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logistics

• Problem Set 2 is due Sunday 3/8.
• Midterm on Thursday, 3/12. Will cover material through
today.

• I have posted a study guide and practice questions on the
course schedule.

• Next Tuesday I can’t do office hours after class. I will hold
them before class on Tuesday (10:00am - 11:15am) and after
class on Thursday (12:45pm-2:00pm).
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summary

Last Class: Dimensionality Reduction

• Finished up Count-Min Sketch and Frequent Items.
• Applications and examples of dimensionality reduction in
data science (PCA, LSA, autoencoders, etc.)

• Low-distortion embeddings and some simple cases of when
no-distortion embeddings are possible.

The Johnson-Lindenstrauss Lemma.

• Any data set can be embedded with low distortion into
low-dimensional space.

• Prove the JL Lemma.
• Discuss algorithmic considerations, connections to other
methods (SimHash), etc.
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low distortion embedding

Low Distortion Embedding: Given x⃗1, . . . , x⃗n ∈ Rd, distance
function D, and error parameter ϵ ≥ 0, find x̃1, . . . , x̃n ∈ Rm

(where m≪ d) and distance function D̃ such that for all
i, j ∈ [n]:

(1− ϵ)D(⃗xi, x⃗j) ≤ D̃(x̃i, x̃j) ≤ (1+ ϵ)D(⃗xi, x⃗j).

Euclidean Low Distortion Embedding: Given x⃗1, . . . , x⃗n ∈ Rd

and error parameter ϵ ≥ 0, find x̃1, . . . , x̃n ∈ Rm (where m≪ d)
such that for all i, j ∈ [n]:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

We will primarily focus on this restricted notion in this class.
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low distortion embedding

Euclidean Low Distortion Embedding: Given x⃗1, . . . , x⃗n ∈ Rd

and error parameter ϵ ≥ 0, find x̃1, . . . , x̃n ∈ Rm (where m≪ d)
such that for all i, j ∈ [n]:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.
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embedding with assumptions

Assume that x⃗1, . . . , x⃗n all lie on the 1st axis in Rd.

Set m = 1 and x̃i = x⃗i(1) (i.e., x̃i is just a single number).

• ∥x̃i − x̃j∥2 =
√
[⃗xi(1)− x⃗j(1)]2 = |⃗xi(1)− x⃗j(1)| = ∥⃗xi − x⃗j∥2.

• An embedding with no distortion from any d into m = 1.
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embedding with assumptions

Assume that x⃗1, . . . , x⃗n all lie on the unit circle in R2.

• Admits a low-distortion embedding to 1 dimension by letting
x̃i = θ(⃗xi).

• Does it admit a low-distortion Euclidean embedding? No! Send
me a proof on Piazza for 3 bonus points on Problem Set 2. 6



embedding with assumptions

Another easy case: Assume that x⃗1, . . . , x⃗n lie in any k-dimensional
subspace V of Rd.

• Let v⃗1, v⃗2, . . . , v⃗k be an orthonormal basis for V and let V ∈ Rd×k be
the matrix with these vectors as its columns.

• If we set x̃i ∈ Rk to x̃i = VTx⃗i we have:

∥x̃i − x̃j∥2 = ∥VT(⃗xi − x⃗j)∥2 = ∥⃗xi − x⃗j∥2.

• An embedding with no distortion from any d into m = k.
• VT : Rd → Rk is a linear map giving our embedding. 7



embedding with no assumptions

What about when we don’t make any assumptions on
x⃗1, . . . , x⃗n. I.e., they can be scattered arbitrarily around
d-dimensional space?

• Can we find a no-distortion embedding into m≪ d
dimensions? No. Require m = d.

• Can we find an ϵ-distortion embedding into m≪ d
dimensions for ϵ > 0? Yes! Always, with m depending on ϵ.

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.
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the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points
x⃗1, . . . , x⃗n ∈ Rd and ϵ > 0 there exists a linear mapΠ : Rd → Rm
such that m = O

(
log n
ϵ2

)
and letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ϵ = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.
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random projection

For any x⃗1, . . . , x⃗n and Π ∈ Rm×d with each entry chosen i.i.d. from
N (0, 1/m), with high probability, letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

• Π is known as a random projection. It is a random linear function,
mapping length d vectors to length m vectors.

• Π is data oblivious. Stark contrast to methods like PCA.
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algorithmic considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured (Problem Set 2), etc. =⇒ more
efficient computation of xĩ = Πx⃗i.

• Data oblivious property means that once Π is chosen,
x1̃, . . . , xñ can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the full
data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily compressed,
without updating existing points.
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connection to simhash

Compression operation is x̃i = Πx⃗i, so for any j,

x̃i(j) = ⟨Π(j), x⃗i⟩ =
d∑
k=1

Π(j, k) · x⃗i(k).

Π(j) is a vector with independent random Gaussian entries.

Points with high cosine
similarity have similar
random projections.

Computing a length m SimHash signature SH1(⃗xi), . . . , SHm(⃗xi) is
identical to computing x̃i = Πx⃗i and then taking sign(x̃i).

x⃗1, . . . , x⃗n : original points (d dims.), x1̃, . . . , x̃n : compressed points (m < d
dims.), Π ∈ Rm×d : random projection (embedding function)
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distributional jl

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

Applying a random matrix Π to any vector y⃗ preserves y⃗’s norm with
high probability.
• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles. Will see next.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob. 13



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x⃗1, . . . , x⃗n, define
(n
2
)
vectors y⃗ij where y⃗ij = x⃗i − x⃗j.

• If we choose Π with m = O
(
log 1/δ

ϵ2

)
, for each y⃗ij with probability

≥ 1− δ we have:

(1− ϵ)∥⃗yij⃗xi − x⃗j∥2 ≤ ∥Πy⃗ijΠ(⃗xi − x⃗j)x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗yij⃗xi − x⃗j∥2

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob.
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distributional jl =⇒ jl

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ϵ2

)
, letting x̃i = Πx⃗i, for each pair x⃗i, x⃗j with probability

≥ 1− δ′ we have:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log(1/δ′)

ϵ2

)
, all

pairwise distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)
Yields the JL lemma.

x⃗1, . . . , x⃗n : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ϵ: em-
bedding error, δ: embedding failure prob.
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distributional jl proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⃗⟩ = 1√

m
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1/m1).

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 16



distributional jl proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⃗⟩ = 1√

m
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1).

• gi · y⃗(i) ∼ N (0, y⃗(i)2): a normal distribution with variance y⃗(i)2.

What is the distribution of ỹ(j)? Also Gaussian!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.
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distributional jl proof

Letting ỹ = Πy⃗, we have ỹ(j) = ⟨Π(j), y⃗⟩ and:

ỹ(j) = 1√
m

d∑
i=1

gi · y⃗(i) where gi · y⃗(i) ∼ N (0, y⃗(i)2).

Stability of Gaussian Random Variables. For independent a ∼
N (µ1, σ

2
1 ) and b ∼ N (µ2, σ

2
2) we have:

a+ b ∼ N (µ1 + µ2, σ
2
1 + σ22)

Thus, ỹ(j) ∼ 1√
mN (0, y⃗(1)2 + y⃗(2)2 + . . .+ y⃗(d)2∥⃗y∥22)N (0, ∥⃗y∥22/m). I.e.,

ỹ itself is a random Gaussian vector. Rotational invariance of the
Gaussian distribution.Stability is another explanation for the central limit theorem.

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable
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distributional jl proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as N (0, 1/m),
for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

ỹ(j) ∼ N (0, ∥⃗y∥22/m).

What is E[∥ỹ∥22]?

E[∥ỹ∥22] = E

 m∑
j=1

ỹ(j)2
 =

m∑
j=1

E[ỹ(j)2]

=
m∑
j=1

∥⃗y∥22
m = ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable 19



distributional jl proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as
1√
m · N (0, 1), for any y⃗ ∈ Rd, letting ỹ = Πy⃗:

ỹ(j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥ỹ∥22 =

∑m
i=1 ỹ(j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(
log(1/δ)

ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥ỹ∥22 ≤ (1+ ϵ)∥⃗y∥22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob.
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example application: svm

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.

• For any point a in A,
⟨a,w⟩ ≥ c+m

• For any point b in B
⟨b,w⟩ ≤ c−m.

• Assume all vectors
have unit norm.

JL Lemma implies that after projection into O
(
log n
m2

)
dimensions, still

have ⟨ã,w⟩̃ ≥ c+m/4 and ⟨b̃,w⟩̃ ≤ c−m/4.

Upshot: Can random project and run SVM (much more efficiently) in
the lower dimensional space to find separator w.̃
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Questions?
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