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LOGISTICS

- Problem Set 4 is due tomorrow at 8pm.
- Optional Problem Set 5 will be released tomorrow, due 11/30.
- Exam will span December 3-4. Any two hour period.

- Exam review guide, practice problems, logistical details have
been posted under the schedule tab on the course page.

- I am holding an optional SRTI (course reviews) for this class
and would really appreciate your feedback (closes Dec 6).

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.


http://owl.umass.edu/partners/courseEvalSurvey/uma/
http://owl.umass.edu/partners/courseEvalSurvey/uma/

SUMMARY

Last Class:

- Analysis of gradient descent for optimizing convex functions.
- Introduction to convex sets and projection functions.

- (The same) analysis of projected gradient descent for optimizing
under convex functions under (convex) constraints.

This Class:

+ Online learning, regret, and online gradient descent.

- Application to stochastic gradient descent.



QUIZ REVIEW

Consider the function f(é) = %10 for
x = [1, —1, =2]. Give the minimum value of G such
that f(@) is G-Lipschitz



TEST OF INTUITION

What does f1(0) + f2(6) + f3(6) look like?
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A sum of convex functions is always convex (good exercise).
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ONLINE GRADIENT DESCENT

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn from
mistakes over time.

Want to minimize some global loss L(6,X) = 327, ¢(6,%;), when data
points are presented in an online fashion X;, X, ..., X, (similar to
streaming algorithms)

Stochastic gradient descent is a special case: when data points are
considered a random order for computational reasons.



ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step:
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- At each step, first pick (play) a parameter vector ().
- Then are told f; and incur cost f;(6()).
- Goal: Minimize total cost S=L_, f;(61)).

Our analysis will make no assumptions on how fy,...,f; are
related to each other!



ONLINE OPTIMIZATION EXAMPLE

Ul design via online optimization.

- Parameter vector #): some encoding of the layout at step i.

- Functions fi,....fz fi(6¥) = 1if user does not click ‘add to
cart’ and £;(61")) = 0 if they do click.

- Want to maximize number of purchases. l.e, minimize
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ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.

linear model
(%, 6)

) $275,000

X = [#baths, #beds, #floors ...]

- Parameter vector 00): coefficients of linear model at step i.

- Functions fi,....fe £i(60) = ((x;,00) — price;)? revealed
when home; is listed or sold.

- Want to minimize total squared error L, f;(91)) (same as
classic least squares regression).



REGRET

In normal optimization, we seek 8 satisfying:

e is called the regret.

- This error metric is a bit ‘unfair. Why?

- Comparing online solution to best fixed solution in
hindsight. e can be negative!



INTUITION CHECK

What if for i =1,...,t, fi(9) = |6 — 1000| or fi(#) = |6 + 1000| in
an alternating pattern?

How small can the regret e be? 3>t fi(60)) < S0 £i(6°F) + e
What if for i = 1,....t, f(6) = |0 — 1000| or f,(8) = |6 + 1000] ir

no particular pattern? How can any online learning algorithm
hope to achieve small regret?



ONLINE GRADIENT DESCENT

Assume that:

- f1,...,fr are all convex.
- Each f; is G-Lipschitz (i.e., | Vfi(8)]. < G for all 4.)
- |6 — 6|, < R where 6(') is the first vector chosen.

Online Gradient Descent
- Pick some initial ().

. i — R
Set step sizen = N
- Fori=1,...,t
- Play 6 and incur cost f;(81).
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8() within
radius R of #°7, using step size = %, has regret bounded by:

=1

lifi(a(i)) - thfi(f)"ff)} < RGVt

Upper bound on average regret goesto 0 and t — oco. No
assumptions on fy, ..., f!
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fy, ..., ft, OGD initialized vvith starting point () within
radius R of #°7, using step size = G\/, has regret bounded by:
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