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LOGISTICS

- Problem Set 2 is due Sunday 3/8.

- Midterm on Thursday, 3/12. Will cover material through
today.

- | have posted a study guide and practice questions on the
course schedule.

- Next Tuesday | can’t do office hours after class. | will hold
them before class on Tuesday (10:00am - 11:15am) and after
class on Thursday (12:45pm-2:00pm).



SUMMARY

Last Class: Dimensionality Reduction

- Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in
data science (PCA, LSA, autoencoders, etc.)

- Low-distortion embeddings and some simple cases of when
no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

- Any data set can be embedded with low distortion into
low-dimensional space.

- Prove the JL Lemma.

- Discuss algorithmic considerations, connections to other
methods (SimHash), etc.



LOW DISTORTION EMBEDDING

Low Distortion Embedding: Given i, ..., X, € RY, distance
function D, and error parameter ¢ > 0, find Xq,...,X, € R"
(where m < d) and distance function D such that for all
I,j € [n]:

(1 - E)D()?I’)_(}) < D(XIvXj) (,I + E)D()_(I?)_(})

Euclidean Low Distortion Embedding: Given Xi,..., X, € RY
and error parameter € > 0, find %;,...,%, € R™ (where m < d)
such that for all i,j € [n]:

(1= )X = Xjll2 < [I1Xi = Xill2 < (T+ €)X = Xjll2.

We will primarily focus on this restricted notion in this class.



LOW DISTORTION EMBEDDING

Euclidean Low Distortion Embedding: Given Xi,..., X, € RY
and error parameter e > 0, find Xy,...,%, € R™ (where m < d)
such that for all i,j € [n]:

(1= )lIXi = Xjll2 < [I1Xi = Xll2 < (1+ €)X = Xjll2.
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EMBEDDING WITH ASSUMPTIONS

Assume that X;,. .., X, all lie on the 1°t axis in RY.

Set m = 1and X; = X;(1) (i.e, %; is just a single number).

% =%l = (/B = X = 1Xi(1) = X(D] = 11X = Xll2-

* An embedding with no distortion from any d into m = 1.



EMBEDDING WITH ASSUMPTIONS

Assume that X;, ..., X, all lie on the unit circle in R?.
X1 X5
X3
X4

- Admits a low-distortion embedding to 1 dimension by letting
Xi = 0(X;).

- Does it admit a low-distortion Euclidean embedding? No! Send
me a proof on Piazza for 3 bonus points on Problem Set 2. 6



EMBEDDING WITH ASSUMPTIONS

Another easy case: Assume that Xi,..., X, lie in any k-dimensional
subspace V of RY.

121 V2

* Let Vi, Vs, ..., V, be an orthonormal basis for V and let V € R9*k be
the matrix with these vectors as its columns.

- If we set X; € RF to X; = V'X; we have:
1% = %ill2 = IV (X = %) 12 = [1Xi = .-
- An embedding with no distortion from any d into m = k.

- VI :RY — R is a linear map giving our embedding. 7



EMBEDDING WITH NO ASSUMPTIONS

What about when we don’t make any assumptions on
X1,...,Xn. le, they can be scattered arbitrarily around
d-dimensional space?

- Can we find a no-distortion embedding into m <« d
dimensions? No. Require m — d.

- Can we find an e-distortion embedding into m <« d
dimensions for e > 0? Yes! Always, with m depending on e.

Foralli,j: (1= e)lIXi — Xjlla < 1% — Xjll2 < (1 + €)lIX; — |2



THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points
Xi1,..., % € R?and e > 0 there exists a linear map M : RY — R™
such thatm = 0 (log”) and letting %; = MNX::

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xjll2 < (1 + €)lIXi — Xl

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m), it satisfies the guarantee with high probability.

\. J

For d = 1 trillion, e = .05, and n = 100, 000, m ~ 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.



RANDOM PROJECTION

Forany X, ..., X, and M e R™*? with each entry chosen i.i.d. from
N(0,1/m), with high probability, letting X; = NX;:

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xilla < (1+ €)X = Xl2-

mxd dx1 mx1
0112 34 67 10 —.49..
—45_ 7 .14 18 — .65  76..
x| =
n
/
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m= 0( gz )
€ ol
input point
(high dimensions)

* Mis known as a random projection. Itis a random linear function,
mapping length d vectors to length m vectors.

- Mis data oblivious. Stark contrast to methods like PCA.



ALGORITHMIC CONSIDERATIONS

- Many alternative constructions: 41 entries, sparse (most
entries 0), Fourier structured (Problem Set 2), etc. = more
efficient computation of X; = MNX;.

- Data oblivious property means that once M is chosen,
X1,...,Xn can be computed in a stream with little memory.

- Memory needed is just O(d + nm) vs. O(nd) to store the full
data set.

- Compression can also be easily performed in parallel on
different servers.

- When new data points are added, can be easily compressed,
without updating existing points.

1



CONNECTION TO SIMHASH

Compression operation is X; = MX;, so for any j,
d
%i(j) = (NG), %) = D> N(, k) - Xi(k).
k=1

M(j) is a vector with independent random Gaussian entries.

mxd dx1 mx1
01 —12 34 67 .10 —.49..
—45__7 14 18 —.65  .76..
x| =
n
f
random linear transformation
(random projection) compressed output point
(low dimensions)
logn
m=0(=5%)
€ -]
input point
(high dimensions)
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DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we set m = O (“’%ﬂ) then
, with probability >1—4§

(1=l < IMYll2 < (1+ )lI¥ll2

Applying a random matrix M to any vector y preserves y's norm with

high probability.

- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

+ Can be proven from first principles. Will see next.

N e R™¥4: random projection matrix. d: original dimension. m: compressed
dimension, e: embedding error, §: embedding failure prob.

13



DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection M preserves the norm of any y. The main JL
Lemma says that M preserves distances between vectors.

Since M is linear these are the same thing!

Proof: Given Xi,...,X,, define (J) vectors y; where jj = X; — X.

X4
Xz

Xy

log1/8

€2

- If we choose Mwithm=0 ( ) for each yj; with probability
> 1— 6 we have: 14



DISTRIBUTIONAL JL — JL

Claim: If we choose M with i.i.d. A(0,1/m) entries and
m=0 (log(!#) letting X; = MX;, for each pair X;, X; with probability
>1— 4" we have:
(M= elIXi = Xjll2 < [I1%; — Xjll2 < (14 €)lIX; — Xjl|2-
With what probability are all pairwise distances preserved?

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ = 6/(5). = form =0 (%) all

€

pairwise distances are preserved with probability > 1 — 4.

_O<tog(€12/6')> (tog(()/é)) (log(;z/5)>o<w>

Yields the JL lemma.

15



DISTRIBUTIONAL JL PROOF

~

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as M(0,1/m). If we setm = 0O (log(éﬂ) then
, with probability >1—4§

(M= alyll < Myll < (1+ €)¥ll2

- Let y denote My and let N(j) denote the j* row of M.
-+ Forany j, §() = (N().¥) = J5 S, g - 7(i) where g ~ A(0,1/mn).

n y
nG) »
01-12 34 67 .10 —49.. Y2

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random 16
projection. d: original dim. m: compressed dim, e: error, §: failure prob.



DISTRIBUTIONAL JL PROOF

- Let y denote My and let N(j) denote the j row of M.

+ Forany j, () = (N(). %) = = X1, & - (i) where g ~ A7(0,1).
g - V(i) ~ N(0,¥(i)?): a normal distribution

variance 1 variance y(i) variance

L variance y(l)
[ \ [ 1

VANRNYVANS 1/\/\

Also Gaussian!

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com- 7

AAAAAA A AirmaAarnciarn - rnarmmallvy AlctrilbiiidAaAd rarmnAAarm vivria b A



DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j),y) and:

d
() = \)ng (i) where g - J(i) ~ N(0, 7(i)2).

Stability of Gaussian Random Variables. For independent a ~
N(w,0%) and b ~ N(up,07) we have:

a+ b~ N+ 2,07 + 73)

VARV

Thus, Y(j) ~ J=N(0,¥(1) + 7(2)° + ... + (A V)N (0. [V /m). Le,
y itself is a random Gaussian vector. Rotational invariance of the

%bﬁ%i@ﬁisdﬁsﬁaair@fw&planation for the central limit theorem. 18




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as A(0,1/m),
forany y € RY, letting y = My

y(j) ~ N (O, )-

E[YIE =E | > V07| =
~— =
0

r\)r\)

[l

So ¥ has the right norm in expectation.

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-

pressed dimension, g;: normally distributed random variable 19




DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
L. N(0,1), forany y € RY letting y = Ny:

L.
Y() ~ N0, [I7ll/m) and E[[[§]15] = [I¥13

19112 = Y=, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

filx) W

0.5

0.4

m oam o am Tm o

=

0.3

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-

Squared random variable with m degrees of freedom,
, 20
Pril7 — R7| > (R7] < 2p—Me /8



EXAMPLE APPLICATION: SVM

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.

Class A
Class por any point a jn Meparating
.‘ ° <g’W Hyperplane
o |® @ Fornyepgint Bin B
o |o ° ° (b, w) ®

Class B
me all veftors™®*®

margin m

JL Lemma implies that after projection into O
have (a,w) > c+ m/4 and (b,w) < c—m/4.

lo,,g,z”) dimensions, still

Upshot: Can random project and run SVM (much more efficiently) in 21
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Questions?

22



