COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 5

LOGISTICS

- · Problem Set 1 is due this Friday, 9/11 at 8pm in Gradescope.
- If you can, we encourage you to make your questions public on Piazza.

LOGISTICS

- · Problem Set 1 is due this Friday, 9/11 at 8pm in Gradescope.
- · If you can, we encourage you to make your questions public - re don't have - rependence on Piazza.

Quiz 2:

\$low, 5% way too fast.

· Class Pace: 48% just right, 42% a bit too fast, 5% a bit too AL, AZ, - 1-12-12

· I'receive 20 download requests per day and serve each in within 15 seconds with probability 99%. Upper bound the probability I fail to serve at least one request. D(A:) = .01

fail to serve at least one request.

Pr(A,
$$V$$
 Az V ... A_{2}) $\leq 2P(A_{1})$

$$= 20..01 = 02$$

LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- · Chebyshev's inequality and the law of large numbers.
- · Exponential concentration bounds from higher moments.
- Bernstein's Inequality

Last Class: Concentration bounds beyond Markov's inequality

- · Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.
- · Bernstein's Inequality

This Time:

Finish up exponential concentration bounds and the central

limit theorem.

- Stuff on algorithmis: Bloom
Filters

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $\underline{s} \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \ge \underline{s}\sigma\right) \le 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \ge s\sigma\right) \le 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \ge s\sigma\right) \le 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2\exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2\exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

GAUSSIAN TAILS

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

GAUSSIAN TAILS

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Exercise: Using this can show that for $X \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$\Pr\left(|\mathbf{X}| \geq s \cdot \sigma\right) \leq O(1) \cdot e^{-\frac{s^2}{2}}.$$

GAUSSIAN TAILS

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Exercise: Using this can show that for $X \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$, show that $e^{-\frac{s^2}{2}}$.

Essentially the same bound that Bernstein's inequality gives!

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Exercise: Using this can show that for $X \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$\Pr(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}.$$

Essentially the same bound that Bernstein's inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a quantitative version of the CLT. The distribution of the sum of *bounded* independent random variables can be upper bounded with a Gaussian (normal) distribution.

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of *n bounded* independent random variables converges to a Gaussian (normal) distribution as *n* goes to infinity.

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of *n bounded* independent random variables converges to a Gaussian (normal) distribution as *n* goes to infinity.

 Why is the Gaussian distribution is so important in statistics, science, ML, etc.?

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of *n bounded* independent random variables converges to a Gaussian (normal) distribution as *n* goes to infinity.

- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random variables $\mathbf{X}_1,\ldots,\mathbf{X}_n$ taking values in $\{0,1\}$. Let $\underline{\mu}=\mathbb{E}[\sum_{i=1}^n\mathbf{X}_i]$. For any $\delta\geq 0$

$$\underline{\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \geq \underline{\delta\mu}\right)} \leq \underline{2\exp\left(-\frac{\delta^{2}\mu}{2+\delta}\right)}.$$

THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random variables $\mathbf{X}_1,\ldots,\mathbf{X}_n$ taking values in $\{0,1\}$. Let $\mu=\mathbb{E}[\sum_{i=1}^n\mathbf{X}_i]$. For any $\delta\geq 0$

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq \delta\mu\right) \leq 2\exp\left(-\frac{\delta^{2}\mu}{2 + \delta}\right).$$

As δ gets larger and larger, the bound falls of exponentially fast.

RETURN TO RANDOM HASHING

We hash m values x_1, \ldots, x_m using a random hash function into a table with $\underline{n} = \underline{m}$ entries.

RETURN TO RANDOM HASHING

We hash m values x_1, \ldots, x_m using a random hash function into a table with n = m entries.

• I.e., for all $j \in [m]$ and $i \in [n]$, $\Pr(\mathbf{h}(x) = i) = \frac{1}{m}$ and hash values are chosen independently.

RETURN TO RANDOM HASHING

We hash m values x_1, \ldots, x_m using a random hash function into a table with n = m entries.

• I.e., for all $j \in [m]$ and $i \in [n]$, $\Pr(\mathbf{h}(x) = i) = \frac{1}{m}$ and hash values are chosen independently.

What will be the maximum number of items hashed into the same location?

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_i) = i$) and 0 otherwise.

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_j) = i$) and 0 otherwise.

$$\mathbb{E}[\mathbf{S}_i] = \sum_{j=1}^m \mathbb{E}[\mathbf{S}_{i,j}] = m \cdot \frac{1}{m} = 1$$

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_j) = i$) and 0 otherwise.

$$\mathbb{E}[S_i] = \sum_{j=1}^m \mathbb{E}[S_{i,j}] = m \cdot \frac{1}{m} = 1 = \mu.$$

Let S_i be the number of items hashed into position i and $S_{i,j}$ be 1 if x_j is hashed into bucket i ($h(x_j) = i$) and 0 otherwise.

$$\mathbb{E}[\mathbf{S}_{i}] = \sum_{j=1}^{m} \mathbb{E}[\mathbf{S}_{i,j}] = m \cdot \frac{1}{m} = 1 = \mu.$$
By the Chernoff Bound: for any $\delta \geq 0$, $\mathbf{A} = 1$ $\mathbf{A} = 1$

$$\Pr(\mathbf{S}_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n \mathbf{S}_{i,j} - 1\right| \ge \delta\right) \le 2\exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

m: total number of items hashed and size of hash table. \mathbf{S}_i : number of items hashed to bucket i. $\mathbf{S}_{i,j}$: indicator if x_j is hashed to bucket i. δ : any value ≥ 0 .

$$\Pr(S_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n S_{i,j} - 1\right| \ge \delta\right) \le 2\exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

Set $\delta = 20 \log m$. Gives:

m: total number of items hashed and size of hash table. \mathbf{S}_i : number of items hashed to bucket i. $\mathbf{S}_{i,j}$: indicator if x_j is hashed to bucket i. δ : any value ≥ 0 .

$$\Pr(\mathbf{S}_{i} \geq 1 + \delta) \leq \Pr\left(\left|\sum_{i=1}^{n} \mathbf{S}_{i,j} - 1\right| \geq \delta\right) \leq 2 \exp\left(-\frac{\delta^{2}}{2 + \delta}\right).$$
Set $\delta = 20 \log m$. Gives:
$$\Pr(\mathbf{S}_{i} \geq 20 \log m + 1) \leq 2 \exp\left(-\frac{(20 \log m)^{2}}{2 + 20 \log m}\right)$$

m: total number of items hashed and size of hash table. \mathbf{S}_i : number of items hashed to bucket i. $\mathbf{S}_{i,j}$: indicator if x_j is hashed to bucket i. δ : any value ≥ 0 .

$$|S_{i}| > |S_{i}| > |S_{$$

Set $\delta = 20 \log m$. Gives:

$$\Pr(S_i \ge 20 \log m + 1) \le 2 \exp\left(-\frac{(20 \log m)^2}{2 + 20 \log m}\right) \le \exp(-18 \log m) \le \frac{2}{m^{18}}.$$
Apply Union Bound:

Apply Union Bound:
$$\left(e^{-\log m}\right)^{\frac{1}{8}} = \frac{1}{m} \cdot \frac{1}{8}$$

$$\Pr(\max_{i \in [m]} S_i \ge 20 \log m + 1) = \Pr\left(\bigcup_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right) \le \Pr\left(\sum_{i=1}^{m} (S_i \ge 20 \log m + 1)\right)$$

m: total number of items hashed and size of hash table. Si: number of items hashed to bucket i. $S_{i,j}$: indicator if x_i is hashed to bucket i. δ : any value ≥ 0 .

$$\Pr(S_i \ge 1 + \delta) \le \Pr\left(\left|\sum_{i=1}^n S_{i,j} - 1\right| \ge \delta\right) \le 2\exp\left(-\frac{\delta^2}{2 + \delta}\right).$$

Set $\delta = 20 \log m$. Gives:

$$\Pr(\mathbf{S}_i \ge 20 \log m + 1) \le 2 \exp\left(-\frac{(20 \log m)^2}{2 + 20 \log m}\right) \le \exp(-18 \log m) \le \frac{2}{m^{18}}.$$

Apply Union Bound:

$$\Pr(\max_{i \in [m]} \mathbf{S}_i \ge 20 \log m + 1) = \Pr\left(\bigcup_{i=1}^m (\mathbf{S}_i \ge 20 \log m + 1)\right)$$
$$\le \sum_{i=1}^m \Pr(\mathbf{S}_i \ge 20 \log m + 1)$$

m: total number of items hashed and size of hash table. S_i : number of items hashed to bucket i. $S_{i,j}$: indicator if x_j is hashed to bucket i. δ : any value ≥ 0 .

$$\Pr(\mathbf{S}_{i} \geq 1 + \delta) \leq \Pr\left(\left|\sum_{i=1}^{n} \mathbf{S}_{i,j} - 1\right| \geq \delta\right) \leq 2 \exp\left(-\frac{\delta^{2}}{2 + \delta}\right).$$

$$\Pr(\mathbf{S}_{i} \geq 20 \log m. \text{ Gives:}$$

$$\Pr(\mathbf{S}_{i} \geq 20 \log m + 1) \leq 2 \exp\left(-\frac{(20 \log m)^{2}}{2 + 20 \log m}\right) \leq \exp\left(-18 \log m\right) \leq \frac{2}{m^{18}}.$$

$$\mathsf{Apply Union Bound:}$$

$$\Pr(\max_{i \in [m]} \mathbf{S}_{i} \geq 20 \log m + 1) = \Pr\left(\bigcup_{i=1}^{m} (\mathbf{S}_{i} \geq 20 \log m + 1)\right)$$

$$\leq \sum_{i=1}^{m} \Pr(\mathbf{S}_{i} \geq 20 \log m + 1) \leq m \cdot \frac{1}{m^{18}} \neq \frac{1}{m^{18}}.$$

m: total number of items hashed and size of hash table. S_i : number of items hashed to bucket i. $S_{i,j}$: indicator if x_j is hashed to bucket i. δ : any value ≥ 0 .

20/0g2~+1

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

• So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.
- · Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).

MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.
- · Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).
- The Chebyshev bound holds even with a <u>pairwise</u> independent hash function. The stronger Chernoff-based bound can be shown to hold with a <u>k-wise independent</u> hash function for $k = O(\log m)$.

Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course – on to algorithms.

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time.

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem? Hash table mittens

Want to store a set *S* of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is in the set. Both in O(1) time. What data structure solves this problem?

cuckoo hish

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support $\underbrace{insert(x)}$ to add x to the set and $\underbrace{query(x)}$ to check if x is in the set. Both in O(1) time. What data structure solves this problem?

· Allow small probability $\delta >$ 0 of false positives. I.e., for any x,

$$\Pr(query(x) = 1 \text{ and } x \notin S) \leq \delta.$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

 \cdot Maintain an array A containing m bits, all initially 0.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[h_1(x)] = \ldots = A[h_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[h_1(x)] = ... = A[h_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

- · Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1$.
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.

No false negatives. False positives more likely with more insertions.

APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 - 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.

APPLICATIONS: CACHING

count-in sketch

Akamai (Boston-based company serving 15-30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.

- When url x comes in, if query(x) = 1, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta=.05$, the number of cached one-hit-wonders will be reduced by at least 95%.

	Movies								
	5			1	4				
		3					5		
Jsers									
					4				
		5							5
	1			2					

- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (user_x, movie_y) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.

- When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.
- Before reading (user_x, movie_y) (possibly requiring an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta=.05$ false positive rate gives a 95% reduction in these empty reads.

Bloom filters are used by Oracle and other database companies to speed up database *joins*.

Bloom filters are used by Oracle and other database companies to speed up database *joins*.

Matches up a key in column A of one table to a key in column
 B of another, and merges corresponding information.

Bloom filters are used by Oracle and other database companies to speed up database *joins*.

- Matches up a key in column A of one table to a key in column
 B of another, and merges corresponding information.
- A bloom filter can be used to quickly eliminate entries that appear in **A** but not in **B**.

Bloom filters are used by Oracle and other database companies to speed up database *joins*.

- Matches up a key in column A of one table to a key in column B of another, and merges corresponding information.
- A bloom filter can be used to quickly eliminate entries that appear in **A** but not in **B**.
- A false positive rate of δ means that a 1 δ fraction of these entries can be eliminated in the initial bloom filter check.

MORE APPLICATIONS

 Recommendation systems (Netflix, Youtube, Tinder, etc.) use bloom filters to prevent showing users the same recommendations twice.

MORE APPLICATIONS

- Recommendation systems (Netflix, Youtube, Tinder, etc.) use bloom filters to prevent showing users the same recommendations twice.
- · Spam/Fraud Detection:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.

MORE APPLICATIONS

- Recommendation systems' (Netflix, Youtube, Tinder, etc.) use bloom filters to prevent showing users the same recommendations twice.
- · Spam/Fraud Detection:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- **Digital Currency:** Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k).

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$\Pr(\underline{A[i]} = 0) = \Pr(\underline{h_1(x_1)} \neq i \cap ... \cap h_k(x_k) \neq i \\ \underline{h_1(x_2)} \neq i ... \cap h_k(x_2) \neq i \cap ...)$$

$$\widehat{h_1(x_1)} \neq i \\ \underline{h_2(x_1)} \neq i \\ \underline{h_1(x_1)} \neq i \\ \underline{h_2(x_1)} \neq i$$

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$\Pr(A[i] = 0) = \Pr\left(\mathbf{h}_{1}(x_{1}) \neq i \cap \ldots \cap \mathbf{h}_{k}(x_{k}) \neq i \right.$$

$$\left. \cap \mathbf{h}_{1}(x_{2}) \neq i \ldots \cap \mathbf{h}_{k}(x_{2}) \neq i \cap \ldots\right)$$

$$= \underbrace{\Pr\left(\mathbf{h}_{1}(x_{1}) \neq i\right) \times \ldots \times \Pr\left(\mathbf{h}_{k}(x_{1}) \neq i\right) \times \Pr\left(\mathbf{h}_{1}(x_{2}) \neq i\right) \ldots}_{k \cdot n \text{ events each occuring with probability } 1 - 1/m}$$

For a bloom filter with m bits and k hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0? $n \times k$ total hashes must not hit bit i.

$$\Pr(A[i] = 0) = \Pr\left(h_1(x_1) \neq i \cap \ldots \cap h_k(x_k) \neq i \\ \qquad \cap h_1(x_2) \neq i \ldots \cap h_k(x_2) \neq i \cap \ldots\right)$$

$$= \underbrace{\Pr\left(h_1(x_1) \neq i\right) \times \ldots \times \Pr\left(h_k(x_1) \neq i\right) \times \Pr\left(h_1(x_2) \neq i\right) \ldots}_{k \cdot n \text{ events each occurring with probability } 1 - 1/m}$$

$$= \left(1 - \frac{1}{m}\right)^{kn}$$

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $h_1, \dots h_k$: hash functions, A: bit array, δ : false positive rate.

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the i^{th} m bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $\mathbf{h}_1, \dots \mathbf{h}_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $h_1, \ldots h_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$1 - \Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\Pr\left(\underbrace{A[\mathbf{h}_1(w)]}_{=} = \dots = A[\underline{\mathbf{h}_k(w)}] = 1\right)$$

$$= \underbrace{\Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_k(w)] = 1)}_{=}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $\mathbf{h}_1, \dots, \mathbf{h}_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\begin{aligned} \Pr\left(A[\mathbf{h}_1(w)] = \dots &= A[\mathbf{h}_k(w)] = 1\right) \\ &= \Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_k(w)] = 1) \\ &= \left(\underline{1 - e^{-\frac{kn}{m}}}\right)^k \end{aligned}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $\mathbf{h}_1, \dots, \mathbf{h}_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx \underbrace{e^{-\frac{kn}{m}}}$$

Step 2: What is the probability that querying a new item w gives a

false positive?
$$\longrightarrow$$
 hus his been $Pr(A[h_1(w)] = 1) = 1$

$$= Pr(A[h_1(w)] = 1) \times ... \times Pr(A[h_k(w)] = 1)$$

$$= (1 - e^{-\frac{kn}{m}})^k \text{ Actually Incorrect!}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $h_1, \ldots h_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: What is the probability that after inserting n elements, the i^{th} bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$\begin{split} \Pr\left(A[\mathbf{h}_1(w)] = \ldots &= A[\mathbf{h}_k(w)] = 1\right) \\ &= \Pr(A[\mathbf{h}_1(w)] = 1) \times \ldots \times \Pr(A[\mathbf{h}_k(w)] = 1) \\ &= \left(1 - e^{-\frac{kn}{m}}\right)^k \quad \text{Actually Incorrect! Dependent events.} \end{split}$$

n: total number items in filter, m: number of bits in filter, k: number of random hash functions, $\mathbf{h}_1, \dots, \mathbf{h}_k$: hash functions, A: bit array, δ : false positive rate.

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

= $Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A.

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

= $Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

= $Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

• Conditioned on this event, for any j, since \mathbf{h}_j is a fully random hash function, $\Pr(A[\mathbf{h}_j(w)] = 1) = \frac{t}{m}$.

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

= $Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since \mathbf{h}_j is a fully random hash function, $\Pr(A[\mathbf{h}_j(w)] = 1) = \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $\left(1 \frac{t}{m}\right)^k$.

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \le m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

= $Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since \mathbf{h}_j is a fully random hash function, $\Pr(A[\mathbf{h}_j(w)] = 1) = \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $\left(1 \frac{t}{m}\right)^k$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{kn}{m}}$ with high probability. We already have that $\mathbb{E}[\frac{t}{m}] = \frac{1}{m} \sum_{i=1}^{m} \Pr(A[i] = 0) \approx e^{-\frac{kn}{m}}$.

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{kn}{m}}\right)$ with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

Questions on Bloom Filters?