COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2020.
Lecture 5



LOGISTICS

- Problem Set 1is due this Friday, 9/11 at 8pm in Gradescope.

- If you can, we encourage you to make your questions public
on Piazza.
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- Problem Set 1is due this Friday, 9/11 at 8pm in Gradescope.

- If you can, we encourage you to make your questions public
on Piazza.

Quiz 2:

- CJass Pace: 48% just right, 42% a bit too fast, 5% a bit too

low, 5% way too fast. A By . Pao

- I'receive 20 download requests per day and serve each in
within 15 seconds with probability 99%. Upper bound the
probability | fail to serve at least one request. ) <6P .
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LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.

- Bernstein’s Inequality
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LAST TIME

Last Class: Concentration bounds beyond Markov's inequality

- Chebyshev's inequality and the law of large numbers.
- Exponential concentration bounds from higher moments.

- Bernstein’s Inequality
This Time:

- Finish up exponential concentration bounds and the central
limit theorem.
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INTERPRETATION AS A CENTRAL LIMIT THEOREM

7

Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:

s2
Pr >so | <2exp (—4).
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Bernstein Inequality (Simplified): Consider independent ran-
dom variables Xi,...,X, falling in [-11]. Let p = E[>_X|],
o? =Var[>_Xj], and s < o. Then:
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Looks a lot like a Gaussian (normal) distribution.

N(0,0?) has density p(x) = 5 - ¢ 27 ,
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Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0,
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GAUSSIAN TAILS

N(0,0?) has density p(x) = \/2;7 e,

Exercise: Using this can show that for X ~ A/(0,0?): for any s > 0,

%

Pr(X| >s-0)<0(1)-e”
Essentially the same bound that Bernstein’s inequality gives!
Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of

bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.




CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.
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CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.
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39 42 45 48 51 54 57 6.0

Means

- Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

- Many random variables can be approximated as the sum of
a large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.



THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =
E[> ", X]. Forany s >0

n
Pr(ZX,u
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THE CHERNOFF BOUND

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables Xy, ..., X, taking values in {0,1}. Let p =

E[> ", X]. Forany s >0
(
2
26u> < 2exp (ju >
+>=.

n
Pr(ZX,u

i=1
As § gets larger and larger, the bound falls of expgnentially fast.
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RETURN TO RANDOM HASHING
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We hash m values xi, ..., xn using a random hash function into
a table with n = m entries.
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- le, forallj e [m]and i€ [n], Pr(h(x) = i) = L and hash
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values are chosen independently.



RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table
1

o 2 s
>
~
7
\ Cd

o

172.16.254.1

R WN R

192168134

16.58.26.164

h( 16582616, )= 1590

We hash m values xi, ..., xn using a random hash function into
a table with n = m entries.

- le, forallj € [m] and i € [n], Pr(h(x) = i) = .- and hash
values are chosen independently.

What will be the maximum number of items hashed into the
same location?



MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].
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MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position iand S;; be 1if x;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

m
1
]E[S,] = E E[S,’J] =m- E =1= L.
J=1

m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].




MAXIMUM LOAD IN RANDOMIZED HASHING

©
Y
Let S; be the number of items hashed into position i and Sij be1ifx;
is hashed into bucket i (h(x;) = i) and 0 otherwise.

E[S] = ZE[S»'J] =m- % =1=pu
= AT ] e

By the Chernoff Bound: for any 6 > 0, \ - ) l4g
& ¥
! 52
Pr(5>1+5 < iy — >5'u><2exp<—2+6>
v
L—STJ
m: total number of items hashed and size of hash table. x;, ..., xn: the items.
h: random hash function mapping xi, . . ., Xm — [m].
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m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
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Set § = 20logm. Gives:

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
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Set § = 20logm. Gives: P\ D
(20 log m)?
> < S b= RV
Pr(iZOlogm+1)2exp< 27 20l0gm

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
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Set § = 20logm. Gives:
(20 log m)? 2\
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. —— “‘D"" \\1 \ —
Apply Union Bound: 2 > E Pl
" )
Pr(max$S; > 20logm +1) = Pr (U(S,» > 20logm + 1)> N i?f@ﬂzdfﬁ;
'G[m]/_/ = = ..t
-~ M g\q '

m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
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Set § = 20logm. Gives:

Pr(S; > 20logm + 1) < 2exp ( > < exp(—18logm) < %

Apply Union Bound:
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m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
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m: total number of items hashed and size of hash table. S;: number of items
hashed to bucket /. S; ;: indicator if x; is hashed to bucket i. 6: any value > 0.
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MAXIMUM LOAD IN RANDOMIZED HASHING
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Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.
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Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is O(logm).
- Using Chebyshev's inequality could only show the maximum

load is bounded by O(y/m) with good probability (good
exercise).
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MAXIMUM LOAD IN RANDOMIZED HASHING
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Upshot: If we randomly hash m items into a hash table with m

entries the maximum load per bucket is O(log m) with very
high probability.

- So, even with a simple linked list to store the items in each
bucket, worst case query time is Q(logm).

- Using Chebyshev's inequality could only show the maximum
load is bounded by O(y/m) with good probability (good
exercise).

- The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(log m).
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Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course -
on to algorithms.
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Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure

solves this problem? HQ«QL Tl NS
ol



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability 6 > 0 of false positives. l.e,, for any x,
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Pr(query(x) =1and x ¢ S) <.



APPROXIMATELY MAINTAINING A SET

8N CXG‘D A AQ\/\

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: supportto add x to the set and@uer;éxi\to

check if x is in the set. Both in O(1) time. What data structure
solves this problem?

- Allow small probability 6 > 0 of false positives. l.e,, for any x,
Pr(query(x) =1and x ¢ S) <.

Solution: Bloom filters (repeated random hashing). Will use
much less space than a hash table.
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Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].
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BLOOM FILTERS

Chose k independent random hash functions hq,..., h, mapping the
universe of elements U — [m].

- Maintain an array A containing m bits, all initially 0.
- insert(x): set all bits A[h1(x)] = ... = A[h,(X)] := 1.
- query(x): return 1only if A[h1(x)] = ... = A[hp(X)] = 1.

Insertions:  x y

g (70

m bit array A| 1 1 0 0 1 0 1 0 1 0
X

w ')

No false negatives. False positives more likely with more insertions.

Queries:
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APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.
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17-feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

Disk writes per
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APPLICATIONS: CACHING

Akamai (Boston-based company serving 15 — 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

g 14000
§ 12000
S
2 10000
g 8000
& 6000
£ .
§ 4000 0
Bloom filter

% 2000 4— Bloom filter ——3p
a8 o turned on

17-Feb 27-feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May

Date

* When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

14



APPLICATIONS: CACHING

Y - Qeidy
Akamai (Boston-based company serving 15 — 30% of all web traffic)

applies bloom filters to prevent caching of ‘one-hit-wonders’ - pages
only visited once fill over 75% of cache.

8000

6000

4000 : LR )

2000 4—— Bloom filter —pp

0 turned on

17-Feb 27-feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

W) W
X hng . nas~ @\1\ WP £
* When url x comes in, if query(x) = 1, cachethe page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

Disk writes per

- False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of § = .05, the number of
cached one-hit-wonders will be reduced by at least 95%.

14



APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.
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APPLICATIONS: DATABASES

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

Movies

5 14

Users

1 2

* When a new rating is inserted for (usery, movie,), add
(usery, movie,) to a bloom filter.

- Before reading (usery, movie,) (possibly requiring an out of
memory access), check the bloom filter, which is stored in memory.

- False positive: A read is made to a possibly empty cell. A § = .05
false positive rate gives a 95% reduction in these empty reads.



APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

16



APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

INNER JOIN
Customers Orders
Customerld  Name.
1 Robert | | 100 1 2016-10-19 15:21:27
2 Peter 200 4

2016-10-20 15:21:27
3

300 2016-10-2115:21:27
&_ e————

INNER JOIN on
Customerld Column

RESULT

Customerld Name Orderld Customerld OrderDate
a Robert 100 2016-10-19 15:21:27
2 Peter 300 2

2016-10-2115:21:27

- Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.
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APPLICATIONS: DATABASES

Bloom filters are used by Oracle and other database
companies to speed up database joins.

INNER JOIN

Customers Orders

Customerld  Name.
1 Robert | | 100 1 2016-10-19 15:21:27
2 Peter 200 4 2016-10-20 15:21:27
3 Smith 300 2 2016-10-2115:21:27

INNER JOIN on
Customerld Column

RESULT

Customerld
a

Robert 100 I 2016-10-19 15:21:27
2 Peter 300 2 2016-10-2115:21:27

- Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.

- A bloom filter can be used to quickly eliminate entries that
appear in A but not in B.

- A false positive rate of § means that a 1 — ¢ fraction of these
entries can be eliminated in the initial bloom filter check. 16



MORE APPLICATIONS

- Recommendation systems (Netflix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.
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- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.
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MORE APPLICATIONS

=
(v A 0 80
- Recommendation system\Q(Netﬂix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.
- Spam/Fraud Detection:
- Bit.ly and Google Chrome use bloom filters to quickly check if a
url maps to a flagged site and prevent a user from following it.

- Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

- Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

17



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(R).
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ANALYSIS

How does the false positive rate 6 depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 - ;)k

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19
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Step 1: What is the probability that after inserting n elements, the it
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Step 1: What is the probability that after inserting n elements, the it
bit of the array A is still 0?

Pr(A[]] = 0) = (1 . :n>kn ot

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr (Alh(W)] = ... = Al (w)] = 1)
= Pr(Alh(w)] = 1) x ... x Pr(A[hx(w)] = 1)

N
= (1 — e*%) Actually Incorrect! Dependent events.

n: total number items in filter, m: number of bits in filter, k: number of random
hash functions, hs, ... he: hash functions, A: bit array, §: false positive rate. 19




CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alhi(w)] = ... = Alhg(w)] = 1)
= Pr(A[h(w)] = 1) x ... x Pr(A[hs(w)] = 1).

l.e., the events A[hi(w)] = 1,..., A[hr(w)] = 1 are independent
conditioned on the number of bits set in A.
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function, Pr(Af[h;(w)] = 1)
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CORRECT ANALYSIS SKETCH

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t < m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(Alhy(w)] = ... = Alhpg(W)] = 1)

= Pr(Alhy(w)] = 1) x ... x Pr(A[hp(w)] = 1).

l.e,, the events Alhi(w)] = 1,..., A[hg(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h; is a fully random hash
function, Pr(A[hj(w)] = 1) = L.
* Thus conditioned on this event, the false positive rate is (1— %)k

* It remains to show that £ ~ e~ with high probability. We already
have that E[%] = % 21’11 Pr(A[i] = 0) ~ .
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CORRECT ANALYSIS SKETCH

Need to show that the number of zeros t in A after n insertions
is bounded by O (e*%”) with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf
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Questions on Bloom Filters?
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