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logistics

• Problem Set 4 due Sunday 12/15 at 8pm.
• Exam prep materials posted under the ‘Schedule’ tab of the
course page.

• SRTI survey is open until 12/22. Your feedback this semester
has been very helpful to me, so please fill out the survey!

• https://owl.umass.edu/partners/
courseEvalSurvey/uma/
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summary

Last Class:

• Some counterintuitive properties of high dimensional space.
• Connections to ‘curse of dimensionality’.

This Class:

• Compressed sensing and sparse recovery.
• Applications to sparse regression, frequent elements
problem, sparse Fourier transform, efficient imaging, etc.
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linear systems

Consider matrix A ∈ Rn×d and x ∈ Rd. If you are given b = Ax,
under what condition can you find x?

When A has full column
rank – i.e., all columns are linearly independent.

Compressed sensing: Under what assumptions we can still
find x when the number of ‘measurements’ n is smaller than
the number of features d (i.e., when b is a compression of x)?
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sparse recovery

The most common assumption of compressed sensing is that x
is k-sparse, i.e., has at most k≪ d nonzero entries.

These types of linear systems have lots of applications.

First: Under what condition can you find x assuming knowledge
that it is at most k-sparse?

When every set of 2k columns in A
is linearly independent – i.e., A has Kruskal rank 2k.
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kruskal rank recoverability

Sufficiency of Kruskal Rank 2k:

• We want to recover x from b = Ax, assuming x is k-sparse.

• Say there was a different k-sparse x′ with Ax′ = b, making recovery
impossible.

• Then Ax− Ax′ = A(x− x′) = 0.

Violates Kruskal rank assumption.

• Thus x is the unique k-sparse solution to Ax = b.
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recovery procedure

To satisfy the Kruskal rank ≥ 2k assumption A just needs 2k rows
(compared with d rows to have full column rank). Can recover a
d-dimensional k-sparse vector x from just 2k measurements b = Ax.

Assuming that A has Kruskal rank ≥ 2k, how do we actually find the
unique k-sparse solution x to Ax = b?

x = argmin
z∈Rd:Az=b

∥z∥0,

where ∥z∥0 is the number of non-zero entries in z.

This problem seems very difficult to solve. Why? Non-convex.

Exponential Time Algorithm: Loop through all
(d
k
)
= O(dk) sparsity

patterns and find the best z with the given sparsity pattern by
solving a normal linear regression problem.

A major accomplishment of compressed sensing/sparse recovery is
to make the above procedure efficient and noise robust.
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Example Applications

Caviat: Today we will only talk about sparse recovery without
noise when Ax = b. In applications, it is important to be able
to recover x from b with Ax = b+ n for some small noise n.

• The techniques discussed carry over to the noisy setting.
• Generally won’t find x exactly, but up to some good
approximation.
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sparse regression

In high-dimensional data analysis, you often have a huge number of
variables (genetic markers, characteristics of a user, etc.), possibly
more than the number of data points.

• Believe that just a few important features explain some
phenomena (e.g., if a patient is likely to have a certain disease).

• Want to find a linear regression model Ax ≈ b that only uses a
small number of features (x is sparse).

• Interesting even in the over-constrained case. Often talked about
as a different problem than compressed sensing, but very related.
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frequent items counting

Recall: The frequent elements problem asks us to return the k
most frequent elements seen in a stream of items.

• We saw how to (approximately) solve in O(k) space using
Misra-Gries or Count-Min Sketch.

• Only work when frequencies are constantly incremented (we
see more items over time). But what about when
frequencies can be decremented?

• E.g., Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be change over time, and items can be removed,
decreasing their frequencies.

• In this setting, the problem is solved with sparse recovery
techniques.
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frequent items counting

• Storing x requires O(n) space. Will instead store Ax where
A ∈ RO(k)×n is a random matrix.

• Ax can be efficiently updated in a data stream.

• If there are a k heavy items, x is approximately k-sparse.
• Estimating the large entries of x (the counts of the most frequent
items) from the compression Ax is exactly sparse recovery.
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sparsity in signal processing

Many of the most important applications of sparse recovery
are in imaging and signal processing.

• Many signals are sparse in some basis (Fourier, wavelet, etc.).
• Using sparse recovery techniques, an n pixel image/n point
signal can thus be recovered from many fewer than n
measurements.

• Efficient MRI imaging, remote sensing for oil exploration, GPS
synchronization, power efficient cameras, etc.

In general, there are a lot of practical complexities here. So
everything I say is a major oversimplification.
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fourier transform

Discrete Fourier Transform: For a discrete signal (aka a vector)
x ∈ Rn, its discrete Fourier transform is denoted x̂ ∈ Cn and given by
x̂ = Fx, where F ∈ Cn×n is the discrete Fourier transform matrix.

For many natural signals x̂ is approximately sparse: a few dominant
frequencies in a recording, superposition of a few radio transmitters
sending at different frequencies, etc.
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fourier transform

When the Fourier transform x̂ is sparse, can recover x from few
measurements using sparse recovery.

Translates to big savings in acquisition costs, the number of
sensors required, etc.
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Back to Algorithms
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convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.

Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex.

Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm.

15



convex relaxation

We would like to recover k-sparse x from measurements b = Ax by
solving the non-convex optimization problem:

x = argmin
z∈Rd:Az=b

∥z∥0

Works if A has Kruskal rank ≥ 2k, but very hard computationally.
Convex Relaxation: A very common technique. Just ‘relax’ the
problem to be convex. Basis Pursuit:

x = argmin
z∈Rd:Az=b

∥z∥1 where ∥z∥1 =
d∑
i=1

|z(i)|.

What is one algorithm we have learned for solving this problem?

• Projected gradient descent – convex objective function and convex
constraint set.

• An instance of linear programming, so typically faster to solve with
a linear programming algorithm. 15



basis pursuit

Why should we hope that the basis pursuit solution returns the
unique k-sparse x with Ax = b? The minimizer z∗ will have small ℓ1
norm but why would it even be sparse?

argmin
z∈Rd:Az=b

∥z∥1 vs. argmin
z∈Rd:Az=b

∥z∥0

Assume that n = 1,d = 2, k = 1. So A ∈ R1×2 and x ∈ R2 is 1-sparse.

• Optimization solution
will be on a corner (i.e.,
sparse), unless Az = b
has slope 1.

• Similar intuition to the
LASSO method.

• Does not hold if e.g., the
ℓ2 norm is used.
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basis pursuit theorem

Can prove that basis pursuit outputs the exact k-sparse solution x
with Ax = b (same as argminz∈Rd:Az=b ∥z∥0)
• Requires a strengthening of the Kruskal rank ≥ 2k assumption
(that still holds in all the applications discussed).

Definition: A ∈ Rn×d has the (m, ϵ) restricted isometry property
(is (m, ϵ)-RIP) if for all m-sparse vectors x:

(1− ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ ϵ)∥x∥2

Theorem: If A is (3k, ϵ)-RIP for small enough constant ϵ, then
z⋆ = argminz∈Rd:Az=b ∥z∥1 is equal to the unique k-sparse xwith
Ax = b (i.e., basis pursuit solves the sparse recovery problem).
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Questions?
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