
COMPSCI 514: Problem Set 4

Due: December 1, 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Optimal Low-Rank Approximation – From Scratch (10 points)

In class we used the Courant-Fischer theorem to argue that the best low-rank approximation to
any matrix X 2 Rn⇥d is given by XVkV

T
k where Vk 2 Rd⇥k contains the top k eigenvectors of

XTX (i.e., the top k right singular vectors of X). Here you will prove this from scratch, using just
the basic properties of projection matrices and eigenvectors.

1. (2 points) Let X 2 Rn⇥d be any matrix and M 2 Rn⇥d be any rank-k matrix with SVD
M = QDZT for orthonormal Q 2 Rn⇥k, Z 2 Rd⇥k, and diagonal D 2 Rk⇥k. Prove that
kX�Mk2F = kXZZT �Mk2F + kX�XZZT k2F .

2. (2 point) Use part (1) to argue that if M = argmin
B:rank(B)k

kX�Bk2F then XZZT = M.

3. (2 points) Using a similar argument as above, one can show that, ifM = argminB:rank(B)k kX�
Bk2F , then QQTX = M. Use this and part (2) to show that: XTXZ = ZD2. Hint: It may
be helpful to prove as an intermediate step that XZ = QD and/or QTX = DZT .

4. (2 points) Use part (3) to argue that each column of Z is an eigenvector of XTX.

5. (2 points) Complete the proof, showing that the best low-rank approximation of X is given
by XVkV

T
k where Vk contains the top k eigenvectors of XTX.
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2. Recovering Locations from Distances (14 points + 6 points bonus)

Suppose you are given all pairs distances between a set of n points ~p1, ~p2, . . . , ~pn 2 Rd, with n > d.
Formally, you are given an n ⇥ n matrix D with Di,j = k~pi � ~pjk22. You would like to recover the
location of the original points, up to possible translations, rotations, and reflections, which will not
change the pairwise distances.1 Let P 2 Rn⇥d be the matrix with the n points as rows.

1. (2 points) Let N be n ⇥ n matrix with every row equal to [k~p1k22, k~p2k22, . . . , k~pnk22]. Prove
that D = N+NT � 2PPT . Hint: Expand out k~pi � ~pjk22 as a dot product.

2. (2 points) Give an upper bound on rank(D).

3. (4 points) Show that:
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Hint: Since we can only recover the points up to translations anyways, you can assume
without loss of generality that the points are have zero mean. I.e.,

Pn
i=1 ~pi =

~0.

4. (2 points) Describe an algorithm that, givenD, uses the formula above to recover ~p1, ~p2, . . . , ~pn 2
Rd up to rotation and translation. Hint: Even if you haven’t figured out part (3), you can
use the given formula to solve this part.

5. (2 points) Run your algorithm on the U.S. cities dataset provided in UScities.txt and plot
the output. The distances in the file are Euclidean distances k~pi� ~pjk2 so you need to square
them to obtainD. Does the output make sense? Plot the estimated city locations and identify
a few cities in your plot. Submit your code with the problem set.

6. (2 points) Plot the spectrum of the distance matrix D from part (5). Is the rank of D what
was predicted in part (2)? What might be an explanation for any deviations?

7. Bonus: (6 points – quite challenging!) The problem of location recovery is closely related to
both triangulation in surveying/mapping and matrix completion. Let’s assume that for the
U.S. cities dataset we actually only know the distance from every city to three other reference
cities. That is, we know just three columns D.

(a) (2 points) Describe an algorithm that recovers the full distance matrix D using just these
three columns. Hint: Given three columns of D, think about how to find four vectors
that span all columns of D, using the ideas of parts (1)-(3). Then think about how to
recover all the columns of D from this span.

(b) (2 points) Describe the geometric intuition, perhaps using a picture, behind why we
can recover all distances, and in turn city locations, given just the distances with three
reference cities. This intuition doesn’t have to exactly align with your algorithm above.

(c) (2 points) Implement your algorithm and use it to recover the distance matrix D for
the U.S. cities dataset. There will be some error due to approximation errors. Let D̃

represent your recovered distance matrix. What is kD�D̃kF
kDkF ? Did you algorithm work

well? Use your recovered matrix D̃ to recover approximate positions of the U.S. cities.
How do your results look in comparison to those of part (4).

1
Formally, you want to recover the points up to a translation plus multiplication by an orthogonal matrix, which

performs a unitary transformation https://en.wikipedia.org/wiki/Unitary_transformation
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3. The Many Meanings of Graph Spectra (12 points)

In class we used the eigenvectors of the adjacency matrix and Laplacian to partition a graph across
a small but well-balanced cut. The eigenvectors and eigenvalues of these matrices can tell us about a
lot of other properties of the underlying graph as well. For all problems below, consider unweighted,
undirected graphs with adjacency matrix A 2 Rn⇥n and Laplacian L 2 Rn⇥n

.

1. (2 points) All Laplacian matrices have �n(L) = 0. Prove that �n�k(L) = 0 if and only if the
graph has at least k+1 connected components. I.e., the number of 0 eigenvalues in L tells us
the number of connected components it has. Hint: First prove the ‘if’ part of this statement.
Then prove the ‘only if’, which is a bit harder.

2. (2 points) Show that �1(A) � c� 1 where c is the size of the largest clique in the graph (i.e.,
the largest set of nodes that are all connected to each other.)

3. The top eigenvectors of A can also be used to find large cliques in the graph, which can
correspond to anomalies, such as auto-generated accounts on social media sites. Consider a
basic random graph model: a graph G on n nodes has each edge added with probability p < 1,
independently. Then a random subset of

p
n nodes S ⇢ V is selected and all connections

between the nodes in S are added, creating a clique of size
p
n. Assume for simplicity that

you also add self-loops to all nodes in S.

(a) (2 points) What is E[A] for this random graph? For simplicity, order the nodes so that
the subset of

p
n nodes appear first. What is rank(E[A])?

(b) (2 points) Argue that (up to a scaling factor) the top eigenvector ~v1 2 Rn of E[A]
has ~v1(i) = ↵ for i 2 S and ~v1(i) = 1 for i /2 S where ↵ > 1. I.e., the entries of
~v1 corresponding to the nodes in S are larger than the entries corresponding to other
nodes. Hint: First argue that ~v1(i) must have a single value for all i 2 S and a single
value for all i /2 S. You may also use that by the Perron-Frobenius theorem, ↵ � 0.

(c) (4 points) Generate a graph G according to the prescribed model with n = 900 (and so
|S| = 30) and p = 1/8. Compute the top eigenvector of A and look at its 30 largest
entries. What fraction of nodes in S do you recover by looking at these entries?

4. Stochastic Block Model Generalized (12 points)

In class we applied spectral methods to partition a graph into two large subsets of vertices with
relatively few connections between them. We discussed how spectral clustering can be used to
partition a graph into k > 2 pieces by combining a rank-k spectral embedding with e.g., k-means
clustering. In this problem we will consider this method applied to the stochastic block model with
a larger number of communities.

Let Gn,3(p, q) be the distribution over random graphs where n is divided into three subsets
X,Y, Z each with n/3 nodes in them (assume for simplicity that n is divisible by 3). Node i, j are
connected with probability p if they are in the same subset (X,Y, or Z) and with probability q < p

if they are in di↵erent subsets. Connections are all made independently.

1. (2 points) Consider drawing a random graph G ⇠ Gn,3(p, q). Let A be its adjacency matrix
and L be its Laplacian, with nodes sorted by community id. What is E[A]? What is E[L]?

2. (4 points) What are the top three eigenvectors and eigenvalues of E[A]? What are the bottom
three eigenvectors and eigenvalues of E[L]? Note: the eigendecompositions of E[A] and E[L]
are not unique. Just describe one valid set of eigenvectors.
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3. (2 points) Consider computing ~vn�1 and ~vn�2, the second and third smallest eigenvectors of
L. Then represent node i with the embedding ~xi = [~vn�1(i),~vn�2(i)]. Partition the nodes
by applying k-means clustering to this embedded data set. Assume that you can find the
optimal clustering e�ciently. If A,L were exactly equal to their expectations, describe how
this method would perform in recovering the communities X,Y, and Z. Note: You don’t
need to actually implement the method to answer this question. Just describe how it should
work in theory.

4. (4 points) Generate a 1200 node graph from Gn,3(p, q) with p = .1 and q = .02 and partition
it with the above spectral clustering algorithm applied to L. Plot the adjacency matrix A,
the spectral embedding (i.e., xi = [~vn�1(i),~vn�2(i)] for all i), and the output of the k-means
algorithm. How well does the algorithm perform?
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