COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2020.
Lecture 9

LOGISTICS

- Problem Set 2 is due this upcoming Monday. Get an early start on it.
- Problem Set 1 grades have been released. Mean: 34/41, Median 36/41.
- If you are unhappy with your grade, ping me and let's chat about strategies going forward. If you believe there is a grading error, send a private message to the instructors on Piazza or ask during office hours.
- The midterm will be any 2 hour slot on 10/8-10/9. We won't have class on 10/8.
- Study guide/practice questions will be released this week.

SUMMARY

Last Class:

- MinHash as a locality sensitive hash function for Jaccard similarity
- Near neighbor search with LSH signatures and repeated hash tables..
- SimHash for cosine similarity.

A locality sensitive hash function can be: (check all that apply)

Select one or more:a. Randomizedb. Pairwise-Independentc. Sensitive to Jaccard Similarityd. Have the distribution of $h(x)$ independent of x.

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- Connections to the weird geometry of high-dimensional space.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, Euclidean norm. Matrix vector multiplication.
- Linear independence, column span, orthogonal bases, rank.
- Orthogonal projection, eigendecomposition, linear systems.

THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_{1}, \ldots, x_{n} (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	\mathbf{x}_{4}	$\mathbf{x}_{\mathbf{5}}$	\mathbf{x}_{6}	$\mathbf{x}_{\mathbf{7}}$	$\mathbf{x}_{\mathbf{8}}$	$\mathbf{x}_{\mathbf{9}}$	$\mathbf{x}_{\mathbf{1}}$	
5	12	3	3	4	5	5	10	3	5	

- What is the maximum number of items that must be returned?
a) n
b) r

C) n / k
d) $\log n$

- Trivial with $O(n)$ space - store the count for each item and return the one that appears $\geq n / k$ times.
- Can we do it with less space? I.e., without storing all n items?

THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream.

FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of k items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

APPROXIMATE FREQUENT ELEMENTS

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n / k$. Hard to tell between an item with frequency n / k (should be output) and $n / k-1$ (should not be output).

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		$\mathrm{x}_{\mathrm{n}-\mathrm{l} / \mathrm{k}+1}$			x_{n}
3	12	9	27	4	101	...	3	...		3

(ϵ, k)-Frequent Items Problem: Consider a stream of n items x_{1}, \ldots, x_{n}. Return a set F of items, including all items that appear at least $\frac{n}{R}$ times and only items that appear at least $(1-\epsilon) \cdot \frac{n}{R}$ times.

- An example of relaxing to a 'promise problem': for items with frequencies in $\left[(1-\epsilon) \cdot \frac{n}{k}, \frac{n}{k}\right]$ no output guarantee.

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-min sketch - a random hashing based method closely related to bloom filters.

$$
\begin{array}{llllll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \ldots & \mathrm{x}_{\mathrm{n}}
\end{array}
$$

random hash function \mathbf{h}
random hash fur

m length array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

m length array \mathbf{A}

Will use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream. I.e., $\left|\left\{x_{i}: x_{i}=x\right\}\right|$.

COUNT-MIN SKETCH ACCURACY

Use $A[h(x)]$ to estimate $f(x)$.
Claim 1: We always have $A[h(x)] \geq f(x)$. Why?

- $A[h(x)]$ counts the number of occurrences of any y with $\mathrm{h}(\mathrm{y})=\mathrm{h}(\mathrm{x})$, including x itself.
- $A[h(x)]=f(x)+\sum_{y \neq x: h(y)=h(x)} f(y)$.
$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m : size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

$$
A[\mathrm{~h}(x)]=f(x)+\underbrace{\sum_{y \neq x: h(y)=\mathrm{h}(x)}} f(y)
$$

Expected Error:

error in frequency estimate

$$
\begin{aligned}
\mathbb{E}\left[\sum_{y \neq x: h(y)=h(x)} f(y)\right] & =\sum_{y \neq x} \operatorname{Pr}(h(y)=h(x)) \cdot f(y) \\
& =\sum_{y \neq x} \frac{1}{m} \cdot f(y)=\frac{1}{m} \cdot(n-f(x)) \leq \frac{n}{m}
\end{aligned}
$$

What is a bound on probability that the error is $\geq \frac{2 n}{m}$?
Markov's inequality: $\operatorname{Pr}\left[\sum_{y \neq x: h(y)=h(x)} f(y) \geq \frac{2 n}{m}\right] \leq \frac{1}{2}$.
What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive
$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m : size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Claim: For any x, with probability at least $1 / 2$,

$$
f(x) \leq A[h(x)] \leq f(x)+\frac{2 n}{m}
$$

To solve the (ϵ, k)-Frequent elements problem, set $m=\frac{2 k}{\epsilon}$. How can we improve the success probability? Repetition.
$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m : size of Count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[h_{i}(x)\right]$. (count-min sketch) Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

COUNT-MIN SKETCH ANALYSIS

Estimate $f(x)$ by $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[h_{i}(x)\right]$

- For every x and $i \in[t]$, we know that for $m=\frac{2 k}{\epsilon}$, with probability $\geq 1 / 2$:

$$
f(x) \leq A_{i}\left[\mathbf{h}_{i}(x)\right] \leq f(x)+\frac{\epsilon n}{k} .
$$

- What is $\operatorname{Pr}\left[f(x) \leq \tilde{f}(x) \leq f(x)+\frac{\epsilon n}{k}\right]$? $\quad 1-1 / 2^{t}$.
- To get a good estimate with probability $\geq 1-\delta$, set $t=\log (1 / \delta)$.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1-\delta$ in $O(\log (1 / \delta) \cdot k / \epsilon)$ space.

- Accurate enough to solve the (ϵ, k)-Frequent elements problem - distinquish between items with frequency $\frac{n}{R}$ and those with frequency $(1-\epsilon) \frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability?

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:

- When a new item comes in at step i, check if its estimated frequency is $\geq i / k$ and store it if so.
- At step i remove any stored items whose estimated frequency drops below i / k.
- Store at most $O(k)$ items at once and have all items with frequency $\geq n / k$ stored at the end of the stream.

Questions on Frequent Elements?

