COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 5

LOGISTICS

- Problem Set 1is due this Friday, 9/11 at 8pm in Gradescope.

- If you can, we encourage you to make your questions public
on Piazza.

S /‘cu\)x,b\é w e WL!

(5 1,0
LT Al V- (%=0) -
-—\——/—m
- Problem Set 1is due this Friday, 9/11 at 8pm in Gradescope.

- If you can, we encourage you to make your questions public
on Piazza.

Quiz 2:

- CJass Pace: 48% just right, 42% a bit too fast, 5% a bit too

low, 5% way too fast. A By . Pao

- I'receive 20 download requests per day and serve each in
within 15 seconds with probability 99%. Upper bound the
probability | fail to serve at least one request.) <6P .

PCA:B: Ol ,PFCAI \)Ql

LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.

- Bernstein’s Inequality
-_/"_,—\

LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.

- Bernstein’s Inequality
This Time:

- Finish up exponential concentration bounds and the central
limit theorem.

Sy on clge s B\?O\Yw S

INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

s2
Pr >so | <2exp (—4).

n
in —
=1

INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

S2
Pr > So gzexp!—4>.

in —
=1
Can plot this bound for different s:

\.

INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

s2
Pr >so | <2exp (—4).

n
in —
=1

\.

Can plot this bound for different s:

// I \\

INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

S2
Pr >so | <2exp (—4).

in —
=1
Can plot this bound for different s:

\.

// I \\

Looks a lot like a Gaussian (normal) distribution.

INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

S2
Pr > So §2e}%> .

in —
=1
Can plot this bound for different s:

\.

// I \\

INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

Pr(250>§29xp <‘1>

in —
=1
Can plot this bound for different s:

\.

// I \\

Looks a lot like a Gaussian (normal) distribution.

N(0,0?) has density p(x) = 5 - ¢ 27 ,

GAUSSIAN TAILS

N(0,0?) has density p(x) = \/2;7 S,

GAUSSIAN TAILS

_ 2

N(0,0?) has density p(x) = \/2;7 e,

Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0,

%

Pr(X| >s-0)<0(1)-e”

— e ——

GAUSSIAN TAILS

N(0,0?) has density p(x) = \/2;7 e,

Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0, 1,\\)\
LS

a_ﬂ_/

%

Pr(X| >s-0)<0(1)-e”

Essentially the same bound that Bernstein’s inequality gives!

GAUSSIAN TAILS

N(0,0?) has density p(x) = \/2;7 e,

Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0,

%

Pr(X| >s-0)<0(1)-e”
Essentially the same bound that Bernstein’s inequality gives!
Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of

bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

70|
60)

50|
g
S 40
s
3 30|
L 20|

10|

0

39 42 45 48 51 54 57 6.0
Means

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

70|
60)
50|
g
S 40
s
3 30|
L 20|
10|

0
39 42 45 48 51 54 57 6.0

Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

70|

60)

50|
g
S 40
s
3 30|
L 20|

10|

0
39 42 45 48 51 54 57 6.0

Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of
a large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.

THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =
E[> ", X]. Forany s >0

n
Pr(ZX,u

i=1

u
> < = 5
—&)—26&()

THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[> ", X]. Forany s >0
(
2
26u> < 2exp (ju >
+>=.

n
Pr(ZX,u

i=1
As § gets larger and larger, the bound falls of expgnentially fast.

l
V\/(:;S/AVA | Mo 1t &>

RETURN TO RANDOM HASHING

1.
n : m(}‘,v 128-bit IP addresses . Hash Table
N ET ST e M
O 7 B
! e
~) tosazsien —f N 165820160) - 1500

We hash m values xi, ..., xn using a random hash function into
a table with n = m entries.
=

RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table
1

o 2 s
>
~
7
\ Cd

o

172.16.254.1

R WN R

192168134

16.58.26.164

h(16582616,)= 1590

We hash m values xi, ..., xn using a random hash function into

a table with n = m entries.
- le, forallj e [m]and i€ [n], Pr(h(x) = i) = L and hash

=m
values are chosen independently.

RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table
1

o 2 s
>
~
7
\ Cd

o

172.16.254.1

R WN R

192168134

16.58.26.164

h(16582616,)= 1590

We hash m values xi, ..., xn using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [n], Pr(h(x) = i) = .- and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?

MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].

MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
E[S] =) EISl=m =1
J=1
L
m
m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].

MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
]E[S,] = E E[S,’J] =m- E =1= L.
J=1

m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].

MAXIMUM LOAD IN RANDOMIZED HASHING

©
Y
Let S; be the number of items hashed into position i and Sij be1ifx;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

E[S] = ZE[S»'J] =m- % =1=pu
= AT] e

By the Chernoff Bound: for any 6 > 0, \ -) l4g
& ¥
! 52
Pr(5>1+5 < iy — >5'u><2exp<—2+6>
v
L—STJ
m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].

MAXIMUM LOAD IN RANDOMIZED HASHING
62
>0 <2e — .
0= XD(2%5)

n
ZS,‘J —1

=1

W@z1+®sw<

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

MAXIMUM LOAD IN RANDOMIZED HASHING
62
>0 <2e — .
0= XD(2%5)

n
ZS,‘J —1

=1

W@z1+®sw<

Set § = 20logm. Gives:

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

MAXIMUM LOAD IN RANDOMIZED HASHING
62
>0 <2e — .
0= XD(2%5)

n
ZS,‘J —1

=1

W@z1+®sw<

_ Ves: oy
Set § = 20logm. Gives: P\ D
(20 log m)?
> < S b= RV
Pr(iZOlogm+1)2exp< 27 20l0gm

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

(

4210 T (s71) € e F - 07

n
ZS,‘J —1

=1

Pr(5i21+5)gpr<

62
> 5 §2e><p(—2+§>.

Set § = 20logm. Gives:
(20 log m)? 2\
Pr(S; > 20logm +1) < 2exp <_2+20logm> S;)exp(—1810gm) <
. —— “‘D"" \\1 \ —
Apply Union Bound: 2 > E Pl
")
Pr(max$S; > 20logm +1) = Pr (U(S,» > 20logm + 1)> N i?f@ﬂzdfﬁ;
'G[m]/_/ = = ..t
-~ M g\q '

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

MAXIMUM LOAD IN RANDOMIZED HASHING
62
>0 <2e — .
0= XD(2+5>

_ (20logm)?
2+20logm

n
ZS,‘J —1

=1

Pr(5i21+5)gpr<

Set § = 20logm. Gives:

Pr(S; > 20logm + 1) < 2exp (> < exp(—18logm) < %

Apply Union Bound:

m
Pr(maxS; > 20logm +1) = Pr (U(S,» >20logm + 1)>

ie[m)
[m] i
m

< Zpr(sf >20logm + 1)

i=1

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

L NUEOERLNS Al
$= ol 5“0) ’\jjf\«u)(ia \"\OP\) . L’(?)‘k) B
. 5)

<2exp(. nt

PI’(S,‘Z1—|-(5)SPF< ij— 2+§

=1

Setd =20logm. Gives: é: D00 L
Pr(Sv_> 20logm +1) < 2ex —M < g:P((1’84[2 m)?
"= g - P 2+20logm) — P g

Apply Union Bound: < N (N\OOO) \1,@

ie[m]

m
Pr(maxS; > 20logm + 1) = Pr (U(S[> 20 logm+1)> |

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.

O

MAXIMUM LOAD IN RANDOMIZED HASHING
T agi

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

10

MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is O(logm).

10

MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is O(logm).
- Using Chebyshev's inequality could only show the maximum

load is bounded by O(y/m) with good probability (good
exercise).

10

MAXIMUM LOAD IN RANDOMIZED HASHING

Ay K oo Ka
A
Upshot: If we randomly hash m items into a hash table with m

entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is Q(logm).

- Using Chebyshev's inequality could only show the maximum
load is bounded by O(y/m) with good probability (good
exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).

10

Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course -
on to algorithms.

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure

solves this problem? HQ«QL Tl NS
ol

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability 6 > 0 of false positives. l.e,, for any x,

Jd:.0

Pr(query(x) =1and x ¢ S) <.

APPROXIMATELY MAINTAINING A SET

8N CXG‘D A AQ\/\

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: supportto add x to the set and@uer;éxi\to

check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability 6 > 0 of false positives. l.e,, for any x,
Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[lh1(x)] = ... = A[lh,(X)] := 1.

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

m bit array A] 0 0 0 0 0 0 0 0 0 0

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions

m bit array A] 0 0 0 0 0 0 0 0 0 0

Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions: X

m bit array A] 0 0 0 0 0 0 0 0 0 0

Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.

- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions: X

hy(x)Z

m bitarray A| 1

Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions:
m bitarray A| 1 0 0 0 0 0 0
Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

insert(x): set all bits A[hy(x)] = ... = A[hp(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions:
m bitarray A| 1 0 0 0 0 1 0
Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions:
m bitarray A| 1 0 0 0 0 1 0
Queries: X

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions:
m bitarray A| 1 0 0 0 0 1 0
Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions:
m bitarray A| 1 0 0 0 0 1 0
\«/
Queries: X

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.

- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.
Insertions:
m bitarray A| 1 0 0 0 0 1 0
\«/
Queries: X

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions: x y

m bitarray A| 1 1 0 0o 1 0 1 0 1 0

v

Queries: X

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions: x y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

v

Queries: X w

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions: x y

m bitarray A| 1 1 0 0 1 0 1 0 1 0

s(f

w

Queries:

BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions: x y

g (70

m bit array A| 1 1 0 0 1 0 1 0 1 0
X

w ')

No false negatives. False positives more likely with more insertions.

Queries:

13

APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

8000
6000
4000

2000 4—— Bloom filter —pp
0 turned on
17-feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

Disk writes per

14

APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 14000
§ 12000
S
2 10000
g 8000
& 6000
£ .
§ 4000 0
Bloom filter

% 2000 4— Bloom filter ——3p
a8 o turned on

17-Feb 27-feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May

Date

* When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

14

APPLICATIONS: CACHING

Y - Qeidy
Akamai (Boston-based company serving 15 — 30% of all web traffic)

applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

8000

6000

4000 : LR)

2000 4—— Bloom filter —pp

0 turned on

17-Feb 27-feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

W) W
X hng . nas~ @\1\ WP £
* When url x comes in, if query(x) = 1, cachethe page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

Disk writes per

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number of
cached one-hit-wonders will be reduced by at least 95%.

14

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 14

Users

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 14

Users

1 2

* When a new rating is inserted for (usery, movie,), add
(usery, movie,) to a bloom filter.

- Before reading (usery, movie,) (possibly requiring an out of
memory access), check the bloom filter, which is stored in memory.

APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 14

Users

1 2

* When a new rating is inserted for (usery, movie,), add
(usery, movie,) to a bloom filter.

- Before reading (usery, movie,) (possibly requiring an out of
memory access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A § = .05
false positive rate gives a 95% reduction in these empty reads.

APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

16

APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

INNER JOIN
Customers Orders
Customerld Name.
1 Robert | | 100 1 2016-10-19 15:21:27
2 Peter 200 4

2016-10-20 15:21:27
3

300 2016-10-2115:21:27
&_ e————

INNER JOIN on
Customerld Column

RESULT

Customerld Name Orderld Customerld OrderDate
a Robert 100 2016-10-19 15:21:27
2 Peter 300 2

2016-10-2115:21:27

- Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.

16

APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

INNER JOIN
Customers Orders
Customerld Name
[ES— Robert | | 100 I——— 2016-10-1915:21:27
Peter 200 4 2016-10-2015:21:27
3 Smith 300 2 2016-10-2115:21:27
b a— ap—
INNER JOIN on

Customerld Column
RESULT
Customerld Name Orderld Customerld OrderDate

a Robert 100 I 2016-10-19 15:21:27
2 Peter 300 2 2016-10-2115:21:27

- Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.

- A bloom filter can be used to quickly eliminate entries that
appear in A but not in B.

16

APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

INNER JOIN

Customers Orders

Customerld Name.
1 Robert | | 100 1 2016-10-19 15:21:27
2 Peter 200 4 2016-10-20 15:21:27
3 Smith 300 2 2016-10-2115:21:27

INNER JOIN on
Customerld Column

RESULT

Customerld
a

Robert 100 I 2016-10-19 15:21:27
2 Peter 300 2 2016-10-2115:21:27

- Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.

- A bloom filter can be used to quickly eliminate entries that
appear in A but not in B.

- A false positive rate of § means that a 1 — ¢ fraction of these
entries can be eliminated in the initial bloom filter check. 16

MORE APPLICATIONS

- Recommendation systems (Netflix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.

17

MORE APPLICATIONS

- Recommendation systems (Netflix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.

- Spam/Fraud Detection:

- Bit.ly and Google Chrome use bloom filters to quickly check if a
url maps to a flagged site and prevent a user from following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

17

MORE APPLICATIONS

=
(v A 0 80
- Recommendation system\Q(Netﬂix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.
- Spam/Fraud Detection:
- Bit.ly and Google Chrome use bloom filters to quickly check if a
url maps to a flagged site and prevent a user from following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

17

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(R).

18

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate ¢ depend on m,
kR, and the number of items inserted?

18

Loy v)

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate ¢ depend on m,
kR, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7

18

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate ¢ depend on m,
kR, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(A[i] = 0) = Pr (hy(x1) #in...Nhe(xe) #1i

_— _—
M) # 1. hefe) i)

N _k)Y\VV\S k k. e S € P -\\l»\;vv\
(\ K0
ST IR (R

18

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate ¢ depend on m,
kR, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(A[i] = 0) = Pr (hy(x1) £ in...Nhp(xe) #1i
Ahi(x) #i...Nha(x) #in...)
= Pr(he(a) # i) ... x Pr(hy(xi) £ 1) x Pr(hi(x2) # 1) ..

k-n events each occuring with probability 1-1/m

18

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate ¢ depend on m,
kR, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the "
bit of the array A is still 0?7 n x k total hashes must not hit bit /.

Pr(A[i] = 0) = Pr (hy(x1) £ in...Nhp(xe) #1i
Ahi(x) #i...Nha(x) #in...)
= Pr(he(a) # i) ... x Pr(hy(xi) £ 1) x Pr(hi(x2) # 1) ..

k-n events each occuring with probability 1-1/m

(-3

18

ANALYSIS

How does the false positive rate 6 depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 - ;)k

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

ANALYSIS

How does the false positive rate 6 depend on m, k, and the number

of items inserted?

Step 1: What is the probability that after inserting n e ements the 1”7

bit of the array A is still 0? Q/

Pr(A[]=0) = (1 — :n)kn ~e m ”1*0°

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

ANALYSIS

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 . :n>kn ot

Step 2: What is the probability that querying a new item w gives a
false positive?

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

ANALYSIS

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

|- Pr(al] =0) = (1 _ 1)”’ -

m

Step 2: What is the probability that querying a new item w gives a
false positive?

pr(W]:...:A[M]:1) /\
= Pr(Alhy(w)] =1) x ... x Pr(A[hp(w)] = 1)

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

ANALYSIS

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 . :n)kn ot

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr (Al ()] = ... = Alhy(w)] = 1)
— Pr(A[hy(W)] = 1) x ... x Pr(A[hx(w)] = 1)
- (1=eF)

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

ANALYSIS

[_oo0d]

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 . :n)kn ot

——

Step 2: What is the probability that querying a new item w gives a

f&ise ositive? L %L\,S m}_ hoors
(rrletmi =L = Autw) = =| st

— Pr(Afha(w)] = 1) % ... x Pr(Alhy(w)] = 1)
k

= “ — e*%% Actually Incorrect!

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

ANALYSIS

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 . :n>kn ot

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr (Alh(W)] = ... = Al (w)] = 1)
= Pr(Alh(w)] = 1) x ... x Pr(A[hx(w)] = 1)

N
= (1 — e*%) Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alhi(w)] = ... = Alhg(w)] = 1)
= Pr(A[h(w)] = 1) x ... x Pr(A[hs(w)] = 1).

l.e., the events A[hi(w)] = 1,..., A[hr(w)] = 1 are independent
conditioned on the number of bits set in A.

20

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alhi(w)] = ... = Alhg(w)] = 1)
= Pr(A[h(w)] = 1) x ... x Pr(A[hs(w)] = 1).

l.e., the events A[hi(w)] = 1,..., A[hr(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

20

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alm(w)] = ... = Afhe(w)] = 1)
= Pr(A[hy(w)] = 1) x ... x Pr(Alhg(w)] = 1).
l.e., the events A[hi(w)] = 1,..., A[hr(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random hash
function, Pr(Alh;(w)] =1) = %

20

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alm(w)] = ... = Afhe(w)] = 1)
= Pr(A[hy(w)] = 1) x ... x Pr(Alhg(w)] = 1).
l.e,, the events Alhi(w)] = 1,..., A[hg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random hash
function, Pr(Af[h;(w)] = 1)

_t
— L

* Thus conditioned on this event, the false positive rate is (1— %)k

20

CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alhy(w)] = ... = Alhpg(W)] = 1)

= Pr(Alhy(w)] = 1) x ... x Pr(A[hp(w)] = 1).

l.e,, the events Alhi(w)] = 1,..., A[hg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random hash
function, Pr(A[hj(w)] = 1) = L.
* Thus conditioned on this event, the false positive rate is (1— %)k

* It remains to show that £ ~ e~ with high probability. We already
have that E[%] = % 21’11 Pr(A[i] = 0) ~ .
20

CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions
is bounded by O (e*%”) with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf

21

Questions on Bloom Filters?

2%

