
COMPSCI 514: Problem Set 2

Released: 9/17.

Due: 9/28 by 8:00pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Random Hashing for Streaming Computation (12 points + 4 bonus)

Let x1, x2, . . . , xn, be a stream of inputs. Each is an integer in [m].

1. (4 points) Give an algorithm using as little memory as possible that selects a random distinct
element from the stream. E.g., if the stream is x1 = 3, x2 = 5, x3 = 2, x4 = 3, then the
algorithm should output 2, 3, or 5, each with probability 1/3. How much memory does your
algorithm require? You may assume for simplicity that any single number takes O(1) units
of memory to store.

2. (4 points) Modify your algorithm to output a random element from the stream with proba-
bility proportional to its frequency. E.g., if the stream is x1 = 3, x2 = 5, x3 = 2, x4 = 3,
then the algorithm should output 2 with probability 1/4, 3 with probability 1/2, and 5 with
probability 1/4. Your algorithm should work even if n is not known ahead of time.

3. (4 points) Let f(v) be the frequency of some value v in the stream. I.e., f(v) = |{i ∈ [n] :
xi = v}|. Consider running t independent instantiations of the algorithm from part (2) and
estimating f(v) as f̃(v) = s(v) · nt , where s(v) is the number of times that v is sampled
out of the t samples taken. How large must you set t so that with probability ≥ 1 − δ,∣∣∣̃f(v)− f(v)

∣∣∣ ≤ εn?

4. Bonus (4 points): For some constant c > 0, it is possible to create 2cm subsets of [m],
each with m/2 elements, such that no two of the subsets share more than 3m/8 elements
in common. Use this fact to argue that any deterministic algorithm that guarantees to
approximate the number of distinct elements d in a data stream of n items with error less

1



than d/16 (i.e., the algorithm outputs d̂ with |d̂− d| < d/16) must use Ω(d) bits of memory.
How does this compare to the memory usage of the MinHash algorithm presented in class?
Hint: Think about how many different states an algorithm using O(d) bits can be in.

2. Random Group Testing (15 points)

Suppose, hypothetically, that we are facing a global pandemic and wish to control the spread by
testing as many individuals as possible. Unfortunately testing is expensive. A common method to
address is issue is to test individuals in groups. I.e., the biological samples (e.g., nose swabs) from
multiple patients are combined into a single sample and tested for the disease all at once. If the
test returns negative, it means that all individuals in the group are negative. If the test comes back
positive, it means that at least one individual in the group has the disease. We’ll see here how this
strategy can be used to significantly save on the number of tests required to identify a small subset
of positive individuals in the population.

1. (4 points) Consider the following two-stage testing scheme: we divide a population of n
individuals into C arbitrary groups. We then test each of these groups in aggregate. For any
group that comes back positive, we retest all members of the group individually. Show that
there is a choice for C such that, if p individuals in the population are positive, we can find all
of those individuals with ≤ 2

√
np tests. You may assume that p is known in advance (often

it can be estimated accurately from the positive rate of prior tests).

2. (1 point) Say we are testing the UMass Amherst student body. n = 30, 000 and there is a 1%
positivity rate, so p = 300. How many tests does the strategy of part (1) save over simply
individually testing each member of the student body?

3. (6 points) Consider the following improved randomized scheme: collect k samples from each
individual. Then, repeat the following process k times: randomly partition the population
into C groups (i.e., each individual is assigned independently to group i with probability 1/C
for i = 1, 2, ..., C), and test each group in aggregate. Once this process is complete, report
that an individual is positive if every group they were part of tested positive. Report that
an individual is negative if any of the groups they were part of tested negative. Show that
for C = O(p) this scheme finds all truly positive patients, and that each negative patient is
marked positive with probability ≤ 1

2k
.

4. (2 points) Show that if we set k = O(log n), then with probability ≥ 9/10 the method of part
(3) yields no false positives, no false negatives, and requires just O(p log n) tests.

5. (2 points) What algorithm covered in class does the scheme from part (3) resemble?

3. Locality Sensitive Hashing in Use (8 points + 5 bonus)

We would like to use locality sensitive hashing to search for similar handwritten digit images
from the MNIST dataset. We will measure similarity using cosine similarity and use the SimHash
method. Throughout the problem, use the data provided in the mnist.mat file. It is helpful to
initially normalize all images to have unit Euclidean norm. Include printouts of any code in your
problem set submission.

Given an input image x, you would like to identify any image y with cosine similarity 〈x, y〉 ≥ .95.
Your task is to pick a number of table repetitions t and a hash signature length r so that any image
close to x is identified with probability at least 98%. At the same time, you would like to minimize
the number of false positives in your hashing scheme.

2



1. (2 points) Using that for two images x and y, Pr[SimHash(x) = SimHash(y)] = 1− θ
π where

θ is the angle between x and y in radians, determine for each r ∈ {1, . . . , 30} the number of
repetitions t required to achieve the desired false negative rate of 2%. You may want to write
code to solve this problem, but please also describe in words/equations how you determined
the required t for a given r. Assume that x and y are unit norm through this problem.

2. (2 points) Given a fixed value of r and t, what is the expected number of collisions between
images x and y with cosine similarity 〈x, y〉 = s across t hash tables? Give an equation
in terms of r, t, and s. Count collisions happening in different tables as different collisions.
Assume that a collision only occurs if x and y have matching SimHash signatures (i.e., ignore
additional collisions that occur when inserting to the hash table).

3. (4 points) For each r ∈ {1, . . . , 30}, use the 10, 000 images in testX to estimate the expected
number of collisions that will be encountered for an image x when using enough hash tables
to ensure a 2% false negative rate (as determined in part (1)). Plot the expected number
of collisions as a function of r. Discuss the trend, and how you might use this information
to choose r for an application. Include both a description with words/equations along with
any code used. Hint: For a given image x in testX, compute the expected total number of
collisions that will occur with other images in testX. Then average over all 10, 000 possibilities
for x in the set to get your estimate.

4. Bonus (5 points): To get a feel for how SimHash is working, set r = 35 and compute
SimHash signatures for the 60, 000 images in trainX. For simplicity, do not worry about
using any repetitions (i.e., use t = 1.) Focusing on a single digit type, run a few near
neighbor queries in order to find a few (maybe 6 or so) sets of images that hash to the same
signatures. Plot these sets of colliding images. What do you notice? Are the colliding images
similar? Are there many false positives?

3


