
COMPSCI 514: Problem Set 1

Due: 9/24 by 11:59pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Probability and Concentration Bound Practice (8 points)

1. (2 points) Prove the union bound using Markov’s inequality and indicator random variables.
That is, prove that for any events A1, . . . ,Am

, Pr[A1 [ . . . [A
m

] 
P

m

i=1 Pr[Ai

].

2. (2 points) The maximum score on an problem set is 100% and the class average is 85%. What
is the maximum fraction of students who could have scored at or below 50%?

3. (2 points) I store 1, 000 items in a hash table with 100, 000 buckets, using a fully random hash
function. What is the probability that there is at least 1 collision. What if I use 1, 000, 000
buckets? What is the probability that there is at least one collision? (Hint: You might want
to write down a formula and then write a program or use Wolfram Alpha or a similar program
to compute these probabilities.)

4. (2 points) Give an example of a random variable X and a deviation t where Markov’s in-
equality actually gives a tighter bound than Chebyshev’s inequality.

2. Maximum Server Loads (8 points)

Suppose there are n servers and k requests. Each request is equally likely to be assigned to any
of the servers and all requests are assigned independently of the others. Let R

i

be the number of
requests assigned to the ith server.

1. (2 points) Prove that Pr[R1 � t] 
�
k

t

�
· 1/nt. Hint: Consider the union bound with events

of the form B

A

where A is a subset of {1, . . . , k}.

2. (2 points) Prove that Pr[max(R1,R2, . . . ,Rn

) � t]  k

t

/n

t�1. Hint: Note that
�
a

b

�
 a

b for
any positives integers a and b where b  a.
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3. (2 points) If k = n/2, prove that all servers receive  2 log n requests with probability at least
1� 1/n. Here log n is base 2.

4. (2 points) If k = n, prove that all servers receive  4 log n requests with probability at least
1� 2/n. Here log n is base 2.

3. Minimum Server Loads (6 points)

Suppose there are n servers. Each request is equally likely to be assigned to any of the servers and
all requests are assigned independently of the others. Let R

i

be the number of requests assigned
to the ith server.

1. (2 points) Express Pr[R
i

= 0] as a function of n and k.

2. (2 points) Prove that if k = 2n lnn, then Pr[R
i

= 0]  1/n2. Hint: Note that for any x � 0,
(1 + x)  e

x.

3. (2 points) Prove that if k = 2n lnn, then the probability every server needs to process at least
one request is at least 1� 1/n.

4. Designing Your Own Random Hash Function (8 points + 2 bonus points)

In this question you will implement your own random hash function, and test empirically if it
satisfies the properties discussed in class.

1. (2 points) Consider a random hash function that takes as input any integer x and maps it
to some index in {0, . . . , 99}. E.g., an example described in class picks random a, b and lets
h(x) = (ax+b mod p) mod 100, for a large prime p. Another example might simply append
x to a random integer a to obtain an integer [x; a] and then return [x; a] mod 100.

Design your own random hash function mapping integer inputs to {0, . . . , 99}. Describe it in
words/pseudocode and implement it in your favorite programming language.

2. (2 points) Compute h(1) for n = 10, 000 random instantiations of your hash function. Plot a
chart showing the number of times that h(1) = i for all i 2 {0, . . . , 99}. Do you think your
hash function satisfies Pr[h(1) = i] = 1/100 for all i? Or is close to satisfying this? Run the
test for a few other input values aside from 1. Do you see similar results? Are there any input
values where the distribution of outputs is far from uniform?

3. (2 points) Compute h(1),h(2) for n = 10, 000 random instantiations of your hash function. If
h were 2-universal, give an upper bound on the number of hash collisions you would expect to
see (i.e., the number of trials for which you expect to have h(1) = h(2)). Given this, do you
think your hash function is 2-universal or close to it? Try out a few other pairs of inputs. Do
you see the same behavior? Can you find any pairs of values where the number of collisions
is much higher than expected for a 2-universal hash function?

4. (2 points) Compute h(1)� h(2) for n = 10, 000 random instantiations of your hash function.
Plot a chart showing the number of times that (h(1)� h(2)) = i for all i 2 {�99, . . . , 99}. If
h were pairwise independent, compute Pr[(h(1)� h(2)) = i] for any i. Given this result and
considering your chart of plotted values, do you think your hash function is indeed pairwise
independent or close to it? Try out a few other pairs of inputs. Do you see the same behavior?
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5. (2 points) Bonus: Give an example of a random hash function h : U ! [m], such that h(x)
is equally likely to be any element of [m] (i.e., h is 1-universal) but h is not 2-universal.

For full credit, include any code used in your pdf submission. We will not run the code, but will
sanity check it.

5. Randomized Load Balancing Meets Scalability (6 points)

Consider a large scale distributed database, storing items coming from some universe U . A random
hash function h : U ! [k] is used to assign each item x to one of k servers. When that item is
queried in the future, the hash function is used to identify which server it is stored on. In many
applications, the number of servers scales dynamically, depending on the storage load, availability,
etc. If a new server is added to the current set of k, since h maps only to [k], we will have to pick
a new hash function, rehash and move all the stored items.

Consider the following solution: Let h : U ⇥ Z ! [0, 1] be a random hash function which maps
a (item, server id) pair to a uniform random value in the range [0, 1]. Each item x is stored on
the server for which h(x, i) is the largest (since you are mapping to a continuous range, you may
assume that there are never ties). If a server with id i is added to the system, we compute h(x, i)
for all stored items, and move any items to server i for which h(x, i) is now the maximum hash
value for x. Similarly, if server i is removed from the system, we simply reassign any item x on
that server to the server j for which h(x, j) is the next highest.

1. (2 points) Consider the case where we have n items, stored on k servers. Let R
i

be the
expected load on server i (i.e., the number of items stored on that server). What is E[R

i

]?

2. (2 points) If we have n items, originally stored on k servers, and we add a new server using
this method, what is the expected number of items that will be moved to that new server?

3. (2 points) Consider the case where we have n items, stored on k servers. Show that with
probability � 99/100 the number of items moved when a new server is either added or removed
from the system is  20n ln k

k

.

You may assume that k and n

k

are both large, say > 5 to get your bounds to hold.

6. Exponential Tail Bounds from Scratch (8 points)

Throughout, let exp(x) denote e

x.

1. (2 points) Let Y be a random variable that takes values in the interval [0, 1] and not just
0 or 1. Prove that for t > 0, E[exp(tY)]  1 + E[Y](et � 1). Hint: First show that
exp(ty)  1 + y(et � 1) for all y 2 [0, 1].

2. (2 points) Let X1, . . . ,Xn

be independent random variables that take values in the interval
[0, 1]. Let X =

P
i2[n]Xi

and µ = E[X]. Prove that for 0 < � < 1,

Pr[X � (1 + �)µ] = Pr[exp(tX) � exp(t(1 + �)µ)]  E[exp(tX)]

exp(t(1 + �)µ)
.

Hint: Use the Markov bound.

3. (4 points) Prove that Pr[X � (1 + �)µ]  exp(��

2
µ/3).

Hint: Consider setting t = ln(1 + �) and using part one of the question. You may use the
fact that (1 + �)1+� � e

�+�

2
/3 and that for any x � 0, (1 + x)  e

x. You may also want to
recall that for independent random variables Y,Z, E[YZ] = E[Y] · E[Z].
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