COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 24 (Final Lecture!)



LOGISTICS

- Problem Set 4 due Sunday 12/15 at 8pm.

- Exam prep materials (including practice problems) posted
under the ‘Schedule’ tab of the course page.

- 1 will hold office hours on both Tuesday and Wednesday next
week from 10am to 12pm to prep for final.

- SRTI survey is open until 12/22. Your feedback this semester
has been very helpful to me, so please fill out the survey!

- https://owl.umass.edu/partners/
courseEvalSurvey/uma/


https://owl.umass.edu/partners/courseEvalSurvey/uma/
https://owl.umass.edu/partners/courseEvalSurvey/uma/
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- Compressed sensing and sparse recovery.

- Applications to sparse regression, frequent elements
problem, sparse Fourier transform.

This Class:

- Finish up sparse recovery.
- Solution via basis pursuit. Idea of convex relaxation.

- Wrap up.



SPARSE RECOVERY

Problem Set Up: Given data matrix A € R™*? with n < d and
measurements b = Ax. Recover x under the assumption that it is
k-sparse, i.e.,, has at most k < d nonzero entries.
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SPARSE RECOVERY

Problem Set Up: Given data matrix A € R™*? with n < d and
measurements b = Ax. Recover x under the assumption that it is
k-sparse, i.e.,, has at most k < d nonzero entries.

Last Time: Proved this is possible (i.e,, the solution x is unique) when
A has Kruskal rank > 2k.
x = argmin ||z||o,
zeRY:Az=b
Kruskal rank condition can be satisfied with n as small as 2k
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- Afrequency vector with k out of n very frequent items is
approximately k-sparse.

- Can be approximately recovered from its multiplication with a
random matrix A with just m = O(k) rows.

* b = Ax can be maintained in a stream using just O(m) space.

- Exactly the set up of Count-min sketch in linear algebraic notation.



SPARSE FOURIER TRANSFORM

Discrete Fourier Transform: For a discrete signal (aka a vector)
x € R", its discrete Fourier transform is denoted X € C" and given by
X = Fx, where F € C"*" is the discrete Fourier transform matrix.
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Discrete Fourier Transform: For a discrete signal (aka a vector)
x € R", its discrete Fourier transform is denoted X € C" and given by
X = Fx, where F € C"*" is the discrete Fourier transform matrix.

frequency
content
sound wave x(D)
B = i
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For many natural signals X is approximately sparse: a few dominant
frequencies in a recording, superposition of a few radio transmitters
sending at different frequencies, etc.
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SPARSE FOURIER TRANSFORM

When the Fourier transform X is sparse, can recover it from few
measurements of x using sparse recovery.

- X =Fxand so x = F~'X = F'X (x = signal, X = Fourier transform).

~

inverse Fourier transform X Sx

SF1 }

— small sample
of original
signal

sparse frequency
content

Translates to big savings in acquisition costs and number of sensors. 6
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SPARSE FOURIER TRANSFORM

Other Direction: When x itself is sparse, can recover it from few
measurements of the Fourier transform X using sparse recovery.

discrete Fourier transform ﬁ S Q
SF i

— small sample of
Fourier transform

sparse signal

How do we access/measure entries of SX?
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GEOSENSING

- In seismology, x is an image of the earth’s crust, and often sparse
(e.g., a few locations of oil deposits).

- Want to recover from a few measurements of the Fourier
transform SX = SFx.

- To measure entries of X need to measure the content of different
frequencies in a signal x.

- Achieved by inducing vibrations of different frequencies with a
vibroseis truck, air guns, explosions, etc and recording the
response (more complicated in reality...)



Back to Algorithms
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CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin |||
zeR9:Az=b

Works if A has Kruskal rank > 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit: X = arg min,cgon_y 121 Where ||zl = 20, [2()I.
What is one algorithm we have learned for solving this problem?

- Projected (sub)gradient descent - convex objective function and
convex constraint set.

+ An instance of linear programming, so typically faster to solve with
a linear programming algorithm (e.g., simplex, interior point).
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unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
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BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin  vs. argmin ||z]|o

zeRI:Az=b z€R4:Az=b
Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.
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BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution x

with Ax = b (i.e, arg min,cga.a—p [12|l1 = arg Min,cro.ar—p 112//0)

* Requires a strengthening of the Kruskal rank > 2k assumption
(that still holds in many applications).

Definition: A € R"*% hasthe (m, ¢) restricted isometry property
(is (m, €)-RIP) if for all m-sparse vectors x:

(1= )lxll2 < [[Ax]l < (1 + €)|Ix]l2

Theorem: If A is (3k,€)-RIP for small enough constant e, then
Z* = argmin,cpa.a—p ||2]|1 s equal to the unique kR-sparse x with
Ax = b (i.e,, basis pursuit solves the sparse recovery problem).




Wrap Up

Thanks for a great semester!
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RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership
(Bloomfilters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

+ Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

+ Low-rank structure in graphs - nonlinear dimensionality reduction
and spectral clustering for community detection, stochastic block
model, matrix concentration.

* In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value

decomposition, projection, norm transformations.
15
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CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

* Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

* How to analyze gradient descent in a simple setting.

+ Online optimization, online gradient descent, and how to use it to
analyze stochastic gradient descent (by far the most common
optimization method in ML).

- Lots that we didn't cover: accelerated methods, adaptive methods,
second order methods (quasi-Newton methods), practical
considerations. Hopefully gave mathematical tools to understand
these methods.
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GRAB-BAG TOPICS

- The weirdness of high-dimensional space and geometry.
Connections to randomized methods, dimensionality
reduction. Always useful to keep in mind.

- Compressed sensing/sparse recovery — a very broad and
widely-used framework for working with high-dimensional
data. Connection to streaming algorithms (frequent items
counting) and convex optimization.
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Thanks!
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