COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 10

LOGISTICS

- Problem Set 2 is due Sunday 3/8.
- Midterm on Thursday, 3/12. Will cover material through today.
- I have posted a study guide and practice questions on the course schedule.
- Next Tuesday I can't do office hours after class. I will hold them before class on Tuesday (10:00am - 11:15am) and after class on Thursday (12:45pm-2:00pm).

SUMMARY

Last Class: Dimensionality Reduction

- Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in data science (PCA, LSA, autoencoders, etc.)
- Low-distortion embeddings and some simple cases of when no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

- Any data set can be embedded with low distortion into low-dimensional space.
- Prove the JL Lemma.
- Discuss algorithmic considerations, connections to other methods (SimHash), etc.

LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$, distance function D, and error parameter $\epsilon \geq 0$, find $\tilde{x}_{1}, \ldots, \tilde{x}_{n} \in \mathbb{R}^{m}$ (where $m \ll d$) and distance function \tilde{D} such that for all $i, j \in[n]:$

$$
(1-\epsilon) D\left(\vec{x}_{i}, \vec{x}_{j}\right) \leq \tilde{D}\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \leq(1+\epsilon) D\left(\vec{x}_{i}, \vec{x}_{j}\right) .
$$

Euclidean Low Distortion Embedding: Given $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ and error parameter $\epsilon \geq 0$, find $\tilde{x}_{1}, \ldots, \tilde{x}_{n} \in \mathbb{R}^{m}$ (where $m \ll d$) such that for all $i, j \in[n]$:

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

We will primarily focus on this restricted notion in this class.

LOW DISTORTION EMBEDDING

Euclidean Low Distortion Embedding: Given $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ and error parameter $\epsilon \geq 0$, find $\tilde{x}_{1}, \ldots, \tilde{x}_{n} \in \mathbb{R}^{m}$ (where $m \ll d$) such that for all $i, j \in[n]$:

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

m-dimensional space
(for $\mathrm{m} \ll \mathrm{d}$)

EMBEDDING WITH ASSUMPTIONS

Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ all lie on the $1^{\text {st }}$ axis in \mathbb{R}^{d}.

Set $m=1$ and $\tilde{x}_{i}=\vec{x}_{i}(1)$ (i.e., \tilde{x}_{i} is just a single number).

- $\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2}=\sqrt{\left[\vec{x}_{i}(1)-\vec{x}_{j}(1)\right]^{2}}=\left|\vec{x}_{i}(1)-\vec{x}_{j}(1)\right|=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}$.
- An embedding with no distortion from any d into $m=1$.

EMBEDDING WITH ASSUMPTIONS

Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ all lie on the unit circle in \mathbb{R}^{2}.

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_{i}=\theta\left(\vec{x}_{i}\right)$.
- Does it admit a low-distortion Euclidean embedding? No! Send me a proof on Piazza for 3 bonus points on Problem Set 2.

EMBEDDING WITH ASSUMPTIONS

Another easy case: Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

- Let $\vec{v}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{k}$ be an orthonormal basis for \mathcal{V} and let $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- If we set $\tilde{x}_{i} \in \mathbb{R}^{k}$ to $\tilde{x}_{i}=\mathrm{V}^{\top} \vec{x}_{i}$ we have:

$$
\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2}=\left\|\mathbf{V}^{\top}\left(\vec{x}_{i}-\vec{x}_{j}\right)\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

- An embedding with no distortion from any d into $m=k$.
- $\mathrm{V}^{\top}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is a linear map giving our embedding.

EMBEDDING WITH NO ASSUMPTIONS

What about when we don't make any assumptions on $\vec{x}_{1}, \ldots, \vec{x}_{n}$. I.e., they can be scattered arbitrarily around d-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require $m=d$.
- Can we find an ϵ-distortion embedding into $m \ll d$ dimensions for $\epsilon>0$? Yes! Always, with m depending on ϵ.

$$
\text { For all } i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ and $\epsilon>0$ there exists a linear map $\boldsymbol{\Pi}: \mathbb{R}^{d} \rightarrow R^{m}$ such that $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ and letting $\tilde{x}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$:

$$
\text { For all } i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0,1 / m)$, it satisfies the guarantee with high probability.

For $d=1$ trillion, $\epsilon=.05$, and $n=100,000, m \approx 6600$.
Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

RANDOM PROJECTION

For any $\vec{x}_{1}, \ldots, \vec{x}_{n}$ and $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0,1 / m)$, with high probability, letting $\tilde{\mathbf{x}}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$:

$$
\text { For all } i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{\mathbf{x}}_{i}-\tilde{\mathbf{x}}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

- $\boldsymbol{\Pi}$ is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.
- $\boldsymbol{\Pi}$ is data oblivious. Stark contrast to methods like PCA.

ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \Longrightarrow more efficient computation of $\tilde{x}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$.
- Data oblivious property means that once $\boldsymbol{\Pi}$ is chosen, $\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathrm{x}}_{n}$ can be computed in a stream with little memory.
- Memory needed is just $O(d+n m)$ vs. $O(n d)$ to store the full data set.
- Compression can also be easily performed in parallel on different servers.
- When new data points are added, can be easily compressed, without updating existing points.

CONNECTION TO SIMHASH

Compression operation is $\tilde{\mathbf{x}}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$, so for any j,

$$
\tilde{\mathbf{x}}_{i}(j)=\left\langle\boldsymbol{\Pi}(j), \vec{x}_{i}\right\rangle=\sum_{k=1}^{d} \boldsymbol{\Pi}(j, k) \cdot \vec{x}_{i}(k) .
$$

$\boldsymbol{\Pi}(j)$ is a vector with independent random Gaussian entries.

DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\left\|\boldsymbol{\Pi} \overrightarrow{\|_{2}}\right\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

Applying a random matrix $\boldsymbol{\Pi}$ to any vector \vec{y} preserves $\vec{y} \mathrm{~s}$ norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Can be proven from first principles. Will see next.
$\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d : original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

DISTRIBUTIONAL JL \Longrightarrow JL

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing!
Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define $\binom{n}{2}$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$.

- If we choose $\boldsymbol{\Pi}$ with $m=O\left(\frac{\log 1 / \delta}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability $\geq 1-\delta$ we have:

DISTRIBUTIONAL JL $\Longrightarrow \mathrm{JL}$

Claim: If we choose $\boldsymbol{\Pi}$ with i.i.d. $\mathcal{N}(0,1 / m)$ entries and $m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)$, letting $\tilde{x}_{i}=\boldsymbol{\Pi} \vec{x}_{i}$, for each pair \vec{x}_{i}, \vec{x}_{j} with probability ≥ 1 - δ^{\prime} we have:

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{\mathrm{x}}_{i}-\tilde{\mathrm{x}}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

With what probability are all pairwise distances preserved?
Union bound: With probability $\geq 1-\binom{n}{2} \cdot \delta^{\prime}$ all pairwise distances are preserved.
Apply the claim with $\delta^{\prime}=\delta /\binom{n}{2} . \Longrightarrow$ for $m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)$, all pairwise distances are preserved with probability $\geq 1-\delta$.
$m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)=O\left(\frac{\left.\log \binom{n}{2} / \delta\right)}{\epsilon^{2}}\right)=O\left(\frac{\log \left(n^{2} / \delta\right)}{\epsilon^{2}}\right)=O\left(\frac{\log (n / \delta)}{\epsilon^{2}}\right)$
Yields the JL lemma.

DISTRIBUTIONAL JL PROOF

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let $\tilde{\mathbf{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\frac{1}{\sqrt{m}} \sum_{i=1}^{d} \boldsymbol{g}_{i} \cdot \vec{y}(i)$ where $\boldsymbol{g}_{i} \sim \mathcal{N}(0,1 / m 1)$.

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

DISTRIBUTIONAL JL PROOF

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_{i} \cdot \vec{y}(i)$ where $\boldsymbol{g}_{i} \sim \mathcal{N}(0,1)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \vec{y}(i)^{2}\right)$: a normal distribution with variance $\vec{y}(i)^{2}$.
variance 1

\boldsymbol{g}_{i}
variance $y(i)$

$\boldsymbol{g}_{i} \cdot y(i)$
variance
variance $y(1)$

$\widetilde{\boldsymbol{y}}(j)=\frac{1}{\sqrt{m}}\left[\boldsymbol{g}_{1} \cdot y(1)+\boldsymbol{g}_{2} \cdot y(\right.$

What is the distribution of $\tilde{y}(j)$? Also Gaussian!
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j)$: $j^{t h}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: com-
nroccod dimoncinn $\sigma . \cdot$ normally dictrihutod random variahla

DISTRIBUTIONAL JL PROOF

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i) \text { where } \mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \vec{y}(i)^{2}\right)
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}\left(0, \vec{y}(1)^{2}+\vec{y}(2)^{2}+\ldots+\vec{y}(d)^{2}\|\vec{y}\|_{2}^{2}\right) \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right)$. I.e., \tilde{y} itself is a random Gaussian vector. Rotational invariance of the Stabifity is atisththerexplanation for the central limit theorem.

DISTRIBUTIONAL JL PROOF

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]$?

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{\mathbf{y}}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

So \tilde{y} has the right norm in expectation.

How is $\|\tilde{y}\|_{2}^{2}$ distributed? Does it concentrate?

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

DISTRIBUTIONAL JL PROOF

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0,1)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{\mathbf{y}}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{\mathbf{y}}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|Z-\mathbb{E} Z|>\epsilon \mathbb{E} Z]<2 e^{-m \epsilon^{2} / 8}
$$

EXAMPLE APPLICATION: SVM

Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

Class Aor any point a in Aseparating

- Forvnyopgint bin B $\langle b, w\rangle \not \subset c-m$.
- Assame all vectors ${ }^{\text {Class B }}$

margin m
JL Lemma implies that after projection into $O\left(\frac{\log n}{m^{2}}\right)$ dimensions, still have $\langle\tilde{\mathbf{a}}, \tilde{\mathbf{w}}\rangle \geq c+m / 4$ and $\langle\tilde{\mathbf{b}}, \tilde{\mathbf{w}}\rangle \leq c-m / 4$.

Upshot: Can random project and run SVM (much more efficiently) in

Questions?

