COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 10

- Problem Set 2 is due Sunday 3/8.
- Midterm on Thursday, 3/12. Will cover material through today.
- I have posted a study guide and practice questions on the course schedule.
- Next Tuesday I can't do office hours after class. I will hold them before class on Tuesday (10:00am - 11:15am) and after class on Thursday (12:45pm-2:00pm).

Last Class: Dimensionality Reduction

- Finished up Count-Min Sketch and Frequent Items.
- Applications and examples of dimensionality reduction in data science (PCA, LSA, autoencoders, etc.)
- Low-distortion embeddings and some simple cases of when no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

- Any data set can be embedded with low distortion into low-dimensional space.
- Prove the JL Lemma.
- Discuss algorithmic considerations, connections to other methods (SimHash), etc.

Low Distortion Embedding: Given $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$, distance function *D*, and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) and distance function \tilde{D} such that for all $i, j \in [n]$:

$$(1-\epsilon)D(\vec{x}_i,\vec{x}_j) \leq \tilde{D}(\tilde{x}_i,\tilde{x}_j) \leq (1+\epsilon)D(\vec{x}_i,\vec{x}_j).$$

Euclidean Low Distortion Embedding: Given $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1-\epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1+\epsilon)\|\vec{x}_i - \vec{x}_j\|_2.$$

We will primarily focus on this restricted notion in this class.

Euclidean Low Distortion Embedding: Given $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^m$ (where $m \ll d$) such that for all $i, j \in [n]$:

$$(1-\epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1+\epsilon)\|\vec{x}_i - \vec{x}_j\|_2.$$

EMBEDDING WITH ASSUMPTIONS

Assume that $\vec{x_1}, \ldots, \vec{x_n}$ all lie on the 1st axis in \mathbb{R}^d .

Set m = 1 and $\tilde{x}_i = \vec{x}_i(1)$ (i.e., \tilde{x}_i is just a single number).

$$: \|\tilde{x}_i - \tilde{x}_j\|_2 = \sqrt{[\vec{x}_i(1) - \vec{x}_j(1)]^2} = |\vec{x}_i(1) - \vec{x}_j(1)| = \|\vec{x}_i - \vec{x}_j\|_2.$$

• An embedding with no distortion from any d into m = 1.

Assume that $\vec{x}_1, \ldots, \vec{x}_n$ all lie on the unit circle in \mathbb{R}^2 .

- Admits a low-distortion embedding to 1 dimension by letting $\tilde{x}_i = \theta(\vec{x}_i)$.
- Does it admit a low-distortion Euclidean embedding? No! Send me a proof on Piazza for 3 bonus points on Problem Set 2.

EMBEDDING WITH ASSUMPTIONS

Another easy case: Assume that $\vec{x}_1, \ldots, \vec{x}_n$ lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

- Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and let $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
- If we set $\tilde{x}_i \in \mathbb{R}^k$ to $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$ we have:

$$\|\tilde{x}_i - \tilde{x}_j\|_2 = \|\mathbf{V}^T(\vec{x}_i - \vec{x}_j)\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

- An embedding with no distortion from any d into m = k.
- $\cdot \mathbf{V}^{\mathsf{T}} : \mathbb{R}^d \to \mathbb{R}^k$ is a linear map giving our embedding.

What about when we don't make any assumptions on $\vec{x}_1, \ldots, \vec{x}_n$. I.e., they can be scattered arbitrarily around *d*-dimensional space?

- Can we find a no-distortion embedding into $m \ll d$ dimensions? No. Require m = d.
- Can we find an ϵ -distortion embedding into $m \ll d$ dimensions for $\epsilon > 0$? Yes! Always, with *m* depending on ϵ .

For all $i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$.

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\mathbf{\Pi} : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \mathbf{\Pi} \vec{x}_i$:

For all
$$i, j: (1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$$
.

Further, if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For d = 1 trillion, $\epsilon = .05$, and n = 100,000, $m \approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.

RANDOM PROJECTION

For any $\vec{x}_1, \ldots, \vec{x}_n$ and $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ with each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$, with high probability, letting $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \vec{x}_i$:

For all $i, j: (1-\epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \le \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \le (1+\epsilon) \|\vec{x}_i - \vec{x}_j\|_2.$

- **Π** is known as a random projection. It is a random linear function, mapping length *d* vectors to length *m* vectors.
- **n** is data oblivious. Stark contrast to methods like PCA.

- Many alternative constructions: ± 1 entries, sparse (most entries 0), Fourier structured (Problem Set 2), etc. \implies more efficient computation of $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$.
- · Data oblivious property means that once Π is chosen, $\tilde{x}_1,\ldots,\tilde{x}_n$ can be computed in a stream with little memory.
- Memory needed is just O(d + nm) vs. O(nd) to store the full data set.
- Compression can also be easily performed in parallel on different servers.
- When new data points are added, can be easily compressed, without updating existing points.

Compression operation is $\mathbf{\tilde{x}}_i = \mathbf{\Pi} \mathbf{\tilde{x}}_i$, so for any *j*,

$$\tilde{\mathbf{x}}_i(j) = \langle \mathbf{\Pi}(j), \vec{x}_i \rangle = \sum_{k=1}^d \mathbf{\Pi}(j, k) \cdot \vec{x}_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

12

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|\vec{y}\|_2 \leq \|\mathbf{\Pi}\vec{y}\|_2 \leq (1 + \epsilon) \|\vec{y}\|_2$

Applying a random matrix $\mathbf{\Pi}$ to any vector \vec{y} preserves \vec{y} 's norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Can be proven from first principles. Will see next.

 $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since $\mathbf{\Pi}$ is linear these are the same thing!

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

- If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 \delta$ we have:
 - للبة والإبتار والمستعمية وبالالتان والإلايين والالت

14

Claim: If we choose $\mathbf{\Pi}$ with i.i.d. $\mathcal{N}(0, 1/m)$ entries and $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} \vec{x}_i$, for each pair \vec{x}_i, \vec{x}_j with probability $\geq 1 - \delta'$ we have:

 $(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2.$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m1)$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. *d*: original dim. *m*: compressed dim, ϵ : error, δ : failure prob.

DISTRIBUTIONAL JL PROOF

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

What is the distribution of $\tilde{\mathbf{y}}(j)$? Also Gaussian!

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension. σ : normally distributed random variable.

17

etting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^{2})$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \vec{y}(1)^2 + \vec{y}(2)^2 + \ldots + \vec{y}(d)^2 \|\vec{y}\|_2^2) \mathcal{N}(0, \|\vec{y}\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Stability is another explanation for the central limit theorem.

DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\mathbf{\tilde{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \mathbf{\tilde{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\mathbf{\tilde{y}}(j)^{2}]$$
$$= \sum_{i=1}^{m} \frac{\|\mathbf{\vec{y}}\|_{2}^{2}}{m} = \|\mathbf{\vec{y}}\|_{2}^{2}$$

So $\tilde{\mathbf{y}}$ has the right norm in expectation.

How is $\|\mathbf{\tilde{y}}\|_2^2$ distributed? Does it concentrate?

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: *j*th row of $\mathbf{\Pi}$, *d*: original dimension. *m*: compressed dimension, \mathbf{g}_i : normally distributed random variable

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

$$\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| > \epsilon \mathbb{E}\mathbf{Z}\right] < 2e^{-m\epsilon^2/8}.$$

Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

JL Lemma implies that after projection into $O\left(\frac{\log n}{m^2}\right)$ dimensions, still have $\langle \mathbf{\tilde{a}}, \mathbf{\tilde{w}} \rangle \ge c + m/4$ and $\langle \mathbf{\tilde{b}}, \mathbf{\tilde{w}} \rangle \le c - m/4$.

Upshot: Can random project and run SVM (much more efficiently) in 21

Questions?