COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 24 (Final Lecture!)

LOGISTICS

- Problem Set 4 due Sunday 12/15 at 8pm.

- Exam prep materials (including practice problems) posted
under the ‘Schedule’ tab of the course page.

- 1 will hold office hours on both Tuesday and Wednesday next
week from 10am to 12pm to prep for final.

- SRTI survey is open until 12/22. Your feedback this semester
has been very helpful to me, so please fill out the survey!

- https://owl.umass.edu/partners/
courseEvalSurvey/uma/

https://owl.umass.edu/partners/courseEvalSurvey/uma/
https://owl.umass.edu/partners/courseEvalSurvey/uma/

SUMMARY

Last Class:

- Compressed sensing and sparse recovery.

- Applications to sparse regression, frequent elements
problem, sparse Fourier transform.

SUMMARY

Last Class:

- Compressed sensing and sparse recovery.

- Applications to sparse regression, frequent elements
problem, sparse Fourier transform.

This Class:

- Finish up sparse recovery.
- Solution via basis pursuit. Idea of convex relaxation.

- Wrap up.

SPARSE RECOVERY

Problem Set Up: Given data matrix A € R™*? with n < d and
measurements b = Ax. Recover x under the assumption that it is
k-sparse, i.e.,, has at most k < d nonzero entries.

n A =

SPARSE RECOVERY

Problem Set Up: Given data matrix A € R™*? with n < d and
measurements b = Ax. Recover x under the assumption that it is
k-sparse, i.e.,, has at most k < d nonzero entries.

SPARSE RECOVERY

Problem Set Up: Given data matrix A € R™*? with n < d and
measurements b = Ax. Recover x under the assumption that it is
k-sparse, i.e.,, has at most k < d nonzero entries.

Last Time: Proved this is possible (i.e,, the solution x is unique) when
A has Kruskal rank > 2k.
x = argmin ||z||o,
zeRY:Az=b
Kruskal rank condition can be satisfied with n as small as 2k

FREQUENT ITEMS COUNTING

. frequency vector x
random matrix

2000 4300

1 __ | 15
A o | — |-215

6 3000
0 -150

150 compressed
3 representation b = Ax
1
0
2

- Afrequency vector with k out of n very frequent items is
approximately k-sparse.

- Can be approximately recovered from its multiplication with a
random matrix A with just m = O(k) rows.

* b = Ax can be maintained in a stream using just O(m) space.

- Exactly the set up of Count-min sketch in linear algebraic notation.

SPARSE FOURIER TRANSFORM

Discrete Fourier Transform: For a discrete signal (aka a vector)
x € R", its discrete Fourier transform is denoted X € C" and given by
X = Fx, where F € C"*" is the discrete Fourier transform matrix.

frequency
content
sound wave x(D)
B = i
4:_ :
S ol IRV YV PY

SPARSE FOURIER TRANSFORM

Discrete Fourier Transform: For a discrete signal (aka a vector)
x € R", its discrete Fourier transform is denoted X € C" and given by
X = Fx, where F € C"*" is the discrete Fourier transform matrix.

frequency
content
sound wave x(D)
B = i
-:I- :
S ol IRV YV PY

For many natural signals X is approximately sparse: a few dominant
frequencies in a recording, superposition of a few radio transmitters
sending at different frequencies, etc.

SPARSE FOURIER TRANSFORM

When the Fourier transform X is sparse, can recover it from few
measurements of x using sparse recovery.

SPARSE FOURIER TRANSFORM

When the Fourier transform X is sparse, can recover it from few
measurements of x using sparse recovery.

- X =Fxand so x = F~'X = F'X (x = signal, X = Fourier transform).

A~
inverse Fourier transform X X
F =
sparse frequency ~ Original signal
content

SPARSE FOURIER TRANSFORM

When the Fourier transform X is sparse, can recover it from few
measurements of x using sparse recovery.

- X =Fxand so x = F~'X = F'X (x = signal, X = Fourier transform).

A~
inverse Fourier transform X X
F =
sparse frequency ~ Original signal
content

SPARSE FOURIER TRANSFORM

When the Fourier transform X is sparse, can recover it from few
measurements of x using sparse recovery.

- X =Fxand so x = F~'X = F'X (x = signal, X = Fourier transform).

~

inverse Fourier transform X Sx

SF1 }

— small sample
of original
signal

sparse frequency
content

SPARSE FOURIER TRANSFORM

When the Fourier transform X is sparse, can recover it from few
measurements of x using sparse recovery.

- X =Fxand so x = F~'X = F'X (x = signal, X = Fourier transform).

~

inverse Fourier transform X Sx

SF1 }

— small sample
of original
signal

sparse frequency
content

Translates to big savings in acquisition costs and number of sensors. 6

SPARSE FOURIER TRANSFORM

Other Direction: When x itself is sparse, can recover it from few
measurements of the Fourier transform X using sparse recovery.

SPARSE FOURIER TRANSFORM

Other Direction: When x itself is sparse, can recover it from few
measurements of the Fourier transform X using sparse recovery.

A
discrete Fourier transform X X

-

sparse signal Fourier
transform

SPARSE FOURIER TRANSFORM

Other Direction: When x itself is sparse, can recover it from few
measurements of the Fourier transform X using sparse recovery.

discrete Fourier transform ﬁ S Q
SF i

— small sample of
Fourier transform

sparse signal

SPARSE FOURIER TRANSFORM

Other Direction: When x itself is sparse, can recover it from few
measurements of the Fourier transform X using sparse recovery.

discrete Fourier transform ﬁ S Q
SF i

— small sample of
Fourier transform

sparse signal

How do we access/measure entries of SX?

GEOSENSING

- In seismology, x is an image of the earth’s crust, and often sparse
(e.g., a few locations of oil deposits).

+ Want to recover from a few measurements of the Fourier
transform SX = SFx.

GEOSENSING

- In seismology, x is an image of the earth’s crust, and often sparse
(e.g., a few locations of oil deposits).

- Want to recover from a few measurements of the Fourier
transform SX = SFx.

- To measure entries of X need to measure the content of different
frequencies in a signal x.

GEOSENSING

- In seismology, x is an image of the earth’s crust, and often sparse
(e.g., a few locations of oil deposits).

- Want to recover from a few measurements of the Fourier
transform SX = SFx.

- To measure entries of X need to measure the content of different
frequencies in a signal x.

- Achieved by inducing vibrations of different frequencies with a
vibroseis truck, air guns, explosions, etc and recording the
response (more complicated in reality...)

Back to Algorithms

CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin |||
zeR9:Az=b

Works if A has Kruskal rank > 2k, but very hard computationally.

CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:
x = argmin |||
z€RI:Az=b
Works if A has Kruskal rank > 2k, but very hard computationally.

Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin |||
zeR9:Az=b

Works if A has Kruskal rank > 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit: X = arg min,cgon_y 121 Where ||zl = 20, [2()I.

CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin |||
zeR9:Az=b

Works if A has Kruskal rank > 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit: X = arg min,cgon_y 121 Where ||zl = 20, [2()I.

What is one algorithm we have learned for solving this problem?

CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin |||
zeR9:Az=b

Works if A has Kruskal rank > 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit: X = arg min,cgon_y 121 Where ||zl = 20, [2()I.
What is one algorithm we have learned for solving this problem?

- Projected (sub)gradient descent - convex objective function and
convex constraint set.

CONVEX RELAXATION

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin |||
zeR9:Az=b

Works if A has Kruskal rank > 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit: X = arg min,cgon_y 121 Where ||zl = 20, [2()I.
What is one algorithm we have learned for solving this problem?

- Projected (sub)gradient descent - convex objective function and
convex constraint set.

+ An instance of linear programming, so typically faster to solve with
a linear programming algorithm (e.g., simplex, interior point).

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||
zeR4:Az=b zeR4:Az=b

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the

unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||
zeR4:Az=b zeR4:Az=b

Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the

unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||
zeR4:Az=b zeR4:Az=b

Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.
Az=b

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||

zZERI:Az=b ZERI:Az=b
Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.
Az=b
lzlly= 4~
llzll= 3

llzll,= 2

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||

zZERI:Az=b ZERI:Az=b
Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.
Az=b
lzlly= 4~
llzll= 3

llzll,= 2

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||

zZERI:Az=b ZERI:Az=b
Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.
Az=b
- Optimal solution will be
on a corner (i.e, sparse),
llzlly= 4—, unless Az = b has slope
llzll= 3

1.

llzll,= 2

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [jz|ly vs. argmin |||

zZERI:Az=b ZERI:Az=b

Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.

Az=b
- Optimal solution will be
on a corner (i.e, sparse),
llzlly= 4—, unless Az = b has slope
lizll,= 3

1.

llzll,= 2

- Similar intuition to the
LASSO method.

1

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin [|z|l, vs. argmin ||z||o

ZERI:Az=b ZERI:Az=b
Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.
Az=b
- Optimal solution will be
on a corner (i.e, sparse),
llzlly= 4—, unless Az = b has slope
llzll= 3 1

llzll,= 2

- Similar intuition to the
LASSO method.

- Does not hold if e.g, the

/, norm is used.
17

BASIS PURSUIT

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z* will have small ¢,
norm but why would it even be sparse?

argmin vs. argmin ||z]|o

zeRI:Az=b z€R4:Az=b
Assumethatn =1,d=2,k=1 SoAc R™ and x € R? is 1-sparse.

Az=b - Optimal solution will be

lly= 4 on a corner (i.e., sparse),
unless Az = b has slope

llzll=3 /\ 1
llzll,= 2
- Similar intuition to the
LASSO method.

- Does not hold if e.g, the
¢, norm is used.

1

BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (i.e, arg min,cga.a—p [12|l1 = arg Min,cro.ar—p 112//0)

* Requires a strengthening of the Kruskal rank > 2k assumption
(that still holds in many applications).

BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (i.e, arg min,cga.a—p [12|l1 = arg Min,cro.ar—p 112//0)

* Requires a strengthening of the Kruskal rank > 2k assumption
(that still holds in many applications).

Definition: A € R"*% hasthe (m, ¢) restricted isometry property
(is (m, €)-RIP) if for all m-sparse vectors x:

(1=)lxll2 < [[Ax]l < (1 + €)|Ix]l2

BASIS PURSUIT THEOREM

Can prove that basis pursuit outputs the exact k-sparse solution x

with Ax = b (i.e, arg min,cga.a—p [12|l1 = arg Min,cro.ar—p 112//0)

* Requires a strengthening of the Kruskal rank > 2k assumption
(that still holds in many applications).

Definition: A € R"*% hasthe (m, ¢) restricted isometry property
(is (m, €)-RIP) if for all m-sparse vectors x:

(1=)lxll2 < [[Ax]l < (1 + €)|Ix]l2

Theorem: If A is (3k,€)-RIP for small enough constant e, then
Z* = argmin,cpa.a—p ||2]|1 s equal to the unique kR-sparse x with
Ax = b (i.e,, basis pursuit solves the sparse recovery problem).

Wrap Up

Thanks for a great semester!

13

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

14

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership
(Bloomfilters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

14

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership
(Bloomfilters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

14

RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership
(Bloomfilters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

14

DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

15

DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

15

DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

+ Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

15

DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

+ Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

15

DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

+ Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

+ Low-rank structure in graphs - nonlinear dimensionality reduction
and spectral clustering for community detection, stochastic block
model, matrix concentration.

15

DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

+ Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

+ Low-rank structure in graphs - nonlinear dimensionality reduction
and spectral clustering for community detection, stochastic block
model, matrix concentration.

* In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value

decomposition, projection, norm transformations.
15

CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

16

CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

* Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

16

CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

* Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

* How to analyze gradient descent in a simple setting.

16

CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

* Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

* How to analyze gradient descent in a simple setting.

+ Online optimization, online gradient descent, and how to use it to
analyze stochastic gradient descent (by far the most common
optimization method in ML).

16

CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

* Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

* How to analyze gradient descent in a simple setting.

+ Online optimization, online gradient descent, and how to use it to
analyze stochastic gradient descent (by far the most common
optimization method in ML).

- Lots that we didn't cover: accelerated methods, adaptive methods,
second order methods (quasi-Newton methods), practical
considerations. Hopefully gave mathematical tools to understand
these methods.

16

GRAB-BAG TOPICS

- The weirdness of high-dimensional space and geometry.
Connections to randomized methods, dimensionality
reduction. Always useful to keep in mind.

- Compressed sensing/sparse recovery — a very broad and
widely-used framework for working with high-dimensional
data. Connection to streaming algorithms (frequent items
counting) and convex optimization.

17

Thanks!

18

