• Problem Set 1 is due Thursday in Gradescope.
• My office hours today are 1:15pm-2:15pm.
• Problem Set 1 is due Thursday in Gradescope.
• My office hours today are 1:15pm-2:15pm.

Lecture Pace: Piazza poll results for last class:

• 18%: too fast
• 48%: a bit too fast
• 26%: perfect
• 8%: (a bit) too slow

So will try to slow down a bit.
Last Class:

- Hashing for Jaccard Similarity
 - MinHash for estimating the Jaccard similarity
 - Application to fast similarity search
 - Locality sensitive hashing (LSH)

This Class:

- Finish up MinHash and LSH
- The Frequent Elements (heavy-hitters) problem
- Misra-Gries summaries
Last Class: Hashing for Jaccard Similarity

- MinHash for estimating the Jaccard similarity.
- Application to fast similarity search.
- Locality sensitive hashing (LSH).
Last Class: Hashing for Jaccard Similarity

- MinHash for estimating the Jaccard similarity.
- Application to fast similarity search.
- Locality sensitive hashing (LSH).

This Class:

- Finish up MinHash and LSH.
- The Frequent Elements (heavy-hitters) problem.
- Misra-Gries summaries.
Jaccard Similarity: \[J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\# \text{ shared elements}}{\# \text{ total elements}}. \]

Two Common Use Cases:

- **Near Neighbor Search**: Have a database of \(n \) sets/bit strings and given a set \(A \), want to find if it has high similarity to anything in the database. Naively \(O(n) \) time.

- **All-pairs Similarity Search**: Have \(n \) different sets/bit strings. Want to find all pairs with high similarity. Naively \(O(n^2) \) time.
MinHashing

MinHash(A) = min_{a \in A} h(a) where h : U \rightarrow [0, 1] is a random hash.
MinHashing

MinHash(A) = \min_{a \in A} h(a) where h : U \rightarrow [0, 1] is a random hash.

Locality Sensitivity: \(\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B) \).
MinHash(A) = min_{a \in A} h(a) where h : U \rightarrow [0, 1] is a random hash.

Locality Sensitivity: \(\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B) \).

Represents a set with a single number that captures Jaccard similarity information!
MinHash(A) = $\min_{a \in A} h(a)$ where $h : U \rightarrow [0, 1]$ is a random hash.

Locality Sensitivity: $\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B)$.

Represents a set with a single number that captures Jaccard similarity information!

Given a collision free hash function $g : [0, 1] \rightarrow [m]$,
\[
\Pr [g(\text{MinHash}(A)) = g(\text{MinHash}(B))] = J(A, B).
\]
MinHash(A) = \min_{a \in A} h(a) \text{ where } h : U \rightarrow [0, 1] \text{ is a random hash.}

Locality Sensitivity: \(\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B) \).

Represents a set with a **single number** that captures Jaccard similarity information!

Given a collision free hash function \(g : [0, 1] \rightarrow [m] \),

\[
\Pr [g(\text{MinHash}(A)) = g(\text{MinHash}(B))] = J(A, B).
\]

What happens to \(\Pr [g(\text{MinHash}(A)) = g(\text{MinHash}(B))] \) if \(g \) is not collision free?
MINHASHING

\[
\text{MinHash}(A) = \min_{a \in A} h(a) \text{ where } h : U \to [0, 1] \text{ is a random hash.}
\]

Locality Sensitivity: \(\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B) \).

Represents a set with a **single number** that captures Jaccard similarity information!

Given a collision free hash function \(g : [0, 1] \to [m] \),

\[
\Pr[g(\text{MinHash}(A)) = g(\text{MinHash}(B))] = J(A, B).
\]

What happens to \(\Pr[g(\text{MinHash}(A)) = g(\text{MinHash}(B))] \) if \(g \) is not collision free? Collision probability will be larger than \(J(A, B) \).
When searching for similar items only search for matches that land in the same hash bucket.

- False Negative: A similar pair doesn't appear in the same bucket.
- False Positive: A dissimilar pair is hashed to the same bucket.

Need to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)
When searching for similar items only search for matches that land in the same hash bucket.

- **False Negative**: A similar pair doesn’t appear in the same bucket.
- **False Positive**: A dissimilar pair is hashed to the same bucket.
When searching for similar items only search for matches that land in the same hash bucket.

- **False Negative:** A similar pair doesn’t appear in the same bucket.
- **False Positive:** A dissimilar pair is hashed to the same bucket.

Need to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)
Consider a pairwise independent random hash function $h : U \to [m]$. Is this locality sensitive?
Consider a pairwise independent random hash function $h : U \rightarrow [m]$. Is this locality sensitive?

$$\Pr (h(x) = h(y)) = \frac{1}{m} \text{ for all } x, y \in U.$$ Not locality sensitive!
Consider a pairwise independent random hash function $h : U \rightarrow [m]$. Is this locality sensitive?

$$\Pr (h(x) = h(y)) = \frac{1}{m} \text{ for all } x, y \in U. \text{ Not locality sensitive!}$$

- Random hash functions (for load balancing, fast hash table look ups, bloom filters, distinct element counting, etc.) aim to evenly distribute elements across the hash range.
- Locality sensitive hash functions (for similarity search) aim to distribute elements in a way that reflects their similarities.
Balancing False Negatives/Positives with MinHash via repetition.
Balancing False Negatives/Positives with MinHash via repetition.

Create t hash tables. Each is indexed into not with a single MinHash value, but with r values, appended together. A length r signature:

$$MH_{i,1}(x), MH_{i,2}(x), \ldots, MH_{i,r}(x).$$
For A, B with Jaccard similarity $J(A, B) = s$, probability their length r MinHash signatures collide:

$$
Pr \left([\text{MH}_{i,1}(A), \ldots, \text{MH}_{i,r}(A)] = [\text{MH}_{i,1}(B), \ldots, \text{MH}_{i,r}(B)] \right) = ?.
$$
For A, B with Jaccard similarity $J(A, B) = s$, probability their length r MinHash signatures collide:

$$\Pr \left([\text{MH}_{i,1}(A), \ldots, \text{MH}_{i,r}(A)] = [\text{MH}_{i,1}(B), \ldots, \text{MH}_{i,r}(B)] \right) = s^r.$$
For A, B with Jaccard similarity $J(A, B) = s$, probability their length r MinHash signatures collide:

$$\Pr \left([MH_{i,1}(A), \ldots, MH_{i,r}(A)] = [MH_{i,1}(B), \ldots, MH_{i,r}(B)] \right) = s^r.$$

Probability the signatures don’t collide:

$$\Pr \left([MH_{i,1}(A), \ldots, MH_{i,r}(A)] \neq [MH_{i,1}(B), \ldots, MH_{i,r}(B)] \right) = 1 - s^r.$$

$MH_{i,j}$: $(i, j)^{th}$ independent instantiation of MinHash. t repetitions ($i = 1, \ldots t$), each with r hash functions ($j = 1, \ldots r$) to make a length r signature.
For A, B with Jaccard similarity $J(A, B) = s$, probability their length r MinHash signatures collide:

$$\Pr\left([\text{MH}_{i,1}(A), \ldots, \text{MH}_{i,r}(A)] = [\text{MH}_{i,1}(B), \ldots, \text{MH}_{i,r}(B)]\right) = s^r.$$

Probability the signatures don’t collide:

$$\Pr\left([\text{MH}_{i,1}(A), \ldots, \text{MH}_{i,r}(A)] \neq [\text{MH}_{i,1}(B), \ldots, \text{MH}_{i,r}(B)]\right) = 1 - s^r.$$

Probability there is at least one collision in the t hash tables:

$$\Pr\left(\exists i : [\text{MH}_{i,1}(A), \ldots, \text{MH}_{i,r}(A)] = [\text{MH}_{i,1}(B), \ldots, \text{MH}_{i,r}(B)]\right) = 1 - (1 - s^r)^t.$$

MH_{i,j}: $(i, j)^{th}$ independent instantiation of MinHash. t repetitions ($i = 1, \ldots t$), each with r hash functions ($j = 1, \ldots r$) to make a length r signature.
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

$r = 5, t = 10$
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

$r = 10, t = 10$
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

r = 5, t = 30
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

r and t are tuned depending on application. ‘Threshold’ when hit probability is 1/2 is $\approx (1/t)^{1/r}$. E.g., $\approx (1/30)^{1/5} = .51$ in this case.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

Expected Number of Items Scanned: (proportional to query time)
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 1000 near matches with $J(x, y) \in [.7, .9]$.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 1000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 1000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{25})^{50} \approx .98$.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 1000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .9^{25})^{50} \approx .98$
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 1000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7^{25})^{50} \approx .007$
For example: Consider a database with 10,000,000 audio clips. You are given a clip \(x \) and want to find any \(y \) in the database with \(J(x, y) \geq .9 \).

- There are 10 true matches in the database with \(J(x, y) \geq .9 \).
- There are 1000 near matches with \(J(x, y) \in [.7, .9] \).

With signature length \(r = 25 \) and repetitions \(t = 50 \), hit probability for \(J(x, y) = s \) is \(1 - (1 - s^{25})^{50} \).

- Hit probability for \(J(x, y) \geq .9 \) is \(\geq 1 - (1 - .9^{25})^{50} \approx .98 \)
- Hit probability for \(J(x, y) \in [.7, .9] \) is \(\leq 1 - (1 - .9^{25})^{50} \approx .98 \)
- Hit probability for \(J(x, y) \leq .7 \) is \(\leq 1 - (1 - .7^{25})^{50} \approx .007 \)

Expected Number of Items Scanned: (proportional to query time)

\[.98 \times 10 + .98 \times 1000 + .007 \times 9,998,990 \approx 80,000 \ll 10,000,000. \]
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

Cosine Similarity:

\[
\cos(\langle x; y \rangle) = \frac{\langle x; y \rangle}{\|x\|_2 \|y\|_2}.
\]

- \(\cos(\langle x; y \rangle) = 1\) when \(\langle x; y \rangle = 0\)° and \(\cos(\langle x; y \rangle) = 0\) when \(\langle x; y \rangle = 90\)°, and \(\cos(\langle x; y \rangle) = 1\) when \(\langle x; y \rangle = 180\)°.
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

• LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Cosine Similarity: \(\cos(\theta(x, y)) \)
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Cosine Similarity: \(\cos(\theta(x, y)) \)

- \(\cos(\theta(x, y)) = 1 \) when \(\theta(x, y) = 0^\circ \) and \(\cos(\theta(x, y)) = 0 \) when \(\theta(x, y) = 90^\circ \), and \(\cos(\theta(x, y)) = -1 \) when \(\theta(x, y) = 180^\circ \)
Repetition and s-curve tuning can be used for search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Cosine Similarity: \(\cos(\theta(x, y)) = \frac{\langle x, y \rangle}{\|x\|_2 \cdot \|y\|_2} \).

- \(\cos(\theta(x, y)) = 1 \) when \(\theta(x, y) = 0^\circ \) and \(\cos(\theta(x, y)) = 0 \) when \(\theta(x, y) = 90^\circ \), and \(\cos(\theta(x, y)) = -1 \) when \(\theta(x, y) = 180^\circ \).
SimHash Algorithm: LSH for cosine similarity.
SimHash Algorithm: LSH for cosine similarity.
SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = \text{sign}(\langle x; t \rangle) \text{ for a random vector } t:

\Pr[\text{SimHash}(x) = \text{SimHash}(y)] = \frac{1}{2} (\langle x; y \rangle + 1):
SimHash Algorithm: LSH for cosine similarity.
SimHash Algorithm: LSH for cosine similarity.

\[\text{SimHash}(x) = \text{sign}(\langle x, t \rangle) \] for a random vector \(t \).
SimHash Algorithm: LSH for cosine similarity.

\[\text{SimHash}(x) = \text{sign}(\langle x, t \rangle) \]

for a random vector \(t \).

\[
\text{Pr}[\text{SimHash}(x) = \text{SimHash}(y)] = 1 - \frac{\theta(x, y)}{\pi} \approx \frac{\cos(\theta(x, y)) + 1}{2}.
\]
Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).
Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).

\[n_i = \sigma \left(\sum_{j=1}^{m} w(x_j, n_i) \cdot x_j \right) = \sigma(\langle w_i, x \rangle) \]
Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).

\[n_i = \sigma \left(\sum_{j=1}^{m} w(x_j, n_i) \cdot x_j \right) = \sigma(\langle w_i, x \rangle) \]

- Evaluating \(\mathcal{N}(x) \) requires \(|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \ldots \) multiplications if fully connected.
Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).

- Evaluating $\mathcal{N}(x)$ requires $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \ldots$ multiplications if fully connected.
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.
Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).

- Evaluating $\mathcal{N}(x)$ requires $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \ldots$ multiplications if fully connected.
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.
- For approximate evaluation, suffices to identify the neurons in each layer with high activation when x is presented.
Many applications outside traditional similarity search. E.g., approximate neural net computation (Anshumali Shrivastava).

- Evaluating $\mathcal{N}(x)$ requires $|x| \cdot |\text{layer 1}| + |\text{layer 1}| \cdot |\text{layer 2}| + \ldots$ multiplications if fully connected.
- Can be expensive, especially on constrained devices like cellphones, cameras, etc.
- For approximate evaluation, suffices to identify the neurons in each layer with **high activation** when x is presented.
Important neurons have high activation $\langle w_i, x \rangle$. Since \cos is typically monotonic, this means large $\langle w_i, x \rangle$.

$\cos(\langle w_i, x \rangle) = \langle w_i, x \rangle \left\| w_i \right\| \left\| x \right\|$. Thus these neurons can be found very quickly using LSH for cosine similarity search.

Nonlinearity σ

$$n_i = \sigma \left(\sum_{j=1}^{m} w(x_j, n_i) \cdot x_j \right) = \sigma(\langle w_i, x \rangle)$$
Important neurons have high activation $\sigma(\langle w_i, x \rangle)$.
• Important neurons have high activation $\sigma(\langle w_i, x \rangle)$.
• Since σ is typically monotonic, this means large $\langle w_i, x \rangle$.
Important neurons have high activation $\sigma(\langle w_i, x \rangle)$.
Since σ is typically monotonic, this means large $\langle w_i, x \rangle$.
$\cos(\theta(w_i, x)) = \frac{\langle w_i, x \rangle}{\|w_i\| \|x\|}$. Thus these neurons can be found very quickly using LSH for cosine similarity search.
Hashing for Duplicate Detection

<table>
<thead>
<tr>
<th>Goal</th>
<th>Bloom Filters</th>
<th>Hash Table</th>
<th>MinHash</th>
<th>Distinct Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check if x is a duplicate of y in database.</td>
<td>Check if x is a duplicate of any y in database and return y.</td>
<td>Check if x is a duplicate of any y in database and return y.</td>
<td>Count # of items, excluding duplicates.</td>
<td></td>
</tr>
<tr>
<td>Approximate Duplicates?</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

15
Hashing for Duplicate Detection

<table>
<thead>
<tr>
<th>Goal</th>
<th>Bloom Filters</th>
<th>Hash Table</th>
<th>MinHash</th>
<th>Distinct Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check if x is a duplicate of y in database.</td>
<td>Check if x is a duplicate of any y in database and return y.</td>
<td>Check if x is a duplicate of any y in database and return y.</td>
<td>Count # of items, excluding duplicates.</td>
<td></td>
</tr>
<tr>
<td>Approximate Duplicates?</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

All different variants of detecting duplicates/finding matches in large datasets. An important problem in many contexts!
All different variants of detecting duplicates/finding matches in large datasets. An important problem in many contexts!

MinHash(A) is a single number sketch, that can be used both to estimate the number of items in A and the Jaccard similarity between A and other sets.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Bloom Filters</th>
<th>Hash Table</th>
<th>MinHash</th>
<th>Distinct Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check if x is a duplicate of y in database.</td>
<td>Check if x is a duplicate of any y in database and return y.</td>
<td>Check if x is a duplicate of any y in database and return y.</td>
<td>Count # of items, excluding duplicates.</td>
<td></td>
</tr>
<tr>
<td>Approximate Duplicates?</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>
Questions on MinHash and Locality Sensitive Hashing?
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
\textit{k-Frequent Items (Heavy-Hitters) Problem}: Consider a stream of \(n\) items \(x_1, \ldots, x_n\) (with possible duplicates). Return any item at appears at least \(\frac{n}{k}\) times.

\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
\(x_1\) & \(x_2\) & \(x_3\) & \(x_4\) & \(x_5\) & \(x_6\) & \(x_7\) & \(x_8\) & \(x_9\) \\
\hline
5 & 12 & 3 & 3 & 4 & 5 & 5 & 10 & 3 \\
\hline
\end{tabular}
\end{table}

• What is the maximum number of items that must be returned? At most \(k\) items with frequency \(\frac{n}{k}\).

• Trivial with \(O(n)\) space – store the count for each item and return the one that appears \(\frac{n}{k}\) times.

• Can we do it with less space? I.e., without storing all \(n\) items? Same challenge as with the distinct elements problem.
THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned?
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned? At most k items with frequency $\geq \frac{n}{k}$.
\textbf{k-Frequent Items (Heavy-Hitters) Problem}: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

\begin{itemize}
 \item What is the maximum number of items that must be returned? At most k items with frequency $\geq \frac{n}{k}$.
 \item Trivial with $O(n)$ space – store the count for each item and return the one that appears $\geq n/k$ times.
\end{itemize}
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned? At most k items with frequency $\geq \frac{n}{k}$.
- Trivial with $O(n)$ space – store the count for each item and return the one that appears $\geq n/k$ times.
- Can we do it with less space? I.e., without storing all n items?
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of \(n \) items \(x_1, \ldots, x_n \) (with possible duplicates). Return any item that appears at least \(\frac{n}{k} \) times.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
<th>(x_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned? At most \(k \) items with frequency \(\geq \frac{n}{k} \).
- Trivial with \(O(n) \) space – store the count for each item and return the one that appears \(\geq n/k \) times.
- Can we do it with less space? I.e., without storing all \(n \) items?
- Same challenge as with the distinct elements problem.
Applications of Frequent Items:
Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- ‘Iceberg queries’ for all items in a database with frequency above some threshold.
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- ‘Iceberg queries’ for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream.
Majority: Consider a stream of n items x_1, \ldots, x_n, where a single item appears a majority of the time. Return this item.
MAJORITY IN DATA STREAMS

Majority: Consider a stream of \(n \) items \(x_1, \ldots, x_n \), where a single item appears a majority of the time. Return this item.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
<td>(x_5)</td>
<td>(x_6)</td>
<td>(x_7)</td>
<td>(x_8)</td>
<td>(x_9)</td>
<td>(x_{10})</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
MAJORITY IN DATA STREAMS

Majority: Consider a stream of n items x_1, \ldots, x_n, where a single item appears a majority of the time. Return this item.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- Basically k-Frequent items for $k = 2$ (except assume a single item has a strict majority.)
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count $c := 0$, majority element $m := \bot$
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.

Boyermoore Voting Algorithm: (our first deterministic algorithm)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Boyer-Moore Voting Algorithm: (our first *deterministic algorithm*)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_6</td>
<td>x_7</td>
<td>x_8</td>
<td>x_9</td>
<td>x_{10}</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

c=1, m=5

c=0, m=⊥
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count $c := 0$, majority element $m := \perp$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count \(c := 0 \), majority element \(m := \perp \)
- For \(i = 1, \ldots, n \)
 - If \(c = 0 \), set \(m := x_i \)
 - Else if \(m = x_i \), set \(c := c + 1 \).
 - Else if \(m \neq x_i \), set \(c := c - 1 \).

Just requires \(O(\log n) \) bits to store \(c \) and space to store \(m \).
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count \(c := 0 \), majority element \(m := \bot \)
• For \(i = 1, \ldots, n \)
 • If \(c = 0 \), set \(m := x_i \)
 • Else if \(m = x_i \), set \(c := c + 1 \).
 • Else if \(m \neq x_i \), set \(c := c - 1 \).

Just requires \(O(\log n) \) bits to store \(c \) and space to store \(m \).
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Boyer-Moore Voting Algorithm: (our first *deterministic algorithm*)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.
Boyer-Moore Voting Algorithm: (our first *deterministic algorithm*)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Just requires $O(\log n)$ bits to store c and space to store m.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count \(c := 0 \), majority element \(m := \bot \)
• For \(i = 1, \ldots, n \)
 • If \(c = 0 \), set \(m := x_i \)
 • Else if \(m = x_i \), set \(c := c + 1 \).
 • Else if \(m \neq x_i \), set \(c := c - 1 \).

Just requires \(O(\log n) \) bits to store \(c \) and space to store \(m \).
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$
 - Else if $m \neq x_i$, set $c := c - 1$

Just requires $O(\log n)$ bits to store c and space to store m.
Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count \(c := 0 \), majority element \(m := \perp \)
• For \(i = 1, \ldots, n \)
 • If \(c = 0 \), set \(m := x_i \)
 • Else if \(m = x_i \), set \(c := c + 1 \).
 • Else if \(m \neq x_i \), set \(c := c - 1 \).

Just requires \(O(\log n) \) bits to store \(c \) and space to store \(m \).
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let $s = c$ when $m = M$ and $s = c$ otherwise.

- s is incremented each time M appears. So it is incremented more than it is decremented and ends at a positive value.

The algorithm ends with $m = M$.

21
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m :=\bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$
 - Else if $m \neq x_i$, set $c := c - 1$

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let $s = c$ when $m = M$ and $s = -c$ otherwise.
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let $s = c$ when $m = M$ and $s = -c$ otherwise.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
<th>x_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \perp$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let $s = c$ when $m = M$ and $s = -c$ otherwise.
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \perp$

- For $i = 1, \ldots, n$

 - If $c = 0$, set $m := x_i$

 - Else if $m = x_i$, set $c := c + 1$.

 - Else if $m \neq x_i$, set $c := c - 1$.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let $s = c$ when $m = M$ and $s = -c$ otherwise.
Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let $s = c$ when $m = M$ and $s = -c$ otherwise.

- s is incremented each time M appears. So it is incremented more than it is decremented and ends at a positive value.
Boyer-Moore Voting Algorithm:

- Initialize count \(c := 0 \), majority element \(m := \bot \)
- For \(i = 1, \ldots, n \)
 - If \(c = 0 \), set \(m := x_i \)
 - Else if \(m = x_i \), set \(c := c + 1 \).
 - Else if \(m \neq x_i \), set \(c := c - 1 \).

Claim: The Boyer-Moore algorithm always outputs the majority element, regardless of what order the stream is presented in.

Proof: Let \(M \) be the true majority element. Let \(s = c \) when \(m = M \) and \(s = -c \) otherwise.

- \(s \) is incremented each time \(M \) appears. So it is incremented more than it is decremented and ends at a positive value. \(\implies \) algorithm ends with \(m = M \).
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

Boyer-Moore Voting Algorithm:

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

Misra-Gries Summary:

- Initialize count $c := 0$, majority element $m := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$
- For $i = 1, \ldots, n$
 - If $c = 0$, set $m := x_i$
 - Else if $m = x_i$, set $c := c + 1$.
 - Else if $m \neq x_i$, set $c := c - 1$.
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \perp$
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \perp$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

Claim: At the end of the stream, all items with frequency n_k are stored.
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Summary:

- Initialize counts \(c_1, \ldots, c_k := 0 \), elements \(m_1, \ldots, m_k := \bot \).
- For \(i = 1, \ldots, n \):
 - If \(m_j = x_i \) for some \(j \), set \(c_j := c_j + 1 \).
 - Else let \(t = \arg \min c_j \). If \(c_t = 0 \), set \(m_t := x_i \) and \(c_t := 1 \).
 - Else \(c_j := c_j - 1 \) for all \(j \).

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
<th>(x_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

Claim: At the end of the stream, all items with frequency n_k are stored.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Algorithm

Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \perp$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg\min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \perp$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\
 5 & 12 & 3 & 3 & 4 & 5 & 5 & 10 & 3 \\
\end{array}
\]
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

Claim: At the end of the stream, all items with frequency n_k are stored.
Misra-Gries Summary:

- Initialize counts $c_1, \ldots, c_k := 0$, elements $m_1, \ldots, m_k := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.

Claim: At the end of the stream, all items with frequency $\geq \frac{n}{k}$ are stored.
Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.
Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored.
Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored.
- If there are $k/2$ items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into $k/2$ ‘free slots’.
Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored.
- If there are $k/2$ items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into $k/2$ ‘free slots’.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items still have positive counts.
Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$.

Intuition:

- If there are exactly k items, each appearing exactly n/k times, all are stored.
- If there are $k/2$ items each appearing $\geq n/k$ times, there are $\leq n/2$ irrelevant items, being inserted into $k/2$ ‘free slots’.
- May cause $\frac{n/2}{k/2} = \frac{n}{k}$ decrement operations. Few enough that the heavy items still have positive counts.

Anything undesirable about the Misra-Gries output guarantee?
Claim: At the end of the stream, the Misra-Gries algorithm stores \(k \) items, including all those with frequency \(\geq \frac{n}{k} \).

Intuition:

- If there are exactly \(k \) items, each appearing exactly \(n/k \) times, all are stored.
- If there are \(k/2 \) items each appearing \(\geq n/k \) times, there are \(\leq n/2 \) irrelevant items, being inserted into \(k/2 \) ‘free slots’.
- May cause \(\frac{n/2}{k/2} = \frac{n}{k} \) decrement operations. Few enough that the heavy items still have positive counts.

Anything undesirable about the Misra-Gries output guarantee?
May have false positives – infrequent items that are stored.
Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.
Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

- In fact, no algorithm using $o(n)$ space can output just the items with frequency $\geq n/k$. To hard to tell e.g., between an item with frequency n/k (should be output) and $n/k - 1$ (should not be output).

Issue: Misra-Gries algorithm stores \(k\) items, including all with frequency \(\geq n/k\). But may include infrequent items.

- In fact, no algorithm using \(o(n)\) space can output just the items with frequency \(\geq n/k\). To hard to tell e.g., between an item with frequency \(n/k\) (should be output) and \(n/k - 1\) (should not be output).

\((\epsilon, k)\)-**Frequent Items Problem:** Consider a stream of \(n\) items \(x_1, \ldots, x_n\). Return a set \(F\) of items, including all items that appear at least \(\frac{n}{k}\) times and only items that appear at least \((1 - \epsilon) \cdot \frac{n}{k}\) times.
Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n/k$. But may include infrequent items.

- In fact, no algorithm using $o(n)$ space can output just the items with frequency $\geq n/k$. To hard to tell e.g., between an item with frequency n/k (should be output) and $n/k - 1$ (should not be output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items x_1,\ldots,x_n. Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

- An example of relaxing to a ‘promise problem’: for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{k}, \frac{n}{k}]$ no output guarantee.
Misra-Gries Summary: (ϵ-error version)

- Let $r := \lceil k/\epsilon \rceil$
- Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \text{arg min} \ c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.
- Return any m_j with $c_j \geq (1 - \epsilon) \cdot \frac{n}{k}$.
Misra-Gries Summary: (\(\varepsilon\)-error version)

- Let \(r := \lceil k/\varepsilon \rceil \)
- Initialize counts \(c_1, \ldots, c_r := 0 \), elements \(m_1, \ldots, m_r := \bot \).
- For \(i = 1, \ldots, n \)
 - If \(m_j = x_i \) for some \(j \), set \(c_j := c_j + 1 \).
 - Else let \(t = \arg \min c_j \). If \(c_t = 0 \), set \(m_t := x_i \) and \(c_t := 1 \).
 - Else \(c_j := c_j - 1 \) for all \(j \).
- Return any \(m_j \) with \(c_j \geq (1 - \varepsilon) \cdot \frac{n}{k} \).

Claim: For all \(m_j, f(m_j) - \frac{\varepsilon n}{k} \leq c_j \leq f(m_j) \), where \(f(m_j) \) is the true frequency. \(r \) is large so relatively few decrements.
Misra-Gries Summary: (ϵ-error version)

- Let $r := \lceil k/\epsilon \rceil$
- Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$.
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \arg \min c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.
- Return any m_j with $c_j \geq (1 - \epsilon) \cdot \frac{n}{k}$.

Claim: For all m_j, $f(m_j) - \frac{\epsilon n}{k} \leq c_j \leq f(m_j)$, where $f(m_j)$ is the true frequency. r is large so relatively few decrements.

Implication: If $f(m_j) \geq \frac{n}{k}$, then $c_j \geq (1 - \epsilon) \cdot \frac{n}{k}$ so the item is returned. If $f(m_j) < (1 - \epsilon) \cdot \frac{n}{k}$, then $c_j < (1 - \epsilon) \cdot \frac{n}{k}$ so the item is not returned.
Misra-Gries Summary: (ϵ-error version)

- Let $r := \lceil k/\epsilon \rceil$
- Initialize counts $c_1, \ldots, c_r := 0$, elements $m_1, \ldots, m_r := \bot$
- For $i = 1, \ldots, n$
 - If $m_j = x_i$ for some j, set $c_j := c_j + 1$.
 - Else let $t = \text{arg min} c_j$. If $c_t = 0$, set $m_t := x_i$ and $c_t := 1$.
 - Else $c_j := c_j - 1$ for all j.
- Return any m_j with $c_j \geq (1 - \epsilon) \cdot \frac{n}{K}$.

Claim: For all m_j, $f(m_j) - \frac{\epsilon n}{K} \leq c_j \leq f(m_j)$, where $f(m_j)$ is the true frequency. r is large so relatively few decrements.

Implication: If $f(m_j) \geq \frac{n}{K}$, then $c_j \geq (1 - \epsilon) \cdot \frac{n}{K}$ so the item is returned. If $f(m_j) < (1 - \epsilon) \cdot \frac{n}{K}$, then $c_j < (1 - \epsilon) \cdot \frac{n}{K}$ so the item is not returned. Solves (ϵ, k)-Frequent Items.
Upshot: The \((\epsilon, k)\)-Frequent Items problems can be solved via the Misra-Gries approach.
Upshot: The (ϵ, k)-Frequent Items problems can be solved via the Misra-Gries approach.

- Space usage is $\lceil k/\epsilon \rceil$ counts – $O \left(\frac{k \log n}{\epsilon} \right)$ bits and $\lceil k/\epsilon \rceil$ items.
- Deterministic approximation algorithm.
Questions?