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LOGISTICS

- Problem Set 2 was due yesterday.
- Quiz 5is due today at 8pm.

- The exam will be held next Thursday-Friday. Let me know
ASAP if you need accommodations (e.g., extended time).

- My office hours this week and next will focus on exam review
and going through practice questions.



SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

- Finish Up proof of the JL lemma.
- Example applications to classification and clustering.

- Discuss connections to high dimensional geometry.



THE JOHNSON-LINDENSTRAUSS LEMMA

N

Johnson-Lindenstrauss Lemma: For any set of points
X1,..., X € R9and e > 0 there exists a linear map M : RY — R™
such thatm =0 (‘Og”) and letting % = MNX;:

€2

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xjll2 < (1 + €)lIXi — Xjl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m = 0O (“)iig/é) M satisfies the guarantee with
probability > 1— 4.
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DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we set m = O (mgﬁ%) then for any

v © RY, with probability > 1 -4
(1=l < INYll2 < (1 + €)lI¥l2-

. J

Main Idea: Union bound over (9) difference vectors yj; = X — X;.
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DISTRIBUTIONAL JL PROOF

~

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as M(0,1/m). If we setm = 0O (log(éﬂ) then
, with probability >1—4§

(1= 9l < INY]l2 < (1+ )]z

- Let y denote My and let N(j) denote the j* row of M.
-+ Forany j, §() = (N().¥) = J5 S, g - 7(i) where g ~ A(0,1/mn).
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¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random 5
projection. d: original dim. m: compressed dim, e: error, §: failure prob.



DISTRIBUTIONAL JL PROOF

- Let y denote My and let N(j) denote the j row of M.

+ Forany j, () = (N(). %) = = X1, & - (i) where g ~ A7(0,1).
g - V(i) ~ N(0,¥(i)?): a normal distribution

variance 1 variance y(i)? variance y(1)2

—— . \

I\ A 1AA

g -y (D) y(i) = 91 y() + g2

vanance 3

Also Gaussian!

projection mapping y — . M(j): j* row of N, d: original dimension. m: com-

¥ € RY: arbitrary vector, §j € R™: compressed vector, M € R™*%: random
. . . . . 6
pressed dimension, g:: normally distributed random variable.



DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j),y) and:

d
() = \)ng (i) where g - J(i) ~ N(0, 7(i)2).

Stability of Gaussian Random Variables. For independent a ~
N(w,0%) and b ~ N(up,07) we have:

a+ b~ N+ 2,07 + 73)

VARV

Thus, Y(j) ~ J=N(0,¥(1) + 7(2)° + ... + (A V)N (0. [V /m). Le,
y itself is a random Gaussian vector. Rotational invariance of the

%bﬁ%i@ﬁisdﬁsﬁaair@fw&planation for the central limit theorem. 7




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as A(0,1/m),
forany y € RY, letting y = My

y(j) ~ N (O, )-

E[YIE =E | > V07| =
~— =
0

r\)r\)

[l

So ¥ has the right norm in expectation.

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So Far: Each entry of our compressed vector y is Gaussian with :
Y(j) ~ N(0, [[¥l13/m) and E[[|¥I3] = [I¥13

19112 = Y, %(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
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Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr(|z — EZ| > eEZ] < 2e~"€/8.




EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.
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k-means Objective: Cost(Cy,...,Cy) = C:mrékz > K= 3.

J=1 )?Eck
Write in terms of distancgs:
o AL
Cost(Crs ..., Cr) = legkz Z X — %13

J=1 X1,%€Ck 10



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Ck) = mm Z S IK =Xl If
J =1 X1,%,€Cr
) dimensions, for all pairs X1, X,

we randomly projectto m =0 (

(1= 9% =Rl < 1% — %[ < (1 + )l = X} =

Letting Cost(Cy, ... ,Ck) = mm Z Z %1 — %2 |5

O
j 1 X1,%€Cx
(1 —€)Cost(Cy,...,Cx) < Cost(Cy,...,Cr) < (14 ¢€)Cost(Cy, ... ,Ck).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cy, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good
exercise to prove this.

1



The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL work?

- Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)



ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

a)1 b)logd oVd d)d

13



NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X,y)| < €? (think e = .01)

a)d b) ©(d) c) ©(d?) d) 20

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!

14



ORTHOGONAL VECTORS PROOF

Claim: 29(¢9) random d-dimensional unit vectors will have all
pairwise dot products |(X, )| < e (be nearly orthogonal).

Proof: Let Xi,...,X; each have independent random entries set

to £1/V/d.

- Whatis |[X||,7 Every X; is always a unit vector.

- What is E[(X;. X))]? E[(X;,X;)] =0

- By a Chernoff bound, Pr[|(¥;, X:)| > €] < 2e=<4/® (great
exercise).

- If we chose t = %ef%’m, using a union bound over all
(1) < Le<d/% possible pairs, with probability > 3/4 all will be
nearly orthogonal.

15



CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 26(€d) random unit
vectors have all pairwise dot products at most € (think e = .01)

2RI — 1712 o 17112 — 9%y
1Xi = X112 = [1Xill2 + [IX)[12 — 2%i% = 1.98.

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high-dimensional space — samples are very ‘sparse’ unless we
have a huge amount of data.

- Only hope is if we lots of structure (which we typically do...)
16



CURSE OF DIMENSIONALITY

Distances for MNIST Digits:
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Distances for Random Images:

<107

Another Interpretation: Tells us that random data can be a very bad
model for actual input data.
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N e R™<4 is a random matrix (linear map) with m = O <log”),

for X;,...,X, € R? with high probability, for all i, ;:

(1= lIX = XI5 < INX; — AKI3 < (1+ 1% — X113

Implies: If Xi,...,X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8),
then X % _ are nearly orthogonal unit vectors in

Il (Kl
m-dimensions (with pairwise dot products bounded by ).

- Algebra is a bit messy but a good exercise to partially work
through.



CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 (“’%) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most 20(¢’M) nearly
orthogonal vectors.

- For both these to hold it might be that n < 20(€m),

- 20(€m) — 20(logn) > n Tells us that the JL lemma is optimal
up to constants.

- mis chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in question
after projection to a much lower dimensional space.

19



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let By be the unit ball in d dimensions. By = {x € R? : ||x||, < 1}.

What percentage of the volume of By falls within e distance of its
surface? Answer: all but a (1 — €)9 < e<? fraction. Exponentially
small in the dimension d!

Volume of a radius R ball is d/z)] - RY.
20



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an e=<? fraction of a unit ball's volume is within € of its
surface. If we randomly sample points with ||x|[; < 1, nearly all will
have ||x|][ > 1—e.

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

ooQ

- If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.

- ‘All points are outliers! 21



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What fraction of the cubes are visible on the surface of the
cube?

- —

10° — 8% 1000 — 512
10° 1000

[
‘f - :-‘.

= .488.




BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of B, falls within e distance of its
equator? Answer: all but a 22(=<'d fraction.

Formally: volume of set S = {x € By : [x(1)| < €}.

By symmetry, all but a 22(=<'d) fraction of the volume falls within ¢ of
any equator! S={x € By : |{x,t)] <€} ”3



BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a 29(=<’d) fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 29(=<d) fraction falls within e of its surface.

How is this possible? High-dimensional space looks nothing like this
picture! 24



Summary:

25



