
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 23

0



logistics

• Problem Set 4 due Sunday 12/15 at 8pm.
• Exam prep materials posted under the ‘Schedule’ tab of the
course page.

• SRTI survey is open until 12/22. Your feedback this semester
has been very helpful to me, so please fill out the survey!

• https://owl.umass.edu/partners/
courseEvalSurvey/uma/

1

https://owl.umass.edu/partners/courseEvalSurvey/uma/
https://owl.umass.edu/partners/courseEvalSurvey/uma/


summary

Last Class:

• Some counterintuitive properties of high dimensional space.
• Connections to ‘curse of dimensionality’.

This Class:

• Compressed sensing and sparse recovery.
• Applications to sparse regression, frequent elements
problem, sparse Fourier transform, efficient imaging, etc.

2



summary

Last Class:

• Some counterintuitive properties of high dimensional space.
• Connections to ‘curse of dimensionality’.

This Class:

• Compressed sensing and sparse recovery.
• Applications to sparse regression, frequent elements
problem, sparse Fourier transform, efficient imaging, etc.

2



linear systems

Consider matrix A ∈ Rn×d and x ∈ Rd. If you are given b = Ax,
under what condition can you find x?

When A has full column
rank – i.e., all columns are linearly independent.

Compressed sensing: Under what assumptions we can still
find x when the number of ‘measurements’ n is smaller than
the number of features d (i.e., when b is a compression of x)?

3



linear systems

Consider matrix A ∈ Rn×d and x ∈ Rd. If you are given b = Ax,
under what condition can you find x? When A has full column
rank – i.e., all columns are linearly independent.

Compressed sensing: Under what assumptions we can still
find x when the number of ‘measurements’ n is smaller than
the number of features d (i.e., when b is a compression of x)?

3



linear systems

Consider matrix A ∈ Rn×d and x ∈ Rd. If you are given b = Ax,
under what condition can you find x? When A has full column
rank – i.e., all columns are linearly independent.

Compressed sensing: Under what assumptions we can still
find x when the number of ‘measurements’ n is smaller than
the number of features d (i.e., when b is a compression of x)?

3



linear systems

Consider matrix A ∈ Rn×d and x ∈ Rd. If you are given b = Ax,
under what condition can you find x? When A has full column
rank – i.e., all columns are linearly independent.

Compressed sensing: Under what assumptions we can still
find x when the number of ‘measurements’ n is smaller than
the number of features d (i.e., when b is a compression of x)?

3



linear systems

Consider matrix A ∈ Rn×d and x ∈ Rd. If you are given b = Ax,
under what condition can you find x? When A has full column
rank – i.e., all columns are linearly independent.

Compressed sensing: Under what assumptions we can still
find x when the number of ‘measurements’ n is smaller than
the number of features d (i.e., when b is a compression of x)?

3



sparse recovery

The most common assumption of compressed sensing is that x
is k-sparse, i.e., has at most k≪ d nonzero entries.

These types of linear systems have lots of applications.

First: Under what condition can you find x assuming knowledge
that it is at most k-sparse?

When every set of 2k columns in A
is linearly independent – i.e., A has Kruskal rank 2k.

4



sparse recovery

The most common assumption of compressed sensing is that x
is k-sparse, i.e., has at most k≪ d nonzero entries.

These types of linear systems have lots of applications.

First: Under what condition can you find x assuming knowledge
that it is at most k-sparse?

When every set of 2k columns in A
is linearly independent – i.e., A has Kruskal rank 2k.

4



sparse recovery

The most common assumption of compressed sensing is that x
is k-sparse, i.e., has at most k≪ d nonzero entries.

These types of linear systems have lots of applications.

First: Under what condition can you find x assuming knowledge
that it is at most k-sparse?

When every set of 2k columns in A
is linearly independent – i.e., A has Kruskal rank 2k.

4



sparse recovery

The most common assumption of compressed sensing is that x
is k-sparse, i.e., has at most k≪ d nonzero entries.

These types of linear systems have lots of applications.

First: Under what condition can you find x assuming knowledge
that it is at most k-sparse?

When every set of 2k columns in A
is linearly independent – i.e., A has Kruskal rank 2k.

4



sparse recovery

The most common assumption of compressed sensing is that x
is k-sparse, i.e., has at most k≪ d nonzero entries.

These types of linear systems have lots of applications.

First: Under what condition can you find x assuming knowledge
that it is at most k-sparse? When every set of 2k columns in A
is linearly independent – i.e., A has Kruskal rank 2k.

4



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.

• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0. Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.
• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0. Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.

5



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why?

Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm:

Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.

6



Example Applications

Caviat: Today we will only talk about sparse recovery without
noise when Ax = b. In applications, it is important to be able
to recover x from b with Ax = b+ n for some small noise n.

• The techniques discussed carry over to the noisy setting.
• Generally won’t find x exactly, but up to some good
approximation.

7



Example Applications

Caviat: Today we will only talk about sparse recovery without
noise when Ax = b. In applications, it is important to be able
to recover x from b with Ax = b+ n for some small noise n.

• The techniques discussed carry over to the noisy setting.
• Generally won’t find x exactly, but up to some good
approximation.

7



Example Applications

Caviat: Today we will only talk about sparse recovery without
noise when Ax = b. In applications, it is important to be able
to recover x from b with Ax = b+ n for some small noise n.

• The techniques discussed carry over to the noisy setting.
• Generally won’t find x exactly, but up to some good
approximation.

7



sparse regression

In high-dimensional data analysis, you often have a huge number of
variables (genetic markers, characteristics of a user, etc.), possibly
more than the number of data points.

• Believe that just a few important features explain some
phenomena (e.g., if a patient is likely to have a certain disease).

• Want to find a linear regression model Ax ≈ b that only uses a
small number of features (x is sparse).

• Interesting even in the over-constrained case. Often talked about
as a different problem than compressed sensing, but very related.

8



sparse regression

In high-dimensional data analysis, you often have a huge number of
variables (genetic markers, characteristics of a user, etc.), possibly
more than the number of data points.

• Believe that just a few important features explain some
phenomena (e.g., if a patient is likely to have a certain disease).

• Want to find a linear regression model Ax ≈ b that only uses a
small number of features (x is sparse).

• Interesting even in the over-constrained case. Often talked about
as a different problem than compressed sensing, but very related.

8



sparse regression

In high-dimensional data analysis, you often have a huge number of
variables (genetic markers, characteristics of a user, etc.), possibly
more than the number of data points.

• Believe that just a few important features explain some
phenomena (e.g., if a patient is likely to have a certain disease).

• Want to find a linear regression model Ax ≈ b that only uses a
small number of features (x is sparse).

• Interesting even in the over-constrained case. Often talked about
as a different problem than compressed sensing, but very related.

8



sparse regression

In high-dimensional data analysis, you often have a huge number of
variables (genetic markers, characteristics of a user, etc.), possibly
more than the number of data points.

• Believe that just a few important features explain some
phenomena (e.g., if a patient is likely to have a certain disease).

• Want to find a linear regression model Ax ≈ b that only uses a
small number of features (x is sparse).

• Interesting even in the over-constrained case. Often talked about
as a different problem than compressed sensing, but very related.

8



sparse regression

In high-dimensional data analysis, you often have a huge number of
variables (genetic markers, characteristics of a user, etc.), possibly
more than the number of data points.

• Believe that just a few important features explain some
phenomena (e.g., if a patient is likely to have a certain disease).

• Want to find a linear regression model Ax ≈ b that only uses a
small number of features (x is sparse).

• Interesting even in the over-constrained case. Often talked about
as a different problem than compressed sensing, but very related.

8



frequent items counting

Recall: The frequent elements problem asks us to return the k
most frequent elements seen in a stream of items.

• We saw how to (approximately) solve in O(k) space using
Misra-Gries or Count-Min Sketch.

• Only work when frequencies are constantly incremented (we
see more items over time). But what about when
frequencies can be decremented?

• E.g., Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be change over time, and items can be removed,
decreasing their frequencies.

• In this setting, the problem is solved with sparse recovery
techniques.

9



frequent items counting

Recall: The frequent elements problem asks us to return the k
most frequent elements seen in a stream of items.

• We saw how to (approximately) solve in O(k) space using
Misra-Gries or Count-Min Sketch.

• Only work when frequencies are constantly incremented (we
see more items over time). But what about when
frequencies can be decremented?

• E.g., Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be change over time, and items can be removed,
decreasing their frequencies.

• In this setting, the problem is solved with sparse recovery
techniques.

9



frequent items counting

Recall: The frequent elements problem asks us to return the k
most frequent elements seen in a stream of items.

• We saw how to (approximately) solve in O(k) space using
Misra-Gries or Count-Min Sketch.

• Only work when frequencies are constantly incremented (we
see more items over time). But what about when
frequencies can be decremented?

• E.g., Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be change over time, and items can be removed,
decreasing their frequencies.

• In this setting, the problem is solved with sparse recovery
techniques.

9



frequent items counting

Recall: The frequent elements problem asks us to return the k
most frequent elements seen in a stream of items.

• We saw how to (approximately) solve in O(k) space using
Misra-Gries or Count-Min Sketch.

• Only work when frequencies are constantly incremented (we
see more items over time). But what about when
frequencies can be decremented?

• E.g., Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be change over time, and items can be removed,
decreasing their frequencies.

• In this setting, the problem is solved with sparse recovery
techniques.

9



frequent items counting

Recall: The frequent elements problem asks us to return the k
most frequent elements seen in a stream of items.

• We saw how to (approximately) solve in O(k) space using
Misra-Gries or Count-Min Sketch.

• Only work when frequencies are constantly incremented (we
see more items over time). But what about when
frequencies can be decremented?

• E.g., Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be change over time, and items can be removed,
decreasing their frequencies.

• In this setting, the problem is solved with sparse recovery
techniques.

9



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.
• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.

10



frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.
• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery. 10



sparsity in signal processing

Many of the most important applications of sparse recovery
are in imaging and signal processing.

• Many signals are sparse in some basis (Fourier, wavelet, etc.).
• Using sparse recovery techniques, an n pixel image/n point
signal can thus be recovered from many fewer than n
measurements.

• Efficient MRI imaging, remote sensing for oil exploration, GPS
synchronization, power efficient cameras, etc.

In general, there are a lot of practical complexities here. So
everything I say is a major oversimplification.

11



sparsity in signal processing

Many of the most important applications of sparse recovery
are in imaging and signal processing.

• Many signals are sparse in some basis (Fourier, wavelet, etc.).
• Using sparse recovery techniques, an n pixel image/n point
signal can thus be recovered from many fewer than n
measurements.

• Efficient MRI imaging, remote sensing for oil exploration, GPS
synchronization, power efficient cameras, etc.

In general, there are a lot of practical complexities here. So
everything I say is a major oversimplification.

11



fourier transform

Discrete Fourier Transform: For a discrete signal (aka a vector)
x ∈ Rn, its discrete Fourier transform is denoted x̂ ∈ Cn and given by
x̂ = Fx, where F ∈ Cn×n is the discrete Fourier transform matrix.

For many natural signals x̂ is approximately sparse: a few dominant
frequencies in a recording, superposition of a few radio transmitters
sending at different frequencies, etc.

12



fourier transform

Discrete Fourier Transform: For a discrete signal (aka a vector)
x ∈ Rn, its discrete Fourier transform is denoted x̂ ∈ Cn and given by
x̂ = Fx, where F ∈ Cn×n is the discrete Fourier transform matrix.

For many natural signals x̂ is approximately sparse: a few dominant
frequencies in a recording, superposition of a few radio transmitters
sending at different frequencies, etc.

12



fourier transform

When the Fourier transform x̂ is sparse, can recover x from few
measurements using sparse recovery.

Translates to big savings in acquisition costs, the number of
sensors required, etc.

13



fourier transform

When the Fourier transform x̂ is sparse, can recover x from few
measurements using sparse recovery.

Translates to big savings in acquisition costs, the number of
sensors required, etc.

13



fourier transform

When the Fourier transform x̂ is sparse, can recover x from few
measurements using sparse recovery.

Translates to big savings in acquisition costs, the number of
sensors required, etc.

13



fourier transform

When the Fourier transform x̂ is sparse, can recover x from few
measurements using sparse recovery.

Translates to big savings in acquisition costs, the number of
sensors required, etc.

13



fourier transform

When the Fourier transform x̂ is sparse, can recover x from few
measurements using sparse recovery.

Translates to big savings in acquisition costs, the number of
sensors required, etc. 13



Back to Algorithms

14



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.

Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm. 15



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.

16



basis pursuit theorem

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (same as argminz∈Rd:Az=b ∥z∥0)
• Requires a strengthening of the Kruskal rank ≥ 2k assumption
(that still holds in all the applications discussed).

Definition: A ∈ Rn×d has the (m, ϵ) restricted isometry property
(is (m, ϵ)-RIP) if for all m-sparse vectors x:

(1− ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ ϵ)∥x∥2

Theorem: If A is (3k, ϵ)-RIP for small enough constant ϵ, then
z⋆ = argminz∈Rd:Az=b ∥z∥1 is equal to the unique k-sparse xwith
Ax = b (i.e., basis pursuit solves the sparse recovery problem).

17



basis pursuit theorem

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (same as argminz∈Rd:Az=b ∥z∥0)
• Requires a strengthening of the Kruskal rank ≥ 2k assumption
(that still holds in all the applications discussed).

Definition: A ∈ Rn×d has the (m, ϵ) restricted isometry property
(is (m, ϵ)-RIP) if for all m-sparse vectors x:

(1− ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ ϵ)∥x∥2

Theorem: If A is (3k, ϵ)-RIP for small enough constant ϵ, then
z⋆ = argminz∈Rd:Az=b ∥z∥1 is equal to the unique k-sparse xwith
Ax = b (i.e., basis pursuit solves the sparse recovery problem).

17



basis pursuit theorem

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (same as argminz∈Rd:Az=b ∥z∥0)
• Requires a strengthening of the Kruskal rank ≥ 2k assumption
(that still holds in all the applications discussed).

Definition: A ∈ Rn×d has the (m, ϵ) restricted isometry property
(is (m, ϵ)-RIP) if for all m-sparse vectors x:

(1− ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ ϵ)∥x∥2

Theorem: If A is (3k, ϵ)-RIP for small enough constant ϵ, then
z⋆ = argminz∈Rd:Az=b ∥z∥1 is equal to the unique k-sparse xwith
Ax = b (i.e., basis pursuit solves the sparse recovery problem).

17



Questions?

18


