
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2020.
Lecture 7

0

logistics

• Solutions for Problem Set 1 have been posted.
• Problem Set 2 will be released in the next day or two.
• The grading for ’select all that apply’ questions on quizzes
has been broken – will be fixed going forward.

• Quiz 3 Feedback:
• People have mixed feelings on breakout rooms. Many think they
are too small/too short.

• A number of people suggested polls during class and
summaries of the material at the end of class. I’ll try to
implement these.

1

summary

Last Class:

• Wrap up Bloom Filters: how to set k = # hash functions to
minimize false positive rate.

• Space usage of O(n) bits vs. O(n · item size) for hash tables.
• Start on streaming algorithms: the distinct items problem.
• Estimating distinct item count via MinHashing.

This Class:

• Finish up distinct items: median trick to boost success
probability. Distinct items in practice.

• Application of MinHash to estimating the Jaccard similarity.
• Start on fast similarity search and locality sensitive hashing.

2

last time: minhashing

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U→ [0, 1] be random hash functions
• s1, s2, . . . , sk := 1
• For i = 1, . . . ,n
• For j=1,…, k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ϵ2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ϵ · d with

probability at least 1− δ.
• Space complexity is k = 1

ϵ2·δ real numbers s1, . . . , sk.
• δ = 5% failure rate gives a factor 20 overhead in space complexity. 3

improved failure rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ϵ2 =
5
ϵ2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2> 2/3 of trials fall in [(1− 4ϵ)d, (1+ 4ϵ)d], then the median
will.

• Have < 1/2< 1/3 of trials on both the left and right.
4

the median trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ϵ)d, (1+ 4ϵ)d]?

• Let X be the # of trials falling in [(1− 4ϵ)d, (1+ 4ϵ)d]. E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ϵ)d, (1+ 4ϵ)d]

)
≤ Pr

(
X <

2
3 · t56 · E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6E[X]
)

Apply Chernoff bound:

Pr
(
|X− E[X]| ≥ 1

6E[X]
)

≤ 2 exp
(
−

1
6
2 · 45 t

2+ 1/6

)
= O

(
e−O(t)

)
.

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ. 5

median trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ϵ)d, (1+ 4ϵ)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ϵ2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ϵ2
= O

(
log(1/δ)

ϵ2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data). 6

distinct elements in practice

Our algorithm uses continuous valued fully random hash
functions. Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends
to when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we
see, the higher we expect this
maximum to be.

7

loglog counting of distinct elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

a) O(1) b) O(logd) c) O(
√
d) d) O(d)

Pr(h(xi) has x logd trailing zeros) =
1

2x log d =
1
d .

So with d distinct hashes, expect to see 1 with logd trailing zeros.
Expect m ≈ logd. m takes log logd bits to store.

Total Space: O
(
log log d

ϵ2 + logd
)
for an ϵ approximate count.

Note: Careful averaging of estimates from multiple hash functions.

8

loglog space guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log logd

ϵ2
+ logd

)
=
1.04 · ⌈log2 log2 d⌉

ϵ2
+ ⌈log2 d⌉ bits1

=
1.04 · 5
.022 + 30 = 13030 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn) is
is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 9

hyperloglog in practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day. E.g.,

• Count number if distinct users in Germany that made at least one
search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users that
have registered in the last week, in comparison to number of
emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

10

in practice

Estimate number of search ‘sessions’ that happened in the last
month (i.e., a single user making possibly many searches at
one time, likely surrounding a specific topic.)

• Count distinct keys where key is (IP, Hr, Min mod 10).
• Using HyperLogLog, cost is roughly that of a (distributed)
linear scan (to stream through all items in table).

11

Questions on distinct elements counting?

Summary:

12

another fundamental problem

Jaccard Index: A similarity measure between two sets.

J(A,B) = |A ∩ B|
|A ∪ B| =

shared elements
total elements .

Natural measure for similarity between bit strings – interpret
an n bit string as a set, containing the elements corresponding
the positions of its ones. J(x, y) = # shared ones

total ones .

What other measures might you consider? 13

search with jaccard similarity

J(A,B) = |A ∩ B|
|A ∪ B| =

shared elements
total elements .

Want Fast Implementations For:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high Jaccard similarity
to anything in the database. Ω(n) time with a linear scan.

• All-pairs Similarity Search: Have n different sets/bit strings
and want to find all pairs with high Jaccard similarity. Ω(n2)
time if we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.

What approaches might you use here to speed up search?
14

applications

Document Similarity:

• E.g., to detect plagiarism, copyright infringement, duplicate
webpages, spam.

• Use Shingling + Jaccard similarity. (n-grams, k-mers)

Audio Fingerprinting:
• E.g., in audio search (Shazam), Earthquake detection.
• Represent sound clip via a binary ‘fingerprint’ then compare with
Jaccard similarity.

15

application: collaborative filtering

Online recommendation systems are often based on collaborative
filtering. Simplest approach: find similar users and make
recommendations based on those users.

• Twitter: represent a user as the set of accounts they follow. Match
similar users based on the Jaccard similarity of these sets.
Recommend that you follow accounts followed by similar users.

• Netflix: look at sets of movies watched. Amazon: look at products
purchased, etc. 16

application: entity resolution

Entity Resolution Problem: Want to combine records from multiple
data sources that refer to the same entities.

• E.g. data on individuals from voting registrations, property records,
and social media accounts. Names and addresses may not exactly
match, due to typos, nicknames, moves, etc.

• Still want to match records that all refer to the same person using
all pairs similarity search.

See Section 3.8.2 of Mining Massive Datasets for a discussion of a
real world example involving 1 million customers. Naively this would
be
(1000000

2
)
≈ 500 billion pairs of customers to check!

17

application: spam and fraud detection

Many applications to spam/fraud detection. E.g.

• Fake Reviews: Very common on websites like Amazon.
Detection often looks for (near) duplicate reviews on similar
products, which have been copied. ‘Near duplicate’
measured with shingles + Jaccard similarity.

• Lateral phishing: Phishing emails sent to addresses at a
business coming from a legitimate email address at the
same business that has been compromised.
• One method of detection looks at the recipient list of an email
and checks if it has small Jaccard similarity with any previous
recipient lists. If not, the email is flagged as possible spam.

18

minhashing

Goal: Speed up Jaccard similarity search (near neighbor and all-pairs
similarity search).

Strategy: Use random hashing to map each set to a very compressed
representation. Jaccard similarity can be estimated from these
representations.

MinHash(A): [Andrei Broder, 1997 at Altavista]

• Let h : U→ [0, 1] be a random
hash function

• s := 1

• For x1, . . . , x|A| ∈ A

• s := min(s,h(xk))

• Return s Identical to our distinct elements sketch!
19

minhash

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

• Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x ̸= y (i.e., no spurious collisions)

• MinHash(A) = MinHash(B) only if an item in A ∩ B has the
minimum hash value in both sets.

20

minhash

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Claim: MinHash(A) = MinHash(B) only if an item in A ∩ B has
the minimum hash value in both sets.

Pr(MinHash(A) = MinHash(B)) = ?
|A ∩ B|

total # items hashed

=
|A ∩ B|
|A ∪ B| = J(A,B).

21

Questions?

22

