
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2020.
Lecture 8

0

logistics

• We uploaded Problem Set 2 last night. It will be due Monday
9/28 at 8pm.

• Start early. Give yourself time to mull over the problems.
• Some reminders from your friendly 514 grading staff:
• You need to mark your group-mates as part of the submission
in Gradescope. Just having their name on written on the front
page is not enough.

• Tag the location of each individual subquestion, not just the
first page of the full question.

• If you write in pencil please be sure to write darkly. It can be
very hard to read once scanned.

• Quiz 4 is due Monday at 8pm.

1

summary

Last Class:

• Boosting the success probability of distinct elements
estimation with the median trick.

• Sketched the idea of practical distinct elements algorithms:
LogLog and HyperLogLog.

• Started on fast similarity search. MinHashing to estimate the
Jaccard similarity between two sets.

This Class:

• MinHash and locality sensitive hashing (LSH).
• Application of LSH to fast similarity search.

2

jaccard similarity

Jaccard Similarity: J(A,B) = |A∩B|
|A∪B| =

shared elements
total elements .

Two Common Use Cases:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high similarity to
anything in the database. Naively Ω(n) time.

• All-pairs Similarity Search: Have n different sets/bit strings.
Want to find all pairs with high similarity. Naively Ω(n2) time.

3

minhashing for jaccard similarity

MinHash(A) = mina∈A h(a) where h : U→ [0, 1] is random.

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Claim: MinHash(A) = MinHash(B) only if an item in A ∩ B has
the minimum hash value in both sets.

Pr(MinHash(A) = MinHash(B)) = ?
|A ∩ B|

total # items hashed

=
|A ∩ B|
|A ∪ B| = J(A,B).

4

locality sensitive hashing

Upshot: MinHash reduces estimating the Jaccard similarity to
checking equality of a single number.

Pr(MinHash(A) = MinHash(B)) = J(A,B).

• An instance of locality sensitive hashing (LSH).
• A hash function where the collision probability is higher when two
inputs are more similar (can design different functions for
different similarity metrics.)

5

lsh for similarity search

How does locality sensitive hashing (LSH) help with similarity
search?

• Near Neighbor Search: Given item x, compute h(x). Only
search for similar items in the h(x) bucket of the hash table.

• All-pairs Similarity Search: Scan through all buckets of the
hash table and look for similar pairs within each bucket.

• We will use h(x) = g(MinHash(x)) where g : [0, 1] → [n] is a
random hash function. Why? 6

lsh with minhash

Goal: Given a document y, identify all documents x in a
database with Jaccard similarity (of their shingle sets)
J(x, y) ≥ 1/2.

Our Approach:

• Create a hash table of size m, choose a random hash
function g : [0, 1] → [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).

• What is Pr [g(MinHash(x)) = g(MinHash(y))] assuming
J(x, y) = 1/2 and g is collision free?

• For every document x in your database with J(x, y) ≥ 1/2
what is the probability you will find x in bucket
g(MinHash(y))?

7

reducing false negatives

With a simple use of MinHash, we miss a match x with J(x, y) = 1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MH1(x), . . . ,MHt(x). Apply random hash function g to map all
these values to locations in t hash tables.

• To search for items similar to y, look at all items in bucket
g(MH1(y)) of the 1st table, bucket g(MH2(y)) of the 2nd table, etc.

• What is the probability that x with J(x, y) = 1/2 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

(1
2
)t ≈ .99 for t = 7.

• What is the probability that x with J(x, y) = 1/4 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1− (probability in no buckets) = 1−

(3
4
)t ≈ .87 for t = 7.

Potential for a lot of false positives! Slows down search time. 8

balancing hit rate and query time

We want to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature. 9

balancing hit rate and query time

Consider searching for matches in t hash tables, using MinHash
signatures of length r. For x and y with Jaccard similarity J(x, y) = s:

• Probability that a single hash matches.
Pr

[
MHi,j(x) = MHi,j(y)

]
= J(x, y) = s.

• Probability that x and y having matching signatures in repetition i.
Pr

[
MHi,1(x), . . . ,MHi,r(x) = MHi,1(y), . . . ,MHi,r(y)

]
= sr.

• Probability that x and y don’t match in repetition i: 1− sr.

• Probability that x and y don’t match in all repetitions: (1− sr)t.

• Probability that x and y match in at least one repetition:

Hit Probability: 1− (1− sr)t.

10

the s-curve

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x, y) = s match in at
least one repetition is: 1− (1− sr)t.

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 5, t = 10

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 10, t = 10

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 P

ro
b
a
b
ili

ty

r = 5, t = 30

r and t are tuned depending on application. ‘Threshold’ when hit
probability is 1/2 is ≈ (1/t)1/r. E.g., ≈ (1/30)1/5 = .51 in this case.

11

s-curve example

For example: Consider a database with 10, 000, 000 audio clips. You
are given a clip x and want to find any y in the database with
J(x, y) ≥ .9.

• There are 10 true matches in the database with J(x, y) ≥ .9.
• There are 10, 000 near matches with J(x, y) ∈ [.7, .9].

With signature length r = 25 and repetitions t = 50, hit probability
for J(x, y) = s is 1− (1− s25)50.

• Hit probability for J(x, y) ≥ .9 is ≥ 1− (1− .920)40 ≈ .98
• Hit probability for J(x, y) ∈ [.7, .9] is ≤ 1− (1− .920)40 ≈ .98
• Hit probability for J(x, y) ≤ .7 is ≤ 1− (1− .720)40 ≈ .007

Expected Number of Items Scanned: (proportional to query time)

≤ 10+ .98 ∗ 10, 000+ .007 ∗ 9, 989, 990 ≈ 80, 000≪ 10, 000, 000.
12

hashing for duplicate detection

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts! 13

generalizing locality sensitive hashing

Repetition and s-curve tuning can be used for fast similarity search
with any similarity metric, given a locality sensitive hash function for
that metric.
• LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(θ(x, y)) = ⟨x,y⟩
∥x∥2·∥y∥2 .

• cos(θ(x, y)) = 1 when θ(x, y) = 0◦ and cos(θ(x, y)) = 0 when
θ(x, y) = 90◦, and cos(θ(x, y)) = −1 when θ(x, y) = 180◦

14

simhash for cosine similarity

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = sign(⟨x, t⟩) for a random vector t.
What is Pr [SimHash(x) = SimHash(y)]? 15

simhash for cosine similarity

What is Pr [SimHash(x) = SimHash(y)]?

SimHash(x) ̸= SimHash(y) when the plane separates x from y.

• Pr [SimHash(x) ̸= SimHash(y)] = θ(x,y)
π

• Pr [SimHash(x) = SimHash(y)] = 1− θ(x,y)
π ≈ cos(θ(x,y))+1

2 16

Questions on MinHash and Locality Sensitive Hashing?

17

hashing for neural networks

Many applications outside traditional similarity search. E.g.,
approximate neural net computation (Anshumali Shrivastava).

• Evaluating N (x) requires |x| · |layer 1|+ |layer 1| · |layer 2|+ . . .

multiplications if fully connected.
• Can be expensive, especially on constrained devices like
cellphones, cameras, etc.

• For approximate evaluation, suffices to identify the neurons in
each layer with high activation when x is presented.

18

hashing for neural networks

• Important neurons have high activation σ(⟨wi, x⟩).
• Since σ is typically monotonic, this means large ⟨wi, x⟩.
• cos(θ(wi, x)) = ⟨wi, x⟩

∥wi∥∥x∥
. Thus these neurons can be found

very quickly using LSH for cosine similarity search.
• Store each weight vector wi (corresponding to each node) in
a set of hash tables and check inputs x for similarity to
these stored vectors.

19

