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logistics

• Midterm is this Thursday - Friday.
• Office Hours: I’ll hold extra office hours, tomorrow from 2-3pm.
The TAs will also hold their regular hours (see course page).
Recordings of my office hours will be posted on Piazza.

• Logistics: Sometime on Thursday/Friday, you will download the
exam in Gradescope, and should upload a pdf either of typed or
handwritten answers 2 hours later. There will be a 15 minute
buffer to upload in. Must submit by 11:59pm on Friday.

• Questions: Via private Piazza message. We’ll try to answer
frequently between 8am-10pm. If you don’t get an answer, state
any assumptions/interpretations you make clearly and move
forward.

• Academic Honestly: You may not discuss the exam with any other
students. Any cheating on the exam will result in failing the class.
Please don’t do this! It is much easier to catch than you might
think, and the consequences seriously outweigh the benefits.
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logistics

• Midterm is this Thursday - Friday.
• You must show you work/derive any answers to get full credit.
Even on multiple choice questions.

• The exam is open notes. If you use outside resources (this should
not be necessary) make sure to cite them.

• Very important to do some practice problems and to try them first
with no resources, to simulate the exam.

• Make sure you can recognize when to apply the fundamentals:
union bound, linearity of expectation and variance, Markov’s
inequality, Chebyshev’s inequality, indicator random variables.

• Understand the goal of each algorithm/data structure. I.e., what
problem it solves with what guarantees. No need to memorize
proofs.
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summary

Last Few Classes:

The Johnson-Lindenstrauss Lemma

• Reduce n data points in any dimension d to O
(
log n/δ

ϵ2

)
dimensions and preserve (with probability ≥ 1− δ) all
pairwise distances up to 1± ϵ.

• Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

High-Dimensional Geometry

• Why high-dimensional space is so different than
low-dimensional space.

• How the JL Lemma can still work.
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summary

Next Few Classes: Low-rank approximation, the SVD, and
principal component analysis (PCA).

• Reduce d-dimesional data points to a smaller dimension m.
• Like JL, compression is linear – by applying a matrix.
• Chose this matrix carefully, taking into account structure of
the dataset.

• Can give better compression than random projection.

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc,
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randomized algorithms unit takeaways

• Randomization is an important tool in working with large datasets.
• Lets us solve ‘easy’ problems that get really difficult on massive
datasets. Fast/space efficient look up (hash tables and bloom
filters), distinct items counting, frequent items counting, near
neighbor search (LSH), etc.

• The analysis of randomized algorithms leads to complex output
distributions, which we can’t compute exactly.

• We’ve covered many of the key ideas used through a small
number of example applications/algorithms.

• We use concentration inequalities to bound these distributions
and behaviors like accuracy, space usage, and runtime.

• Concentration inequalities and probability tools used in
randomized algorithms are also fundamental in statistics, machine
learning theory, probabilistic modeling of complex systems, etc.
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embedding with assumptions

Assume that data points x⃗1, . . . , x⃗n lie in any k-dimensional subspace
V of Rd.

Claim: Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be
the matrix with these vectors as its columns. For all x⃗i, x⃗j:

∥VTx⃗i − VTx⃗j∥2 = ∥⃗xi − x⃗j∥2.

• VT ∈ Rk×d is a linear embedding of x⃗1, . . . , x⃗n into k dimensions
with no distortion.
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dot product transformation

Claim: Let v⃗1, . . . , v⃗k be an orthonormal basis for V and
V ∈ Rd×k be the matrix with these vectors as its columns. For
all x⃗i, x⃗j ∈ V :

∥VTx⃗i − VTx⃗j∥2 = ∥⃗xi − x⃗j∥2.
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embedding with assumptions

Main Focus of Upcoming Classes: Assume that data points x⃗1, . . . , x⃗n
lie close to any k-dimensional subspace V of Rd.

Letting v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns, VTx⃗i ∈ Rk is still a good
embedding for xi ∈ Rd. The key idea behind low-rank approximation
and principal component analysis (PCA).

• How do we find V and V?
• How good is the embedding? 9



low-rank factorization

Claim: x⃗1, . . . , x⃗n lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Letting v⃗1, . . . , v⃗k be an orthonormal basis for V , can write any x⃗i as:

x⃗i = V⃗ci = ci,1 · v⃗1 + ci,2 · v⃗2 + . . .+ ci,k · v⃗k.

• So v⃗1, . . . , v⃗k span the rows of X and thus rank(X) ≤ k.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 10



Claim: x⃗1, . . . , x⃗n ∈ Rd lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Every data point x⃗i (row of X) can be written as
x⃗i = V⃗ci = ci,1 · v⃗1 + . . .+ ci,k · v⃗k.

• X can be represented by (n+ d) · k parameters vs. n · d.
• The rows of X are spanned by k vectors: the columns of V =⇒ the
columns of X are spanned by k vectors: the columns of C.

x⃗1, . . . , x⃗n : data points (in Rd), V : k-dimensional subspace of Rd , v⃗1, . . . , v⃗k ∈
Rd : orthogonal basis for V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 11



low-rank factorization

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace with orthonormal
basis V ∈ Rd×k, the data matrix can be written as X = CVT.

Exercise: What is this coefficient matrix C? Hint: Use that VTV = I.

• X = CVT =⇒ XV = CVTV =⇒ XV = C

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

12



projection view

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = CVTXVVT.

• VVT is a projection matrix, which projects the rows of X (the data
points x⃗1, . . . , x⃗n onto the subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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low-rank approximation

Claim: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X.

XVVT = argmin
B with rows in V

∥X− B∥2F =
∑
i,j

(Xi,j − Bi,j)2.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 14



low-rank approximation

So Far: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT.

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting (XVVT)i, (XVVT)j be the ith and jth projected data points,

∥(XVVT)i − (XVVT)j∥2 = ∥[(XV)i − (XV)j]VT∥2 = ∥[(XV)i − (XV)j]∥2.

• Can use XV ∈ Rn×k as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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properties of projection matrices

Quick Exercise: Show that VVT is idempotent. I.e.,
(VVT)(VVT)⃗y = (VVT)⃗y for any y⃗ ∈ Rd.

Why does this make sense intuitively?

Less Quick Exercise: (Pythagorean Theorem) Show that:

∥⃗y∥22 = ∥(VVT)⃗y∥22 + ∥⃗y− (VVT)⃗y∥22.
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a step back: why low-rank approximation?

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?
• The rows of X can be approximately reconstructed from a
basis of k vectors.
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dual view of low-rank approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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