
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2021.
Lecture 10

0

logistics

• Problem Set 2 is due next Friday at 11:59pm.
• The midterm is will in class on Tuesday 10/19. Midterm study
material has been posted in the Schedule Tab and in
Moodle.

1

week 5 quiz

2

summary

Last Class:

• Locality sensitive hashing for near neighbor search.
• MinHash as a locality sensitive hash function for Jaccard
similarity

• Balancing false positives and negatives with LSH signatures
and repeated hash tables.

This Class:

• Finish up LSH: SimHash for cosine similarity.
• Frequent Items Estimation
• Count-min sketch algorithm

3

upcoming

Next Few Classes:
• Random compression methods for high dimensional vectors. The
Johnson-Lindenstrauss lemma.

• Connections to the weird geometry of high-dimensional space.

After the Midterm: Spectral Methods
• PCA, low-rank approximation, and the singular value
decomposition.

• Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

• Vector dot product, addition, Euclidean norm. Matrix vector
multiplication.

• Linear independence, column span, orthogonal bases, rank.
• Orthogonal projection, eigendecomposition, linear systems. 4

simhash for cosine similarity

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.

Cosine Similarity: cos(θ(x, y)) = ⟨x,y⟩
∥x∥2·∥y∥2 .

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦.

5

simhash for cosine similarity

SimHash: LSH for cosine similarity.

SimHash(x) = sign(⟨x, t⟩) for a random vector t.
6

simhash for cosine similarity

What is Pr [SimHash(x) = SimHash(y)]?

SimHash(x) ̸= SimHash(y) when the plane separates x from y.

• Pr [SimHash(x) ̸= SimHash(y)] = θ(x,y)
π

• Pr [SimHash(x) = SimHash(y)] = 1− θ(x,y)
π ≈ cos(θ(x,y))+1

2 7

the frequent items problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least nk times.

• What is the maximum number of items that can be returned?a) n b) k c) n/k d) logn

• Trivial with O(n) space – store the count for each item and
return the one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?
8

the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. I.e., want to maintain a running list of
frequent items that appear in a stream.

9

frequent itemset mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of t items
that appear many times in the same basket.

• Frequency of an itemset is known as its support.
• A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets are
Twitter users and itemsets are subsets of who they follow. 10

approximate frequent elements

Issue: No algorithm using o(n) space can output just the items
with frequency ≥ n/k. Hard to tell between an item with
frequency n/k (should be output) and n/k− 1 (should not be
output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that
appear at least nk times and only items that appear at least
(1− ϵ) · nk times.

• An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1− ϵ) · nk ,

n
k] no output guarantee. 11

frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method
closely related to bloom filters.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

12

count-min sketch accuracy

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] ≥ f(x). Why?

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

13

count-min sketch accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 14

count-min sketch accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ .

How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

15

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate
is always the most accurate since they are all overestimates of
the true frequency! 16

count-min sketch analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]
• For every x and i ∈ [t], we know that for m = 2k

ϵ , with probability
≥ 1/2:

f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn
k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k]? 1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).
17

count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem – distinquish between items with frequency n

k and
those with frequency (1− ϵ)nk .

• How should we set δ if we want a good estimate for all items
at once, with 99% probability?

18

identifying frequent elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

• When a new item comes in at step i, check if its estimated
frequency is ≥ i/k and store it if so.

• At step i remove any stored items whose estimated
frequency drops below i/k.

• Store at most O(k) items at once and have all items with
frequency ≥ n/k stored at the end of the stream.

19

Questions on Frequent Elements?

20

