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logistics

• Problem Set 4 due Sunday 12/15 at 8pm.
• Exam prep materials (including practice problems) posted
under the ‘Schedule’ tab of the course page.

• I will hold office hours on both Tuesday and Wednesday next
week from 10am to 12pm to prep for final.

• SRTI survey is open until 12/22. Your feedback this semester
has been very helpful to me, so please fill out the survey!

• https://owl.umass.edu/partners/
courseEvalSurvey/uma/
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summary

Last Class:

• Compressed sensing and sparse recovery.
• Applications to sparse regression, frequent elements
problem, sparse Fourier transform.

This Class:

• Finish up sparse recovery.
• Solution via basis pursuit. Idea of convex relaxation.
• Wrap up.
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sparse recovery

Problem Set Up: Given data matrix A ∈ Rn×d with n < d and
measurements b = Ax. Recover x under the assumption that it is
k-sparse, i.e., has at most k≪ d nonzero entries.

Last Time: Proved this is possible (i.e., the solution x is unique) when
A has Kruskal rank ≥ 2k.

x = argmin
z∈Rd:Az=b

∥z∥0,

Kruskal rank condition can be satisfied with n as small as 2k
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frequent items counting

• A frequency vector with k out of n very frequent items is
approximately k-sparse.

• Can be approximately recovered from its multiplication with a
random matrix A with just m = Õ(k) rows.

• b = Ax can be maintained in a stream using just O(m) space.
• Exactly the set up of Count-min sketch in linear algebraic notation.
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sparse fourier transform

Discrete Fourier Transform: For a discrete signal (aka a vector)
x ∈ Rn, its discrete Fourier transform is denoted x̂ ∈ Cn and given by
x̂ = Fx, where F ∈ Cn×n is the discrete Fourier transform matrix.

For many natural signals x̂ is approximately sparse: a few dominant
frequencies in a recording, superposition of a few radio transmitters
sending at different frequencies, etc.
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sparse fourier transform

When the Fourier transform x̂ is sparse, can recover it from few
measurements of x using sparse recovery.

• x̂ = Fx and so x = F−1x̂ = FTx̂ (x = signal, x̂ = Fourier transform).

Translates to big savings in acquisition costs and number of sensors.
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sparse fourier transform

Other Direction: When x itself is sparse, can recover it from few
measurements of the Fourier transform x̂ using sparse recovery.

How do we access/measure entries of Sx̂?
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geosensing

• In seismology, x is an image of the earth’s crust, and often sparse
(e.g., a few locations of oil deposits).

• Want to recover from a few measurements of the Fourier
transform Sx̂ = SFx.

• To measure entries of x̂ need to measure the content of different
frequencies in a signal x.

• Achieved by inducing vibrations of different frequencies with a
vibroseis truck, air guns, explosions, etc and recording the
response (more complicated in reality...)
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Back to Algorithms
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convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.

Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit: x = argminz∈Rd:Az=b ∥z∥1 where ∥z∥1 =
∑d

i=1 |z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected (sub)gradient descent – convex objective function and
convex constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm (e.g., simplex, interior point).
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basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimal solution will be
on a corner (i.e., sparse),
unless Az = b has slope
1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.
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basis pursuit theorem

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (i.e, argminz∈Rd:Az=b ∥z∥1 = argminz∈Rd:Az=b ∥z∥0)
• Requires a strengthening of the Kruskal rank ≥ 2k assumption
(that still holds in many applications).

Definition: A ∈ Rn×d has the (m, ϵ) restricted isometry property
(is (m, ϵ)-RIP) if for all m-sparse vectors x:

(1− ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ ϵ)∥x∥2

Theorem: If A is (3k, ϵ)-RIP for small enough constant ϵ, then
z⋆ = argminz∈Rd:Az=b ∥z∥1 is equal to the unique k-sparse xwith
Ax = b (i.e., basis pursuit solves the sparse recovery problem).
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Wrap Up

Thanks for a great semester!
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randomized methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership
(Bloomfilters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/ϵ2)
dimensions while preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Low-rank structure in graphs – nonlinear dimensionality reduction
and spectral clustering for community detection, stochastic block
model, matrix concentration.

• In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value
decomposition, projection, norm transformations.
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continuous optimization

Foundations of continuous optimization and gradient descent.

• Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting.

• Online optimization, online gradient descent, and how to use it to
analyze stochastic gradient descent (by far the most common
optimization method in ML).

• Lots that we didn’t cover: accelerated methods, adaptive methods,
second order methods (quasi-Newton methods), practical
considerations. Hopefully gave mathematical tools to understand
these methods.
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grab-bag topics

• The weirdness of high-dimensional space and geometry.
Connections to randomized methods, dimensionality
reduction. Always useful to keep in mind.

• Compressed sensing/sparse recovery – a very broad and
widely-used framework for working with high-dimensional
data. Connection to streaming algorithms (frequent items
counting) and convex optimization.
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Thanks!

18


