COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 22
• Problem Set 4 released last night. Due Sunday 12/15 at 8pm.
• Final Exam Thursday 12/19 at 10:30am in Thompson 104.
• Exam prep materials (list of topics, practice problems) coming in next couple of days.
Before Break:

- Finished discussion of SGD.
- Gradient descent and SGD as applied to least squares regression.
Before Break:

- Finished discussion of SGD.
- Gradient descent and SGD as applied to least squares regression.

This Class:

- A quick tour of the counterintuitive properties of high-dimensional space.
- Many connections to concentration inequalities.
- Implications for working with high-dimensional data (curse of dimensionality).
Modern data analysis often involves very high-dimensional data points.

- Websites record (tens of) thousands of measurements per user: who they follow, when they visit the site, timestamps for specific interactions, etc.
- A 3 minute, 500 × 500 pixel video clip at 15 FPS has ≥ 2 billion pixel values.
- The human genome has 3 billion+ base pairs.
Modern data analysis often involves very high-dimensional data points.

- Websites record (tens of) thousands of measurements per user: who they follow, when they visit the site, timestamps for specific interactions, etc.
- A 3 minute, 500 × 500 pixel video clip at 15 FPS has ≥ 2 billion pixel values.
- The human genome has 3 billion+ base pairs.

Typically when discussing algorithm design we imagine data in much lower (usually 3) dimensional space.
LOW-DIMENSIONAL INTUITION

- The figure illustrates the concept of low-dimensional intuition in the context of a high-dimensional space.
- A scatter plot on the left shows a data distribution with vectors v_1 and v_2.
- The right side of the image depicts a d-dimensional space with a k-dimensional subspace \mathcal{V}.
- The graph at the bottom represents a function $f(\theta)$ with $\theta \in \mathbb{R}^2$.
- The optimal solution is marked as θ^*.
This can be a bit dangerous as in reality high-dimensional space is very different from low-dimensional space.
What is the largest set of mutually orthogonal unit vectors in \(d\)-dimensional space?
What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

$\langle x, y \rangle = 0$
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in \(d\)-dimensional space that have all pairwise dot products \(|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \varepsilon\)? (think \(\varepsilon = .01\))

1. \(d\)
2. \(\Theta(d)\)
3. \(\Theta(d^2)\)
4. \(2\Theta(d)\)

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let \(x_1, \ldots, x_t\) each have independent random entries set to \(\pm 1/\sqrt{d}\).

\[
\|x_i\|_2^2 = 2(\pm \frac{1}{\sqrt{d}})^2 = 1
\]
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let x_1, \ldots, x_t each have independent random entries set to $\pm 1/\sqrt{d}$.

- x_i is always a unit vector.
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let x_1, \ldots, x_t each have independent random entries set to $\pm 1/\sqrt{d}$.

• x_i is always a unit vector.
• $\mathbb{E}[\langle x_i, x_j \rangle] = ?$
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let x_1, \ldots, x_t each have independent random entries set to $\pm 1/\sqrt{d}$.

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = 0$.
 \[
 \mathbb{E} \left[\sum_{k=1}^{d} x_i(k) \cdot x_j(k) \right] = \sum_{k=1}^{d} \mathbb{E} x_i(k) x_j(k) = \sum_{k=1}^{d} \mathbb{E} |x_i(k)|^2 - \frac{1}{d} = 1 - \frac{1}{d}
 \]
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let x_1, \ldots, x_t each have independent random entries set to $\pm 1/\sqrt{d}$.

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = 0$.
- By a Chernoff bound, $\Pr[|\langle x_i, x_j \rangle| \geq \epsilon] \leq 2e^{-\epsilon^2 d/3}$.
 \[\text{smaller} \quad d \quad \text{large} \quad \epsilon \]
NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

1. d
2. $\Theta(d)$
3. $\Theta(d^2)$
4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let x_1, \ldots, x_t each have independent random entries set to $\pm 1/\sqrt{d}$.

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = 0$.
- By a Chernoff bound, $\Pr[|\langle x_i, x_j \rangle| \geq \epsilon] \leq 2e^{-\epsilon^2 d / 3}$.
- If we chose $t = \frac{1}{2} e^{\epsilon^2 d / 6}$ using a union bound over all $\leq t^2 = \frac{1}{4} e^{\epsilon^2 d / 3}$ possible pairs, with probability $> 1/2$ all with be nearly orthogonal.

Union Bound: $2e^{-\epsilon^2 d / 3} \cdot \frac{1}{4} e^{\epsilon^2 d / 3} = \frac{1}{2}$
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$||x_i - x_j||_2^2$$
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

\[
\|x_i - x_j\|_2^2 = \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i^T x_j \\
\leq \epsilon
\]
Up Shot: In d-dimensional space, a set of $2^\Theta(\epsilon^2 d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

\[
\|x_i - x_j\|^2 = \|x_i\|^2 + \|x_j\|^2 - 2x_i^T x_j \geq 1.98.
\]
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|x_i - x_j\|_2^2 = \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i^T x_j \geq 1.98.$$

Even with an exponential number of samples, we don’t see any nearby vectors.
Up Shot: In d-dimensional space, a set of $2^\Theta(\epsilon^2 d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$||x_i - x_j||^2 = ||x_i||^2 + ||x_j||^2 - 2x_i^T x_j \geq 1.98.$$

Even with an exponential number of samples, we don’t see any nearby vectors.

- Can make methods like k-nearest neighbor classification or kernel regression useless.
Up Shot: In d-dimensional space, a set of $2^\Theta(e^2 d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|x_i - x_j\|_2^2 = \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i^T x_j \geq 1.98.$$

Even with an exponential number of samples, we don’t see any nearby vectors.

- Can make methods like k-nearest neighbor classification or kernel regression useless.

Curse of dimensionality for sampling/learning functions in high dimensional space – samples are very ‘sparse’ unless we have a huge amount of data.
CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of $2^\Theta(e^2d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

\[
\|x_i - x_j\|^2 = \|x_i\|^2 + \|x_j\|^2 - 2x_i^Tx_j \geq 1.98.
\]

Even with an exponential number of samples, we don’t see any nearby vectors.

- Can make methods like k-nearest neighbor classification or kernel regression useless.

Curse of dimensionality for sampling/learning functions in high dimensional space – samples are very ‘sparse’ unless we have a huge amount of data.

- Only hope is if we have strong low-dimensional structure.
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$.
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{ x \in \mathbb{R}^d : \|x\|_2 \leq 1 \}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Volume of a radius R ball is $\left(\frac{\pi^{d/2}}{(d/2)!} \right) \cdot R^d$.
Let B_d be the unit ball in d dimensions. $B_d = \{ x \in \mathbb{R}^d : \|x\|_2 \leq 1 \}$.

What percentage of the volume of B_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.
BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface.

- **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.
All but an e^{-cd} fraction of a unit ball’s volume is within ϵ of its surface.

- **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface.

- **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.

- ‘All points are outliers.’
What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator?

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$.
What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$.
What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$. By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \leq \epsilon\}$
Claim 1: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^\Theta(-\varepsilon^2 d)$ fraction of the volume of a ball falls within ε of any equator.

Claim 2: All but a $2^\Theta(-\varepsilon d)$ fraction falls within ε of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^\Theta(-\varepsilon^2d)$ fraction of the volume of a ball falls within ε of any equator.

Claim 2: All but a $2^\Theta(-\varepsilon d)$ fraction falls within ε of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

$$X = \left(x_1 + \frac{1}{\sqrt{n}} \cdots + \frac{1}{\sqrt{n}} \right)^n$$

$$\|X\|_2^2 = 1$$

How is this possible?
BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this picture!
Claim: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{||x||_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{ x \in B_d : |x(1)| \leq \epsilon \}$.

Proof Sketch:

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?

- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$?
Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

• Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?

• $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$.
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\tilde{x} = \frac{x}{\|x\|_2}$. \tilde{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\tilde{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\tilde{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^{d} \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$.

CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^{d} \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$
- Conditioning on $\|x\|_2^2 \geq d/2$, since $x(1)$ is normally distributed,
 \[
 \Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot \|x\|_2]
 \]
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{||x||_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[||\bar{x}(1)|| > \epsilon] \leq 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{||x||_2}$. $\mathbb{E}[||x||^2_2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[||x||^2_2 \leq d/2] \leq 2^{-\Theta(d)}$
- Conditioning on $||x||^2_2 \geq d/2$, since $x(1)$ is normally distributed,
 $$\Pr[||\bar{x}(1)|| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$$
 $$\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}]$$
CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.

Proof Sketch:

• Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\tilde{x} = \frac{x}{\|x\|_2}$. \tilde{x} is selected uniformly at random from the surface of the ball.

• Suffices to show that $\Pr[|\tilde{x}(1)| > \epsilon] \leq 2^{\Theta(-\epsilon^2d)}$. Why?

• $\tilde{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^{d} \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \leq d/2] \leq 2^{-\Theta(d)}$

• Conditioning on $\|x\|_2^2 \geq d/2$, since $x(1)$ is normally distributed,

\[
\Pr[|\tilde{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot \|x\|_2] \\
\leq \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}] = 2^{\Theta(-\epsilon \sqrt{d/2})} = 2^{\Theta(-\epsilon^2d)}.
\]
Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i\}$.
Let C_d be the d-dimensional cube: $C_d = \{ x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i \}$. In low-dimensions, the cube is not that different from the ball.
Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of B^d is $\frac{\pi^{d/2}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap!
HIGH DIMENSIONAL CUBES

Let C_d be the d-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \leq 1 \ \forall \ i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of B^d is $\frac{\pi^{d/2}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes...
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.
High Dimensional Cubes

Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[||x||_2^2] = ?$,

\[
\mathbb{E} \|x\|_2^2 = \mathbb{E} \sum_{i=1}^d x(i)^2
\]

\[
\mathbb{E} \sum_{i=1}^d x(i)^2
\]

\[
= \frac{d}{d} \sum_{i=1}^d x(i)^2
\]
Data generated from the ball \mathcal{B}_d will behave very differently than data generated from the cube \mathcal{C}_d.

- $x \sim \mathcal{B}_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim \mathcal{C}_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$,
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \leq d/6] \leq 2^{-\Theta(d)}$.
Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \leq d/6] \leq 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls in its corners, and these corners lie far outside the unit ball.
HIGH DIMENSIONAL CUBES

Data generated from the ball B_d will behave very differently than data generated from the cube C_d.

- $x \sim B_d$ has $\|x\|_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \leq d/6] \leq 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls in its corners, and these corners lie far outside the unit ball.
If high-dimensional geometry is so different from low-dimensional geometry, how is dimensionality reduction (e.g., the Johnson-Lindenstrauss lemma) possible?

\[m = \frac{\log n}{\varepsilon^2} \quad d \quad m \ll d \]
If high-dimensional geometry is so different from low-dimensional geometry, how is dimensionality reduction (e.g., the Johnson-Lindenstrauss lemma) possible?

Recall: The Johnson Lindenstrauss lemma states that if \(\Pi \in \mathbb{R}^{m \times d} \) is a random matrix (linear map) with \(m = O\left(\frac{\log n}{\epsilon^2}\right) \), for \(x_1, \ldots, x_n \in \mathbb{R}^d \) with high probability, for all \(i, j \):

\[
(1 - \epsilon)\|x_i - x_j\|_2 \leq \|\Pi x_i - \Pi x_j\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2.
\]
If high-dimensional geometry is so different from low-dimensional geometry, how is dimensionality reduction (e.g., the Johnson-Lindenstrauss lemma) possible?

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|x_i - x_j\|_2 \leq \|\mathbf{\Pi}x_i - \mathbf{\Pi}x_j\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2.$$

If x_1, \ldots, x_n are random unit vectors in d-dimensions, can show that $\mathbf{\Pi}x_1, \ldots, \mathbf{\Pi}x_n$ are essentially random unit vectors in m-dimensions.
If high-dimensional geometry is so different from low-dimensional geometry, how is dimensionality reduction (e.g., the Johnson-Lindenstrauss lemma) possible?

Recall: The Johnson Lindenstrauss lemma states that if \(\Pi \in \mathbb{R}^{m \times d} \) is a random matrix (linear map) with \(m = O \left(\frac{\log n}{\epsilon^2} \right) \), for \(x_1, \ldots, x_n \in \mathbb{R}^d \) with high probability, for all \(i, j \):

\[
(1 - \epsilon) \| x_i - x_j \|_2 \leq \| \Pi x_i - \Pi x_j \|_2 \leq (1 + \epsilon) \| x_i - x_j \|_2.
\]

If \(x_1, \ldots, x_n \) are random unit vectors in \(d \)-dimensions, can show that \(\Pi x_1, \ldots, \Pi x_n \) are essentially random unit vectors in \(m \)-dimensions.

But these different dimensional spaces have very different geometries, so how is this possible?
x_1, \ldots, x_n are sampled from the surface of \mathcal{B}_d and $\prod x_1, \ldots, \prod x_n$ are (approximately) sampled from the surface of \mathcal{B}_m.
x_1, \ldots, x_n are sampled from the surface of \mathcal{B}_d and $\Pi x_1, \ldots, \Pi x_n$ are (approximately) sampled from the surface of \mathcal{B}_m.

- In d dimensions, $2^{e^{2d}}$ random unit vectors will have all pairwise dot products at most ϵ with high probability
x_1, \ldots, x_n are sampled from the surface of \mathcal{B}_d and $\Pi x_1, \ldots, \Pi x_n$ are (approximately) sampled from the surface of \mathcal{B}_m.

- In d dimensions, $2^{\epsilon^2 d}$ random unit vectors will have all pairwise dot products at most ϵ with high probability
- After JL projection, $\Pi x_1, \ldots, \Pi x_n$ will still have pairwise dot products at most $O(\epsilon)$ with high probability.
x_1, \ldots, x_n are sampled from the surface of \mathcal{B}_d and $\Pi x_1, \ldots, \Pi x_n$ are (approximately) sampled from the surface of \mathcal{B}_m.

- In d dimensions, $2^{\epsilon^2 d}$ random unit vectors will have all pairwise dot products at most ϵ with high probability.
- After JL projection, $\Pi x_1, \ldots, \Pi x_n$ will still have pairwise dot products at most $O(\epsilon)$ with high probability.
- In $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, $2^{\epsilon^2 m} = 2^{O(\log n)} >> n$ random unit vectors will have all pairwise dot products at most ϵ with high probability.
x_1, \ldots, x_n are sampled from the surface of \mathcal{B}_d and $\Pi x_1, \ldots, \Pi x_n$ are (approximately) sampled from the surface of \mathcal{B}_m.

- In d dimensions, $2^{\epsilon^2 d}$ random unit vectors will have all pairwise dot products at most ϵ with high probability.
- After JL projection, $\Pi x_1, \ldots, \Pi x_n$ will still have pairwise dot products at most $O(\epsilon)$ with high probability.
- In $m = O \left(\frac{\log n}{\epsilon^2} \right)$ dimensions, $2^{\epsilon^2 m} = 2^{O(\log n)} > n$ random unit vectors will have all pairwise dot products at most ϵ with high probability.
- m is chosen just large enough so that the odd geometry of d-dimensional space will still hold on the n points in question.
Questions?