
COMPSCI 514: Problem Set 2

Due: 10/15 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Random Group Testing (10 points)

Suppose that we wish to control the spread of some contagious illness by testing as many individuals
as possible. Unfortunately testing is expensive. A common method to address is issue is to test
individuals in groups. I.e., the biological samples from multiple patients are combined into a
single sample and tested for the disease all at once. If the test returns negative, it means that all
individuals in the group are negative. If the test comes back positive, it means that at least one
individual in the group has the disease. We’ll see how this strategy can be used to significantly
save on the number of tests required to identify a small subset of positive individuals.

1. (4 points) Show that there is a deterministic algorithm that uses O(
p
nk) tests and, if at

most k individuals in the populations are positive, correctly identifies all these individuals,
without identifying any individuals that are negative. You may assume that k is known in
advance (often it can be estimated from the positive rate of prior tests). Hint: Consider a
two-stage approach that first tests groups and then tests individuals within the groups.

2. (1 points) Say we are testing the UMass Amherst student body. n = 30, 000 and there is a
1% positivity rate, so k = 300. How many tests does the strategy of part (1) save over simply
individually testing each member of the student body? You may assume that the constant in
the big-Oh notation is 2 – i.e. that the algorithms uses  2

p
nk tests. There is an algorithm

achieving that constant.

3. (3 points) Consider the following randomized scheme: collect r samples from each individ-
ual. Then, repeat the following process r times: randomly partition the population into G
groups (i.e., each individual is assigned independently to group i with probability 1/G for
i = 1, 2, ..., G), and test each group in aggregate. Once this process is complete, report that an
individual is positive if every group they were part of tested positive. Report that an individual

1

is negative if any of the groups they were part of tested negative. Show that for G = O(k)
this scheme finds all truly positive patients, and that each negative patient is marked positive
with probability  1

2r .

4. (2 points) Show that if we set r = O(log n), then with probability � 99/100 the method of
part (3) yields no false positives, no false negatives, and requires just O(k log n) tests.

2. Missing Analysis for Distinct Elements Algorithms (5 points)

For a continuous random variableX, we define the probability density function as fX(t) = d
dt Pr[X 

t]. Then E[X] =
R1
�1 tfX(t)dt and E[X2] =

R1
�1 t2fX(t)dt. Suppose we pick d uniform random

values in the range [0, 1] independently and X is defined to be the smallest of these values.

1. (2 points) What is the value of E[X]?

2. (2 points) What is the value of E[X2]?

3. (1 point) What is the value of Var[X]?

Hint: You may use Wolfram Alpha (or similar) to evaluate any integrals you encounter. Note that
we claimed bounds on these quantities in lectures but did not prove them and that’s what we’re
are doing here.

3. Distinct Elements Revisited (6 points)

Suppose we have a rough estimate d0 of the number of distinct values in a stream x1, . . . , xm.
Specifically, suppose d/2  d0  2d where d is the exact value. However, we want to find an
estimate d00 such that |d00 � d|  ✏d where ✏ is an arbitrarily small positive value. Let h : U ! [d0]
be a fully random hash function and let X be the number of distinct values in the stream that
evaluate to 1 when the hash function is applied.

1. (2 points) Compute the expected value of X and conclude that if you can approximate E[X]
up to error ✏E[X] then you learn d up to error ✏d.

2. (2 points) Analyze how you can use multiple hash functions to learn E[X] up to error ✏E[X]
with probability at least 1� �.

3. (2 points) If you implemented this approach as a data stream algorithm, what is the expected
space use of the algorithm?

4. Join Size Estimation via Hashing (9 points)

One common application of random hashing is in database systems. Consider estimating the inner
join size of two tables without performing an actual expensive inner join. This is useful, e.g., in
database query optimization – approximate join sizes can be used to chose an e�cient execution
for a complex query involving multiple joins.

Formally, consider two sets of keys A = {a1, . . . , am} and B = {b1, . . . , bn} which are subsets of
some universe U . Our goal is to estimate |A \ B| based on compact representations of A and B.
Consider compressing the sets as follows:

• Choose k independent uniform random hash functions h1, . . . ,hk : U ! [0, 1].

• Let sA = [sA1 , . . . , s
A
k] where sAi = minj=1,...,m hi(aj).

2

• Let sB = [sB1 , . . . , s
B
k] where sBi = minj=1,...,n hi(bj).

Given sA and sB, each a list of k numbers, we estimate join size |A \ B| as Z = c · (1s � 1) where

c = 1
k

Pk
i=1 [sAi = sBi] (i.e., c is the fraction of colliding hashes in sA and sB) and

s =
1

k

kX

i=1

min(sAi , s
B
i).

1. (3 points) Show that if we set k � 1
✏2� , for ✏, � 2 (0, 1), then with probability at least 1 � �,

|c� J(A,B)|  ✏
p

J(A,B).

2. (3 points) Show that if we set k = O(1
✏2�), for ✏, � 2 (0, 1), then with probability at least 1��,���1

s � 1
�
� |A [B|

��  ✏|A [B|.

3. (3 points) Conclude that if we set k = O(1
✏2�), for ✏, � 2 (0, 1) then with probability at least

1� �,

|Z � |A \B||  ✏
p
|A \B||A [B|.

5. Estimating Sum of Squares (6 points)

Let x1, x2, . . . xm 2 [n] be a stream and define fi = |{j 2 [m] : xj = i}|, i.e., fi is the number of
elements in the stream that equal i. In the question, we are interested in estimating the sum of
squared frequencies F2 =

P
i f

2
i . Consider the following data stream algorithm that uses O(logm)

bits of space to store a single counter:

1. Let h : [n]! {�1, 1} be a fully random hash function (i.e., for all x, h((x) = 1 with probability
1/2, h(x) = �1 with probability 1/2, and for all x 6= y, h(x) and h(y) are independent.)

2. C 0

3. For i = 1 to m: C h(xi) + C

4. Return C2

You will first analyse the expected value and variance of the above algorithm and then use this to
design an algorithm for estimating F2.

1. (2 points) What is the expected value of the output?

2. (2 points) Prove that the variance of the output is O(F 2
2).

3. (2 points) Use the above algorithm as a building block towards a small-space streaming
algorithm for estimating F2 up to a factor 1+ ✏ with probability at least 1� �. The algorithm
should use O(✏�2 log(1/�) logm) bits of space.

6. Locality Sensitive Hashing in Use (10 points)

We would like to use locality sensitive hashing to search for similar handwritten digit images
from the MNIST dataset. We will measure similarity using cosine similarity and use the SimHash
method. Throughout the problem, use the data provided in the mnist.mat file: https://people.
cs.umass.edu/

~

cmusco/CS514F21/psets/mnist.mat. It is helpful to initially normalize all images
to have unit Euclidean norm. Include printouts of any code in your problem set submission.

3

https://people.cs.umass.edu/~cmusco/CS514F21/psets/mnist.mat
https://people.cs.umass.edu/~cmusco/CS514F21/psets/mnist.mat

Given an input image x, you would like to identify any image y with cosine similarity hx, yi � .95.
Your task is to pick a number of table repetitions t and a hash signature length r so that any image
close to x is identified with probability at least 98%. At the same time, you would like to minimize
the number of false positives in your hashing scheme.

1. (2 points) Using that for two images x and y, Pr[SimHash(x) = SimHash(y)] = 1� ✓
⇡ where

✓ is the angle between x and y in radians, determine for each r 2 {1, . . . , 30} the number of
repetitions t required to achieve the desired false negative rate of 2%. You may want to write
code to solve this problem, but please also describe in words/equations how you determined
the required t for a given r. Assume that x and y are unit norm through this problem.

2. (2 points) Given a fixed value of r and t, what is the expected number of collisions between
images x and y with cosine similarity hx, yi = s across t hash tables? Give an equation
in terms of r, t, and s. Count collisions happening in di↵erent tables as di↵erent collisions.
Assume that a collision only occurs if x and y have matching SimHash signatures (i.e., ignore
additional collisions that occur when inserting to the hash table).

3. (2 points) For each r 2 {1, . . . , 30}, use the 10, 000 images in testX to estimate the expected
number of collisions that will be encountered for an image x when using enough hash tables
to ensure a 2% false negative rate (as determined in part (1)). Plot the expected number
of collisions as a function of r. Discuss the trend, and how you might use this information
to choose r for an application. Include both a description with words/equations along with
any code used. Hint: For a given image x in testX, compute the expected total number of
collisions that will occur with other images in testX. Then average over all 10, 000 possibilities
for x in the set to get your estimate.

4. (4 points): To get a feel for how SimHash is working, set r = 35 and compute SimHash
signatures for the 60, 000 images in trainX. For simplicity, do not worry about using any
repetitions (i.e., use t = 1.) Focusing on a single digit type, run a few near neighbor queries
in order to find a few (maybe 6 or so) sets of images that hash to the same signatures. Plot
these sets of colliding images. What do you notice? Are the colliding images similar? Are
there many false positives?

4

