COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 24

LOGISTICS

- · Problem Set 4 is due tomorrow at 8pm.
- · Optional Problem Set 5 will be released tomorrow, due 11/30.
- Exam will span December 3-4. Any two hour period.
- Exam review guide, practice problems, logistical details have been posted under the schedule tab on the course page.
- I am holding an optional SRTI (course reviews) for this class and would really appreciate your feedback (closes Dec 6).
- http://owl.umass.edu/partners/ courseEvalSurvey/uma/.

Last Class:

- · Analysis of gradient descent for optimizing convex functions.
- · Introduction to convex sets and projection functions.
- (The same) analysis of projected gradient descent for optimizing under convex functions under (convex) constraints.

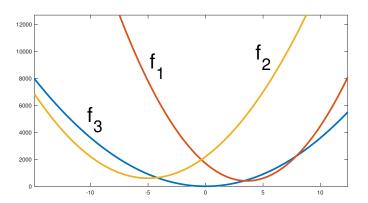
This Class:

- · Online learning, regret, and online gradient descent.
- · Application to stochastic gradient descent.

QUIZ REVIEW

Consider the function $f(\vec{\theta}) = \vec{x}^T \vec{\theta}$ for x = [1, -1, -2]. Give the minimum value of G such that $f(\vec{\theta})$ is G-Lipschitz

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?



A sum of convex functions is always convex (good exercise).

.

ONLINE GRADIENT DESCENT

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \ell(\vec{\theta}, \vec{x}_i)$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ (similar to streaming algorithms)

Stochastic gradient descent is a special case: when data points are considered a random order for computational reasons.

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function *f*, we see a different objective function at each step:

$$f_1, f_2, \ldots, f_t : \mathbb{R}^d \to \mathbb{R}$$

- · At each step, first pick (play) a parameter vector $\vec{\theta}^{(i)}$.
- Then are told f_i and incur cost $f_i(\vec{\theta}^{(i)})$.
- Goal: Minimize total cost $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

Our analysis will make no assumptions on how f_1, \ldots, f_t are related to each other!

ONLINE OPTIMIZATION EXAMPLE

UI design via online optimization.

- · Parameter vector $\vec{\theta}^{(i)}$: some encoding of the layout at step i.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = 1$ if user does not click 'add to cart' and $f_i(\vec{\theta}^{(i)}) = 0$ if they do click.
- Want to maximize number of purchases. I.e., minimize $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

Home pricing tools.

 $\vec{x} = [\#baths, \#beds, \#floors...]$

- Parameter vector $\vec{\theta}^{(i)}$: coefficients of linear model at step *i*.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = (\langle \vec{x}_i, \vec{\theta}^{(i)} \rangle price_i)^2$ revealed when $home_i$ is listed or sold.
- Want to minimize total squared error $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$ (same as classic least squares regression).

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \le \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon$$

 ϵ is called the regret.

- This error metric is a bit 'unfair'. Why?
- Comparing online solution to best fixed solution in hindsight. ϵ can be negative!

INTUITION CHECK

What if for $i = 1, ..., t, f_i(\theta) = |\theta - 1000|$ or $f_i(\theta) = |\theta + 1000|$ in an alternating pattern?

How small can the regret ϵ be? $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \leq \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon$.

What if for i = 1, ..., t, $f_i(\theta) = |\theta - 1000|$ or $f_i(\theta) = |\theta + 1000|$ in no particular pattern? How can any online learning algorithm hope to achieve small regret?

ONLINE GRADIENT DESCENT

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Online Gradient Descent

- Pick some initial $\vec{\theta}^{(1)}$.
- Set step size $\eta = \frac{R}{G\sqrt{t}}$.
- For $i = 1, \ldots, t$
 - Play $\vec{\theta}^{(i)}$ and incur cost $f_i(\vec{\theta}^{(i)})$.
 - $\cdot \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \cdot \vec{\nabla} f_i(\vec{\theta}^{(i)})$

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Upper bound on average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Step 1.1: For all
$$i$$
, $\nabla f_i(\theta^{(i)})(\theta^{(i)} - \theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Convexity \implies Step 1: For all i,

$$f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

ONLINE GRADIENT DESCENT ANALYSIS

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Step 1: For all
$$i$$
, $f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le \sum_{i=1}^t \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{t \cdot \eta G^2}{2}.$$