j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(
log(1/δ)

ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥ỹ∥22 ≤ (1+ ϵ)∥⃗y∥22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob.

9

example application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗∈Ck

∥⃗x− µj∥22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22
10

example application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22

If we randomly project tom = O
(
log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥⃗x1 − x⃗2∥22 ≤ ∥x̃1 − x̃2∥22 ≤ (1+ ϵ)∥⃗x1 − x⃗2∥22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal. Good
exercise to prove this.

11

The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

• High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL work?

• Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)

12

orthogonal vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

a) 1 b) logd c)
√
d d) d

13

nearly orthogonal vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ? (think ϵ = .01)

a) d b) Θ(d) c) Θ(d2) d) 2Θ(d)

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!

14

orthogonal vectors proof

Claim: 2Θ(ϵ2d) random d-dimensional unit vectors will have all
pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ (be nearly orthogonal) with high
probability.

Proof: Let x⃗1, . . . , x⃗t each have independent random entries set to
±1/

√
d.

• What is ∥⃗xi∥2? Every x⃗i is always a unit vector.

• What is E[⟨⃗xi, x⃗j⟩]? E[⟨⃗xi, x⃗j⟩] = 0

• By a Chernoff bound, Pr[|⟨⃗xi, x⃗j⟩| ≥ ϵ] ≤ 2e−ϵ2d/6 (great exercise).

• If we chose t = 1
2e

ϵ2d/12, using a union bound over all
(t
2
)
≤ 1

8e
ϵ2d/6

possible pairs, with probability ≥ 3/4 all will be nearly orthogonal.

15

curse of dimensionality

Up Shot: In d-dimensional space, a set of 2Θ(ϵ2d) random unit
vectors have all pairwise dot products at most ϵ (think ϵ = .01)

∥⃗xi − x⃗j∥22 = ∥⃗xi∥22 + ∥⃗xj∥22 − 2⃗xTi x⃗j ∈ [1.98, 2.02].

Even with an exponential number of random vector samples,
we don’t see any nearby vectors.

• One version of the ‘curse of dimensionality’.
• If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVMs, etc.)
aren’t going to work well.

• Distances are only meaningful if we have lots of structure
and our data isn’t just independent random vectors.

16

curse of dimensionality

Distances for MNIST Digits:

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

10
7

Distances for Random Images:

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

-0.5 0 0.5 1 1.5 2 2.5

0

2

4

6

8

10
10

7

Another Interpretation: Tells us that random data can be a very bad
model for actual input data. 17

