COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2021. Lecture 11

- Problem Set 2 is due next Friday 10/15.
- Midterm is in class on Tuesday, 10/19.
- I have posted a study guide and practice questions on the course schedule.

Last Class:

- Introduced the *k*-frequent elements problem identify all elements of a stream of *n* elements that occur $\ge n/k$ times.
- Saw how to solve approximately in $O(k \log n/\epsilon)$ space using the Count-min sketch algorithm.
- Simple analysis based on Markov's inequality and repeated random hashing.

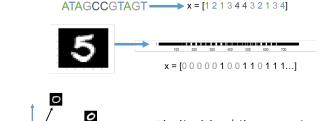
This Class:

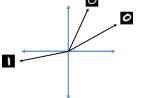
- · Randomized methods for dimensionality reduction.
- The Johnson-Lindenstrauss Lemma.

'Big Data' means not just many data points, but many measurements per data point. I.e., very high dimensional data.

- Twitter has 321 million active monthly users. Records (tens of) thousands of measurements per user: who they follow, who follows them, when they last visited the site, timestamps for specific interactions, how many tweets they have sent, the text of those tweets, etc.
- A 3 minute Youtube clip with a resolution of 500×500 pixels at 15 frames/second with 3 color channels is a recording of \geq 2 billion pixel values. Even a 500 \times 500 pixel color image has 750,000 pixel values.
- The human genome contains 3 billion+ base pairs. Genetic datasets often contain information on 100s of thousands+ mutations and genetic markers.

In data analysis and machine learning, data points with many attributes are often stored, processed, and interpreted as high dimensional vectors, with real valued entries.



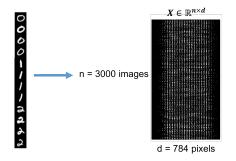


Similarities/distances between vectors (e.g., $\langle x, y \rangle$, $||x - y||_2$) have meaning for underlying data points.

Data points are interpreted as high dimensional vectors, with real valued entries. Data set is interpreted as a matrix.

Data Points: $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \in \mathbb{R}^d$.

Data Set: $X \in \mathbb{R}^{n \times d}$ with *i*th row equal to $\vec{x_i}$.



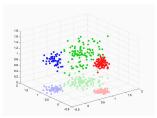
Many data points $n \implies$ tall. Many dimensions $d \implies$ wide.

Dimensionality Reduction: Compress data points so that they lie in many fewer dimensions.

$$\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \to \tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$$
 for $m \ll d$.

5
$$\longrightarrow$$
 $x = [0 0 0 0 0 1 0 0 1 1 0 1 1 1...] $\longrightarrow \tilde{x} = [-5.5 4 3.2 - 1]$$

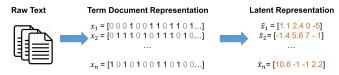
'Lossy compression' that still preserves important information about the relationships between $\vec{x}_1, \ldots, \vec{x}_n$.



Generally will not consider directly how well \tilde{x}_i approximates \vec{x}_i .

Dimensionality reduction is one of the most important techniques in data science. What methods have you heard of?

- Principal component analysis
- Latent semantic analysis (LSA)



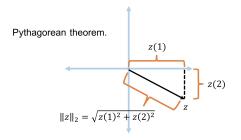
- Linear discriminant analysis
- Autoencoders

Compressing data makes it more efficient to work with. May also remove extraneous information/noise.

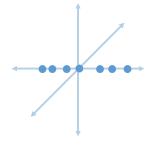
Euclidean Low Distortion Embedding: Given $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1-\epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1+\epsilon)\|\vec{x}_i - \vec{x}_j\|_2.$$

Recall that for $\vec{z} \in \mathbb{R}^n$, $\|\vec{z}\|_2 = \sqrt{\sum_{i=1}^n \vec{z}(i)^2}$.



m-dimensional space (for m << d) A very easy case: Assume that $\vec{x_1}, \ldots, \vec{x_n}$ all lie on the 1st axis in \mathbb{R}^d .



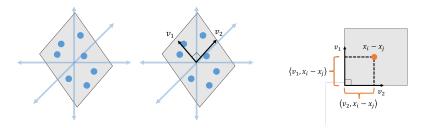
Set m = 1 and $\tilde{x}_i = [\vec{x}_i(1)]$ (i.e., \tilde{x}_i contains just a single number).

$$: \|\tilde{x}_i - \tilde{x}_j\|_2 = \sqrt{[\vec{x}_i(1) - \vec{x}_j(1)]^2} = |\vec{x}_i(1) - \vec{x}_j(1)| = \|\vec{x}_i - \vec{x}_j\|_2.$$

• An embedding with no distortion from any d into m = 1.

EMBEDDING WITH ASSUMPTIONS

Assume that $\vec{x}_1, \ldots \vec{x}_n$ lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



- Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- For all i, j we have $\vec{x}_i \vec{x}_j \in \mathcal{V}$ and (a good exercise!):

$$\|\vec{x}_{i}-\vec{x}_{j}\|_{2} = \sqrt{\sum_{\ell=1}^{k} \langle v_{\ell}, \vec{x}_{i}-\vec{x}_{j} \rangle^{2}} = \|\mathbf{V}^{\mathsf{T}}(\vec{x}_{i}-\vec{x}_{j})\|_{2}.$$

• If we set $\tilde{\mathbf{v}}_{k} \subset \mathbb{D}^{k}$ to $\tilde{\mathbf{v}}_{k} = \mathbf{V}^{T} \vec{\mathbf{v}}_{k}$ we have

10

What about when we don't make any assumptions on $\vec{x}_1, \ldots, \vec{x}_n$. I.e., they can be scattered arbitrarily around *d*-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require m = d.
- Can we find an ϵ -distortion embedding into $m \ll d$ dimensions for $\epsilon > 0$? Yes! Always, with m depending on ϵ .

For all $i, j : (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

Further, if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

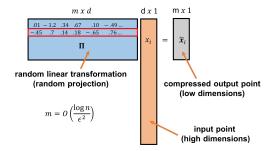
For d = 1 trillion, $\epsilon = .05$, and n = 100,000, $m \approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

RANDOM PROJECTION

For any $\vec{x}_1, \ldots, \vec{x}_n$ and $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \vec{x}_i$:

For all $i, j: (1-\epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1+\epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$



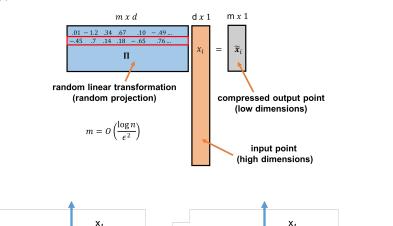
- **Π** is known as a random projection. It is a random linear function, mapping length *d* vectors to length *m* vectors.
- **n** is data oblivious. Stark contrast to methods like PCA.

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured, etc. \implies more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$.
- · Data oblivious property means that once Π is chosen, $\tilde{x}_1,\ldots,\tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on different servers.
- When new data points are added, can be easily compressed, without updating existing points.

Compression operation is $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\vec{x}}_i$, so for any *j*,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{x}_i \rangle = \sum_{k=1}^d \mathbf{\Pi}(j, k) \cdot \vec{x}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.



15

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\mathbf{\Pi}\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix $\mathbf{\Pi}$ to any vector \vec{y} preserves \vec{y} 's norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- $\cdot\,$ Can be proven from first principles.

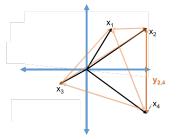
 $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Questions?

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since $\mathbf{\Pi}$ is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.



- If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 \delta$ we have:
 - برو واورد و برس سرو ور و بر برو واورد و

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.

Questions?