
COMPSCI 514: Midterm Review

1 Concepts to Study

Foundational Probability Concepts + Concentration Bounds

• Linearity of expectation and variance.

• Markov’s inequality, Chebyshev’s inequality – should be able to apply and also understand
how they were derived.

• Union bound.

• General idea of higher moment inequalities.

• Cherno↵ and Bernstein bounds – should be able to recognize when they can be applied (i.e.,
require a sum of bounded independent random variables) and apply them. Do not need to
know how they are derived (we didn’t cover in detail), or memorize the formulas.

• General idea of law of large numbers and central limit theorem. Connection to concentration
inequalities (i.e., Chebyshev’s inequality ! law of large numbers, exponential concentration
bounds ! central limit theorem.)

• Technique of breaking random variables into sums of indicator random variables.

• Bounds based on ‘collision counting’ (see e.g., Captcha example, two level hashing, etc.)

• Averaging to reduce error.

• Median trick and why it can be more robust than just averaging. How to analyze it.

Random Hashing and Related Algorithms

• Random hash functions.

• Definitions of 2-universal and pairwise independent hash functions. Why we care about these
types of hash functions.

• 2-level hashing.

• Application of random hashing to load balancing.

• Bloom Filters, their space complexity and guarantees, how the algorithm works. Should be
able to apply the false positive rate equation, but do not need to memorize it.

• What a locality sensitive hash function is.

• MinHash for Jaccard similarity. SimHash for cosine similarity.

1

• How LSH is used for similarity search (with hash signatures and repeated tables).

• Idea of s-curve and what it tells us. How the s-curve changes as we vary signature length r
and table count t.

Streaming Algorithms and Dimensionality Reduction

• Min-Hashing for Distinct Elements. Understand the ‘idealized’ algorithm where we hash to
real numbers. High level idea of HyperLogLog.

• Frequent elements problem definition and setup.

• Count-min sketch and analysis. Should understand this in detail.

• Low-distortion embeddings definition.

• The Johnson-Lindenstrauss Lemma, and how to apply it.

• Do not need to be able to recreate the JL proof, but should understand the ideas behind it
and be comfortable thinking about random vectors and matrices as we do in the proof.

• High dimensional geometry and connections to random vectors and JL Lemma. Since we are
covering this only shortly before the midterm, if it appears, it will be as a bonus question.

2 Practice Questions

Probability, Expectation, Variance:

1. Exercises 2.1, 2.4, 2.6, 2.8 (spherical Gaussian means entries are independent), 2.9 (challeng-
ing but interesting) 2.28, 2.41, and 6.10 of Foundations of Data Science (https://www.cs.
cornell.edu/jeh/book.pdf).

2. Prove that for any random variable X, V ar[X] = E[X2]� E[X]2.

3. Show that for any X, E[X2] � E[X]2. (Hint: use the identity proven above).

4. Show that for independent X and Y, E[X ·Y] = E[X] · E[Y].

5. Show that for independent X and Y with E[X] = E[Y] = 0, V ar[X ·Y] = V ar[X] · V ar[Y].
Hint: use part (3).

6. Given a random variable X, can we conclude that E[1/X] = 1/E[X]? If so, prove this. If not,
give an example where the equality does not hold.

7. The maximum score on a midterm exam is 100% and the class average is 75%. What’s the
maximum fraction of students who could have scored below 25%.

8. For the statements below, indicate if they are always true, sometimes true, or never
true. Give a sentence explaining why.

(a) Pr[X = s \Y = t] > Pr[X = s]. ALWAYS SOMETIMES NEVER

(b) Pr[X = s [Y = t] Pr[X = s] + Pr[Y = t]. ALWAYS SOMETIMES NEVER

(c) Pr[X = s \Y = t] = Pr[X = s] · Pr[Y = t]. ALWAYS SOMETIMES NEVER

2

https://www.cs.cornell.edu/jeh/book.pdf
https://www.cs.cornell.edu/jeh/book.pdf

Concentration Inequalities:

1. Let X1, . . . ,Xn be the number of visitors to a website on n consecutive days. These are
independent and identically distributed random variables. For every i, we have E[Xi] =
20, 000 and V ar[Xi] = 100, 000, 000.

(a) Give an upper bound on the probability that on day i, more than 40, 000 visitors hit the
website.

(b) Let X̄ = 1
n

Pn
i=1Xi be the average number of visitors over n days. What are E[X̄] and

V ar[X̄]?

(c) Give an upper bound on the probability that X̄ � 25, 000, for n = 100. (Which concen-
tration bounds can you use here? 2/4 that we learned in class will apply. Think about
why the other two do not.)

(d) In reality do you expect X1, . . . ,Xn to be independent and identically distributed?

2. Assume there are 1000 registered users on your site u1, . . . , u1000, and in a given day, each user
visits the site with some probability pi. The event that any user visits the site is independent
of what the other users do. Assume that

P1000
i=1 pi = 500.

(a) Let X be the number of users that visit the site on the given day. What is E[X].

(b) Apply a Cherno↵ bound to show that Pr[X � 600] .01.

(c) Apply Markov’s inequality and Chebyshev’s inequality to bound the same probability.
How do they compare?

3. Give an example of a random variable and a deviation t where Markov’s inequality gives a
tighter bound than Chebyshev’s inequality.

4. Which of these inequalities can you use to bound the a sum independent normal random
variables: Markov’s, Chebyshev’s, Bernstein, Cherno↵. What about the sum of independent
rolls of a 6-sided dice?

5. Why can you not use Bernstein’s inequality to bound a some of independent Chi-Squared
random variables as we do (via other means) in the distributional JL lemma proof?

6. Let X be the sum of n independent 6-sided dice rolls. What is E[X]? What is V ar[X]?.
Use Chebyshev’s inequality to show that Pr[|X � E[X]| � s

p
n] = O(1/s2). Use Bernstein’s

inequality to show that Pr[|X�E[X]| � s
p
n] = O(e�cs) for some constant c. Which of these

bounds is stronger?

7. Consider sampling n independent random variablesX1, . . . ,Xn each with variance V ar(Xi) =
�2 and mean E[Xi] = µ. Let µ̂ = 1

n

Pn
i=1Xi be the sample mean.

(a) What is V ar(µ̂)?

(b) Give an upper bound on the probability that µ̂ falls t standard deviations from the true
mean. I.e., on Pr [|µ̂� µ| � t · �].

(c) Given parameters ✏, � 2 (0, 1), how many samples n must you take so that |µ̂�µ| ✏ ·�
with probability at least 1� �?

(d) Describe in a sentence or two how parts (a)-(c) relate to the law of large numbers.

3

(e) You would like to prove a tighter bound than part (b) using Bernstein’s inequality or
a Cherno↵ Bound. What additional assumptions on X1, . . . ,Xn would you need if you
wanted to apply each of these concentration inequalities?

(f) Without such assumptions, what estimation strategy can you use to improve the depen-
dence on 1/� in the sample complexity bound of part (c)?

Bloom Filters:

1. Bloom Filters allow you to store a set of n items with small false positive query rate in o(n)
space. ALWAYS SOMETIMES NEVER

2. Consider storing a set of m items in a Bloom Filter. If I want to achieve false positive rate
� 2 (0, 1), show that the filter requires O(m log(1/�)) space and O(log 1/�) query time.

3. Consider a bloom filter BS storing set S and another bloom filter BR storing set R. Assume
that both bloom filters were constructed using the same hash functions. How can we construct
a bloom filter BS[R, which stores the union of the two sets, without accessing the items of
the sets? What is the runtime to construct this filter?

4. Consider a Bloom filter storing m items, using 16m bits of space, and using the optimal
number of hash functions (don’t worry about rounding this to an integer). What is the false
positive rate �? What is the false positive rate of a Bloom filter that stores m/2 items in 8m
bits of space and uses the optimal number of hash functions? What about one that stores
m/2 items in 16m bits of space.

General Random Hashing and Streaming Algorithms:

1. Exercises 6.1, 6.2, 6.6, 6.7, 6.19, 6.21 (challenging but interesting problem on shingling) 6.22,
6.23 of Foundations of Data Science

2. Use a Cherno↵ bound to show that if we hash n items into a table with n buckets, with
probability � 1 � �, the maximum number of items in a single bucket is upper bounded by
O(log(n/�)). What bound do you get if you apply Chebyshev’s inequality instead?

3. Consider an algorithm A running in time T (A), that with probability .6 outputs an estimate
of the number of triangles in an input graph up to error ±100, and with probability .4 outputs
some bad estimate with worse error. Describe an algorithm that outputs an estimate of the
number of triangles in an input graph up to error ±100 with probability � .99 and runs in
time O(T (A)).

4. Let X = max{X1,X2, . . . ,Xd}, where the Xi are distributed independently and uniformly at
random in [0, 1]. What is E[X]? What is V ar(X)? Describe an algorithm that takes O(1

✏2·�)
independent samples of X and estimates d up to error ±✏d with probability at least 1� �.

5. We showed that if you implement count-min sketch with m = O
�
k
✏

�
length arrays and

t = O(log(1/�)) repetitions, for every x appearing in your data stream, with probability at
least 1� �,

f(x) f̃(x) f(x) +
✏n

k
.

(a) How many repetitions t are required if you want this guarantee to hold simultaneously
for all n items in your datastream, with probability at least 1� �?

4

(b) How many repetitions are required if you want this guarantee to hold simultaneously for
all n items in your datastream and at any time step. That is, let fi(x) be the number
of times that x occurs in the first i steps (so f(x) = fn(x)). Let f̃i(x) be the count-min
sketch estimate at the ith step. At all i n, you want your estimate for every item to
satisfy: fi(x) f̃i(x) fi(x) +

✏i
k .

(c) At each time step i of the algorithm you store a list of any item with estimated frequency
f̃i(x) � i

k . Show that for ✏ < 1/2, assuming the guarantee of part (b) holds, this list
never contains more than O(k) items. Argue that at the end of the stream it contains
all items with frequency � n

k and none with frequency (1� ✏) · n
k .

Locality Sensitive Hashing:

1. Why would you use locality sensitive hashing over regular hash tables with a random hash
function?

2. A pairwise independent hash function is locality sensitive. ALWAYS SOMETIMES NEVER

3. Consider a hash function mapping m-bit strings to a single bit – h : {0, 1}m ! {0, 1}. We
generate h by selecting a random position i from 1, . . . ,m. Then let h(x) = x(i), the value
of x at position i. Note that after i is chosen, it remains fixed, when we apply h to di↵erent
inputs.

(a) Given x, y 2 {0, 1}m with hamming distance kx � yk0 (i.e., x and y have di↵erent bit
values in kx� yk0 positions), what is Pr[h(x) = h(y)].

(b) Is h a locality sensitive hash function?

(c) Let m be the number of all possible 5-singles in a document (i.e., all possible strings
of 5 English words). If x and y are indicator vectors of the 5-shingles in two di↵erent
documents, why do we expect them to be very sparse (i.e., each only have a few bits set
to 1)? Hint: What is the maximum number of 5 shingles that a single document with
w words in it can contain.

(d) Why might MinHash and Jaccard similarity be more useful in the situation of (c) than
the hash function h and Hamming distance.

4. You would like to use shingling and locality sensitive hashing to identify possible plagiarism
in student essays. One possibility is to compare an essay A with a publication B in your
database using shingling and Jaccard similarity. Another possibility is to use shingling, but
then to measure similarity with cosine similarity, where the shingle sets are viewed as binary
vectors. In the following questions, consider an essay A with 1000 unique length-c shingles in
it and a publication B with 3000 unique length-c shingles, let SA and SB be the shingle sets
for A and B respectively. So |SA| = 1000 and |SB| = 3000. Assume the essay A was fully
copied from a portion of B. Note that the shingle size c is arbitrary and will not factor into
any of the solutions below.

Note: Some of the calculations in this problem are beyond what you would see on the
exam, as you cannot use a calculator and so won’t have to do any heavy computation. But
worthwhile working through to give an understanding of s-curve tuning for LSH and the
di↵erent between di↵erent similarity metrics and hash functions.

(a) What is the Jaccard similarity between the shingle sets of the two documents? What is
Pr(MinHash(SA) = MinHash(SB))?

5

(b) Let m be the number of all possible length-c shingles (i.e., all ordered sets of c words
in the English language). Represent SA and SB by length m binary vectors xA and
xB, with a 1 in every position corresponding to a shingle they contain. What is the
cosine similarity between xA and xB (again assuming A was fully copied from a portion
B)? What is Pr(SimHash(xA) = SimHash(xB))? Use that for any two vectors z, w,
Pr(SimHash(z) = SimHash(w)) = 1 � ✓

⇡ where ✓ is the angle between z and w in
radians.

(c) Consider another essay C also with 1000 unique shingles that is not copied and only
shares 100 shingles with B. Compute Pr(MinHash(SC) = MinHash(SB)). Compute
Pr(SimHash(xC) = SimHash(xB)).

(d) For both MinHash and SimHash, find a signature length r and repetition parameter t
such that the fully copied essay A is identified with LSH-based similarity search with
probability � .95 and the non-copied essay C is identified with probability .05. Focus
on minimizing the space complexity (i.e., the number of hash tables t used). By ‘identi-
fied’, we mean that the essay falls in the same bucket as B in at least one of the t hash
tables. Note: It may be helpful to write a very simple program to help solve this one.

(e) Given the above, which similarity metric and hash function would you pick for the
plagiarism detection task?

6

	Concepts to Study
	Practice Questions

