COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2020. Lecture 11

- Problem Set 2 was due yesterday.
- Quiz 5 is due today at 8pm.
- The exam will be held next Thursday-Friday. Let me know ASAP if you need accommodations (e.g., extended time).
- My office hours this week and next will focus on exam review and going through practice questions.

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.

This Class:

- Finish Up proof of the JL lemma.
- $\cdot\,$ Example applications to classification and clustering.
- Discuss connections to high dimensional geometry.

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all i, j: $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Further, if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$ and $m = O\left(\frac{\log n/\delta}{\epsilon^2}\right)$, $\mathbf{\Pi}$ satisfies the guarantee with probability $\geq 1 - \delta$.

DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\mathbf{\Pi}\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$.

Main Idea: Union bound over $\binom{n}{2}$ difference vectors $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2.$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m1)$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

DISTRIBUTIONAL JL PROOF

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

What is the distribution of $\tilde{\mathbf{y}}(j)$? Also Gaussian!

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable.

etting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^{2})$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \vec{y}(1)^2 + \vec{y}(2)^2 + \ldots + \vec{y}(d)^2 \|\vec{y}\|_2^2) \mathcal{N}(0, \|\vec{y}\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Stability is another explanation for the central limit theorem.

DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\mathbf{\tilde{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \mathbf{\tilde{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\mathbf{\tilde{y}}(j)^{2}]$$
$$= \sum_{i=1}^{m} \frac{\|\mathbf{\vec{y}}\|_{2}^{2}}{m} = \|\mathbf{\vec{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\mathbf{\tilde{y}}\|_2^2$ distributed? Does it concentrate?

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable

So Far: Each entry of our compressed vector $\boldsymbol{\tilde{y}}$ is Gaussian with :

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom, $\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$

EXAMPLE APPLICATION: *k*-means clustering

Goal: Separate n points in d dimensional space into k groups.

Write in terms of distances: $Cost(C_1, ..., C_k) = \min_k \sum_k \sum_{k=1}^k |\lambda_k|^2$

$$\dots, C_{k}) = \min_{C_{1}, \dots, C_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in C_{k}} \|x_{1} - x_{2}\|_{2}^{2}$$
10

k-means Objective:
$$Cost(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$
 If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \le \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \le (1+\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \implies$$

Letting
$$\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \min_{\mathcal{C}_1,\ldots,\mathcal{C}_k} \sum_{j=1}^k \sum_{\tilde{\mathbf{x}}_1,\tilde{\mathbf{x}}_2 \in \mathcal{C}_k} \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2$$

 $(1-\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{\text{Cost}}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k)$.

Upshot: Can cluster in *m* dimensional space (much more efficiently) and minimize $\overline{Cost}(C_1, \ldots, C_k)$. The optimal set of clusters will have true cost within $1 + c\epsilon$ times the true optimal. Good exercise to prove this.

The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

- High-dimensional Euclidean space looks very different from low-dimensional space. So how can JL work?
- Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space?

a) 1 b)
$$\log d$$
 c) \sqrt{d} d) d

What is the largest set of unit vectors in *d*-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$? (think $\epsilon = .01$)

a) d b)
$$\Theta(d)$$
 c) $\Theta(d^2)$ d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Claim: $2^{\Theta(\epsilon^2 d)}$ random *d*-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$ (great exercise).
- If we chose $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over all $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

Up Shot: In *d*-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \ge 1.98.$$

Even with an exponential number of random vector samples, we don't see any nearby vectors.

• Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very 'sparse' unless we have a huge amount of data.

• Only hope is if we lots of structure (which we typically do...)

CURSE OF DIMENSIONALITY

Distances for MNIST Digits:

Distances for Random Images:

0.5

Another Interpretation: Tells us that random data can be a very bad model for actual input data.

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2 \le \|\mathbf{\Pi}\vec{x}_i - \mathbf{\Pi}\vec{x}_j\|_2^2 \le (1+\epsilon)\|\vec{x}_i - \vec{x}_j\|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in *d*-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\mathbf{n}\vec{x}_1}{\|\mathbf{n}\vec{x}_1\|_2}, \ldots, \frac{\mathbf{n}\vec{x}_n}{\|\mathbf{n}\vec{x}_n\|_2}$ are nearly orthogonal unit vectors in *m*-dimensions (with pairwise dot products bounded by ϵ).

• Algebra is a bit messy but a good exercise to partially work through.

Claim 1: *n* nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In *m* dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \ge n$. Tells us that the JL lemma is optimal up to constants.
- *m* is chosen just large enough so that the odd geometry of *d*-dimensional space still holds on the *n* points in question after projection to a much lower dimensional space.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!

Volume of a radius *R* ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

All but an $e^{-\epsilon d}$ fraction of a unit ball's volume is within ϵ of its surface. If we randomly sample points with $||x||_2 \le 1$, nearly all will have $||x||_2 \ge 1 - \epsilon$.

• **Isoperimetric inequality**: the ball has the minimum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- 'All points are outliers.'

What fraction of the cubes are visible on the surface of the cube?

$$\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.$$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$

23

BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

Summary: