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LOGISTICS

- Problem Set 3 was released on Saturday. Due next Friday
11/15 at 8pm.

- I will hold office hours after class until 12:30pm today.



SUMMARY

Last Class:

- FInished up spectral clustering and stochastic block model.

- Started discussion of efficient algorithms for
SVD/eigendecomposition.

This Class:

- Finish efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.

art optimization unit. I3 t.
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To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X € R"™®for k < d.

- Suffices to compute Y, € R and then compute

Uy = XV, NERC VA VALV EAS:
- Use an iterative algorithm to compute an approximation to

the top k singular vectors V.

- Runtime will be roughly O(ndk) instead of O(nd?).



FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X € R™*® for k <« d.

- Suffices to compute V, € Rk and then compute
UpEy, = XV,

- Use an iterative algorithm to compute an approximation to
the top k singular vectors V.

- Runtime will be roughly O(ndk) instead of O(nd?).

Sparse (iterative) vs. Direct Method. svd vs. svds.
o



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.

. . T I,
Goal: Given X € R™9 with SVD X = UXV, find Z ~ .



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.

Goal: Given X € R™d with SVD X = UXV, find 7 ~ V.
e

d
- Initialize: Choose Z© randomly. E.g. Z0(i) ~ A(0,1). €[

- Fori=1,...,t
. Z(/) — (XTx).Z(FU

{ ni = 120},
- 70 =70/,

Return Z



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.

Goal: Given X € R™d with SVD X = UXV, find 7 ~ V.

- Initialize: Choose Z(%) random% Fg ZO(i) ~ N(0,7).

. i-1
cFori=1,...,t ¥ (X2 T %! é2>
A = (xTX) L= Runtime: 2 - nd >< ><
- ni = |Z0|, Runtime: d
- 700 = 70/, Runtime: d O(V\é'>
Return Z

Total Runtime: O(ndt) »~ O(V\QD



POWER METHOD
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POWER METHOD

1 2(1)

unit circle




POWER METHOD
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POWER METHOD
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POWER METHOD
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POWER METHOD
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Why is it converging towards V;?
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unit circle



POWER METHOD INTUITION

/G297~
Write 70 in the right singular vector basis:

70 = C1\71 + C2\72 +...+ Cdvd-

X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Write 70 in the right singular vector basis:

Xf\)i\/T 70 = C1\71 +C2\72+...+Cd\7d.

. T ) ,
Update step: 700 = Xx". 2= = vx2y7. 2= (then normalize)

X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Write 70 in the right singular vector basis:
% 2(0) {9\71 +(Cj\72 + ...+ Cdvd-

Update step: 700 = XX" . 20" = v£?V7 . Z0=" (then normalize)
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Vy: top right singular vector, being

X € R": input matrix with SVD X = UEV.
computed, Z0: iterate at step i, converging to . 6




POWER METHOD INTUITION

Write 70 in the right singular vector basis:

70 = C1\71 + C2\72 +...+ Cdvd-

Update step: 70 = XX". Z0-") = V(ZZVT . Z’("—WD(then normalize)

VA0 — C:'
Cy
sVAO = @)
Gy <2
61" <4y

X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Write 70 in the right singular vector basis:

70 = C1\71 + C2\72 +...+ Cdvd-
R i Al

. - . , .
Update step: Z() = xx¥. 70 — yE2/7. 7= (then normalize)

—

V70 =
Gre,
TVAO = [
@y
ﬂ(,] T 6 CI 7 1 F 1
Z \,é:V 0=1\/ /% SGV te N L S VY

& o

X € R"*9: input matrix with SVD X = UXV’. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

2(1):C1-ff%\71+C2~(7§\72+...+Cd-ﬁé\7d.

—

X € R"*9: input matrix with SVD X = UXV'. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

2(1):C1-ff%\71+C2~(7§\72+...+Cd-ﬁé\7d.

72 = xTx2" = vevZ = G 6‘\1\/1 N ) éj 2]

—

X € R"*9: input matrix with SVD X = UXV'. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD INTUITION

Claim 1: Writing 70 = vy + &V + . .. 4 CyVy,

2(1):C1-ff%\71+C2~(7§\72+...+Cd-ﬁf;\7d.
-_— —_— -

—

72 — xTxz() = vx2yTz() =

Claim 2:

Z(t) =C- KT%S\_/H +C - ”%[\72 +...+Cq- f)’é‘[\_/’d.
—
=]

—

X € R"*9: input matrix with SVD X = UXV'. ¥: top right singular vector, being
computed, Z0: iterate at step i, converging to .




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

A0) — Civa + Gy + oo+ CyVy = Ft) 1 + C2g?\7§ 4+ ...+ Cd(rf;fvd
=



POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much l‘_arger, relative to the
other components. G t

C?‘
Na') 7 C
j Z(O)}: C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + C2(Tf,“'\_/’2 +...+ Cdﬁél\_/’d

Iteration 0

04




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d
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Iteration 1
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d

Iteration 3




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d

Iteration 6
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d

Iteration 7
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
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other components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.  C, ot v o argdve

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d
ey
,O(
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Iteration 12




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v; much larger, relative to the
other components.

Z(O) = C1\_/'q + C2\72 + ...+ Cdvd — z(t) = C1(TZ{\71 + Czﬁgt\_/’z +...+ Cdﬁﬁi\_/’d
- <

Iteration 13
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When will convergence be slow?



POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...

79 =i+ o+ .. vy = 20 =0l + Co03V + .+ Cyo Vg



POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...

70 = CGVi+ GV + ...+ CdVd — 70 = C1FT/‘£\71 + Czﬁgi\ﬁ/’z + ...+ Cdﬁ"l;"\?d

Iteration 0
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POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...
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POWER METHOD SLOW CONVERGENCE
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POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...

79 =i+ o+ .. vy = 20 =0l + Co03V + ..+ Cyo Vg
Sy
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Iteration 6
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POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...

70 = CGVi+ GV + ...+ CdVd — 70 = C1FT/‘£\71 + Czﬁgi\ﬁ/’z + ...+ Cdﬁ"l;"\?d

Iteration 7
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POWER METHOD SLOW CONVERGENCE
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POWER METHOD SLOW CONVERGENCE
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POWER METHOD SLOW CONVERGENCE
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POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: o4 = 1,0, = .99,03 = .9,04, = .8, ...

79 =i+ o+ .. vy = 20 =0l + Co03V + .+ Cyo Vg

Iteration 13
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POWER METHOD CONVERGENCE RATE

oo R TN

f(o = C1\71 + C2\72 4+ ...+ CdVd — 2(0 = C1ff)f\71 + Czﬁgt\ﬁ/’z 4+ ...+ Cdﬁgy;r\?d

Write o3 = (1 — 7)o for ‘gap’ v = Z-%2. How many iterations t does it

take to have o3t < 1. 022 _——
At
b 114 G 0
6: S 56 ~\> <7
< {
("’ >D‘+ <1 k- LQ -y (/Z_>
O L TR

( '\DW : I/e/

t=o(h) ("ﬂM < 5'\

X € R™>9: matrix with SVD X = UXV". Singular values o1, 07, ...,04. Vi: top
right singular vector, being computed, Z0): iterate at step i, converging to v;.

10




POWER METHOD CONVERGENCE RATE

f(o) = C1\71 + C2\72 + ...+ CdVd — 2(0 = C1FT‘)§\71 + szf?\ﬁ/’z + ...+ Cd(T;;TVC/

Write o = (1 — )m for gap' y = =2 How many iterations t does it
take to have 2t < 1. 45212 O(1/7). | ! >
(T¥ = 7 ( /’7) 0?]7 /2—

X € R™>9: matrix with SVD X = UXV". Singular values o1, 07, ...,04. Vi: top
right singular vector, being computed, Z0): iterate at step i, converging to v;.
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POWER METHOD CONVERGENCE RATE

f(o) = C1\71 + C2\72 + ...+ CdVd — 2(0 = C1FT‘)§\71 + szf?\ﬁ/’z + ...+ Cd(T;;TVC/

Write o3 = (1—~)o for ‘gap’ v = Z-%2. How many iterations t does it
take to have o2t < 1. 022 O(1/7).

How many iterations t does it take to have o3' < § - 07'? |c§( {
‘ ™

w0
@7/ ~ 9: / +
. > o (1
é%f < 51—«\- X e b\SC >

(') Dlleg(1/9) * IS%D

[ X € R™9: matrix with SVD X = UXV". Singular values o4, 07, ...,04. Vi top

right singular vector, being computed, Z(): iterate at step i, converging to .
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POWER METHOD CONVERGENCE RATE

0=V + b+ ...+ CaVg = 2D =10V + otV + ..+ Cgo Vg

Write o3 = (1—~)o for ‘gap’ v = Z-%2. How many iterations t does it
take to have o2 < 3 - o7 O(1/7).

How many iterations t does it take to have o' <4 - 07?7 O (ng/é)).

X € R™9: matrix with SVD X = UXV". Singular values o4, 07, ...,04. Vi top
right singular vector, being computed, Z(): iterate at step i, converging to .

10



POWER METHOD CONVERGENCE RATE

=i+l +... 4 cly = 2 = otV + ol Vo + .+ Co

Write o3 = (1 - )0y for ‘gap’ v = 222, How many iterations t does it
take to have (r < i 077 0(1/7).

How many iterations t does it take to have o' <4 - 07?7 O (ng/é)).

How small must we set 6 to ensure that ¢;o7t dominates all other
AN _—
components and so 2 is very close to v;?

X € R"9: matrix with SVD X = UXV". Singular values o1, 07, ...,04. Vi: top
right singular vector, being computed, Z(): iterate at step i, converging to V.

10



RANDOM INITIALIZATION

Claim: When z(9 is chosen with random Gaussian entries, writing
70 = cvy + Vo + ... + Vg, with very high probability, for all i:

U\ ngd)
floww 1S ¢ J\@(\f‘\”u@
\/T,thﬂ - 9 Cl\j<\/\‘ I -Zl“\>l)
t VYD BEAa b
S s L 2
e ¢ d { NCoD)
N (o, vi¢)®)
¢ ~ Nlo D ~N(0,Zvig}) N Ollv.

[\ r\ﬁ""\*bh \\/\\/a/\DJJ\LO_ 'Dr 5§\Nn\\

X € R">9: matrix with SVD X = UZV". Singular values 1,07, ...,04. Vi top
right singular vector, being computed, Z(): iterate at step i, converging to . 1




RANDOM INITIALIZATION

Claim: When z(9 is chosen with random Gaussian entries, writing
70 = cvy + Vo + ... + Vg, with very high probability, for all i:

\ond 2 | 0(1/d?) <|c}< 0(log )
] _—
Corollary: .
orollary _ Cj|g oy A) Qo
m_a>\ ’lg o(d? logd). | ¢\ < vt
J G § C)Q@L
X € R">9: matrix with SVD X = UZV". Singular values 1,07, ...,04. Vi top

right singular vector, being computed, Z(): iterate at step i, converging to . 1




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
709 = cvy + Vo + ... + CyVy, with very high probability,
max; 2 < O(d? logd).

X € R">9: matrix with SVD X = UXV". Singular values 4,0, ..., 04. V3 top
right singular vector, being computed, 7(): iterate at step i, converging to v;.




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
709 = cvy + Vo + ... + CyVy, with very high probability,
max; 2 < O(d? logd).

Claim 2: Forgap v = ez, aftert =0 (M) iterations:

S
70 = 107V + ©o3Vo + ..+ Cgo Vg o< iy + Vo + . .. + CgoVg
— —_— — —

X € R">9: matrix with SVD X = UXV". Singular values 4,0, ..., 04. V3 top
right singular vector, being computed, 7(): iterate at step i, converging to v;.




RANDOM INITIALIZATION

Claim 1: When z(® is chosen with random Gaussian entries, writing
709 = cvy + Vo + ... + CyVy, with very high probability,
max; 2 < O(d? logd).

Claim 2: Forgap v = ez, aftert =0 (log(1/5)) iterations:

5
) — (j1fr,/‘”\71 + C2ﬁ£5\72 +...+ Cd(f(f“.“vd o C1Vq + Czrcvz +...+ ngvd

< d “lsad
Ifwesetd =0 (W) by Claim 1 will have: ds)sJJ b p) f/

70 \71+§(\72+...+\7d).

X € R">9: matrix with SVD X = UXV". Singular values 4,0, ..., 04. V3 top
right singular vector, being computed, 7(): iterate at step i, converging to v;.




RANDOM INITIALIZATION

G0
Claim 1: When z(® is chosen with random Gaussian entries, writing
709 = cvy + Vo + ... + CyVy, with very high probability,

max; 2 < 0(d? logd). s J>fo ’S)ij
;& < (o log d) R 008) oy (o)
Cla|m 2: For gap 7 = I , after t =0 (log(1/5)) iterations:

— C'I’ + C2+ .+ Cd¢ Vg X C]V] + C2/5V2 + ...+ Cd(\VG

Ifwesetd =0 (W) by Claim 1 will have:
—_—

z(t) X \71 +

Gives |17

T2 < O(e).

X € R">9: matrix with SVD X = UXV". Singular values 4,0, ..., 04. V3 top
right singular vector, being computed, 7(): iterate at step i, converging to v;.




POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Lety = #-%2 be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector V° then, with high probability, after t = O (%)
steps:

120 — %, < e.



POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let v = ‘“n;fz be the relative gap between the first and second largest
singular values. If Povver Method is initialized with a random
Gaussian vector V° then, with high probability, after t = O (%)
steps:

120 — ||, <e.

Total runtime: O(t) matrix-vector multiplications.

o(@-%-):o(m logd6> (n&)



POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let v = ‘“n;fz be the relative gap between the first and second largest
singular values. If Povver Method is initialized with a random

Gaussian vector V() then, with high probability, after t = logj/e)
steps: fé(‘) )
2l
— V1 HQ <e.

Total runtime: O(t) matrix-vector multiplications. £ E

log(d/e) \ _ log(d/e) i

0 (n nz(X) - )= O(nd- S . !eg 0/5) - [H.)[I/g)

How is e dependence? '/\‘Wb W\VW\_\.“ T
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KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need
t=0 (lo 6) steps for the same guarantee.
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Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need

t=0 (%) steps for the same guarantee.

Main Idea: Need to separate oq from o; fori > 2.

- Power method: power up to o7t and o?*.
* Krylov methods: apply a better degree t polynomial T¢(o?)

and Ty(o?).
- Still requires just 2t matrix vector multiplies. Why?
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KRYLOV SUBSPACE METHODS
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Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.



GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

- Block Krylov methods

Runtime: O(ndfe lo\g/ci/ﬁ)
L6 &
k-}-)

to accurately compute the top k singular vectors.
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GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

- Block Krylov methods

Runtime: O (ndfe lo\g/ci/ﬁ)
=

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O (ndl?- lofg/e)
-~

if you just want a set of vectors that gives an e-optimal
low-rank approximation when you project onto them.
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CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.



CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at
random from the neighbors of the current vertex.
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CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].
+ Update:

1

Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())

j€neigh(i)

2 Pt

where Z; = Wee(}) for all j € neigh(i).
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Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())

j€neigh(i)
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_ 1
— degree

- Zis just the i row of the right normalized adjacency matrix AD~".

?@ﬂ: AD P(-TD )
D. AR DD -
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where 7 y forallj € neigh(i).

_ 1
— degree(j
- Zis just the i row of the right normalized adjacency matrix AD~".

. 5(t) — AD—15(t—W)
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CONNECTION TO RANDOM WALKS

Let f®) € R have i entry 5 = Pr(walk at node i at step t).

- Initialize: 5® =[1,0,0,...,0].
+ Update:

1

Pr(walk at i at step t) = Z Pr(walk at j at step t-1) - degree())

j€neigh(i)

where Z; = for allj € neigh(i).

- degree

- Zis just the i row of the right normalized adjacency matrix AD~".

_1_,

- p = AD 5= = AD~'AD" .. p

ttimes
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of

p® =AD"'AD"...AD' 5,

t times
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Claim: After t steps, the probability that a random walk is at node i is
given by the i entry of
p® =AD"'AD"...AD' 5,

t times

D—1/25(t) _ (D—1/2AD—1/2)(D—1/2AD—1/2) o (D—1/2AD—1/2)(D—7/2ﬁ(0)).

t times

- D725 is exactly what would obtained by applying t/2 iterations
of power method to D~/2p(0)

- Will converge to the top singular vector (eigenvector) of the
normalized adjacency matrix D~'/2AD~"/2, Stationary distribution.

- Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the

gap between the top two eigenvalues of AD™". The spectral gap.
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