COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 16
Last Class:

- Spectral clustering and embeddings
- Started application to stochastic block model.
Last Class:

- Spectral clustering and embeddings
- Started application to stochastic block model.

This Class:

- Finish up stochastic block model.
- Efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.
Goal: Argue the effectiveness of spectral clustering in a natural, if oversimplified, generative model.
Goal: Argue the effectiveness of spectral clustering in a natural, if oversimplified, generative model.

Stochastic Block Model (Planted Partition Model): Let $G_n(p, q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with $n/2$ nodes.

- Any two nodes in the **same group** are connected with probability p (including self-loops).
- Any two nodes in **different groups** are connected with prob. $q < p$.
- Connections are independent.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[A])_{i,j} = q$ otherwise.

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i,j} = p$ for i, j in the same group, $(\mathbb{E}[A])_{i,j} = q$ otherwise.

What is the rank of $\mathbb{E}[A]$ and how can you see this quickly?

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[A])_{i,j} = q$ otherwise.

What is the rank of $\mathbb{E}[A]$ and how can you see this quickly? How many nonzero eigenvalues does $\mathbb{E}[A]$ have?

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
EXPECTED ADJACENCY SPECTRUM

\[
\begin{align*}
B \quad & \quad (n/2 \text{ nodes}) \\
\quad & \quad \quad \quad E[A] \quad \quad \quad (n/2 \text{ nodes}) \\
p \quad & \quad q \\
q \quad & \quad p
\end{align*}
\]

\[
\begin{align*}
V &= \begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & -1 \\
1 & -1 \\
1 & -1 \\
1 & -1
\end{pmatrix}, \\
\Lambda &= \begin{pmatrix}
\frac{n(p + q)}{2} & \frac{n(p - q)}{2} \\
\frac{n(p - q)}{2} & \frac{n(p + q)}{2}
\end{pmatrix}, \\
V^T &= \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
\[\vec{v}_1 = \vec{1} \text{ with eigenvalue } \lambda_1 = \frac{(p+q)n}{2}. \]

\[\vec{v}_2 = \chi_{B,C} \text{ with eigenvalue } \lambda_2 = \frac{(p-q)n}{2}. \]

\[\chi_{B,C}(i) = 1 \text{ if } i \in B \text{ and } \chi_{B,C}(i) = -1 \text{ for } i \in C. \]
\[\vec{v}_1 = \vec{1} \text{ with eigenvalue } \lambda_1 = \frac{(p+q)n}{2}. \]

\[\vec{v}_2 = \chi_{B,C} \text{ with eigenvalue } \lambda_2 = \frac{(p-q)n}{2}. \]

\[\chi_{B,C}(i) = 1 \text{ if } i \in B \text{ and } \chi_{B,C}(i) = -1 \text{ for } i \in C. \]

If we compute \(\vec{v}_2 \) then we recover the communities \(B \) and \(C \)!
EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

$$\mathbb{E}[\mathbf{L}] = \mathbb{E}[\mathbf{D} - \mathbf{A}] = \mathbb{E}\mathbf{D} - \mathbb{E}\mathbf{A}$$

$$= \left[\begin{array}{ccc}
\frac{(p+q)n}{2} & \cdots & \frac{pq}{n} \\
\cdots & \ddots & \cdots \\
\frac{pq}{n} & \cdots & \frac{q+q}{2}
\end{array} \right] - \left[\begin{array}{c}
p \\
q \\
p \\
q
\end{array} \right]$$

$$\mathbb{E}[\mathbf{L}] = (p+q)\mathbf{I} - \mathbb{E}[\mathbf{A}]$$

$$\mathbb{E}[\mathbf{L}] = \left(\frac{p+q}{2} \right) \mathbf{I} - \mathbb{E}[\mathbf{A}] \mathbf{V}$$

$$\mathbb{E}[\mathbf{L}] = (p+q)\mathbf{V} - \mathbb{E}[\mathbf{A}] \mathbf{V}$$

$$\mathbb{E}[\mathbf{L}] \mathbf{v}_i = \left(\frac{p+q}{2} \mathbf{v}_i - \mathbb{E}[\mathbf{A}] \mathbf{v}_i \right)$$
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of $E[L]$?

\[E[LL^T]v_i = \frac{(p+q)\gamma}{2} v_i - \lambda_i v_i = \left[\frac{(p+q)\gamma}{2} - \lambda_i \right] v_i \]

\[\lambda_1 = \frac{(p+q)\gamma}{2} \quad \lambda_2 = \frac{(p-q)\gamma}{2} \quad \lambda_3, \lambda_4, \ldots = 0 \]

\[\lambda_1 = \frac{(p+q)\gamma}{2} \quad \lambda_n = \frac{(p-q)\gamma}{2} \quad \lambda_{n-1}(E[L]) = (p+q)\gamma \]

\[\text{rank}(E[L]) = n-1 \]

\[\text{rank}(E[AA^T]) = 2 \]

\[X_{BC} = \begin{bmatrix} 1 & 1 & -1 & -1 & -1 \end{bmatrix} \]
Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.
Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities B and C.
Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the random graph G (equivalently A and L) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.
Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the random graph G (equivalently A and L) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.
Matrix Concentration Inequality: If $p \geq O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{p n}).$$

where $\| \cdot \|_2$ is the matrix spectral norm (operator norm).

For any $X \in \mathbb{R}^{n \times d}$, $\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2$. The top eigenvale of X^TX.
Matrix Concentration Inequality: If \(p \geq O\left(\frac{\log^4 n}{n}\right) \), then with high probability

\[
\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).
\]

where \(\| \cdot \|_2 \) is the matrix spectral norm (operator norm).

For any \(X \in \mathbb{R}^{n \times d} \), \(\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2 \).

Exercise: Show that \(\|X\|_2 \) is equal to the largest singular value of \(X \).

For symmetric \(X \) (like \(A - \mathbb{E}[A] \)) show that it is equal to the magnitude of the largest magnitude eigenvalue.
Matrix Concentration Inequality: If \(p \geq O\left(\frac{\log^4 n}{n}\right) \), then with high probability

\[
\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).
\]

where \(\| \cdot \|_2 \) is the matrix spectral norm (operator norm).

For any \(X \in \mathbb{R}^{n \times d} \), \(\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2 \).

Exercise: Show that \(\|X\|_2 \) is equal to the largest singular value of \(X \).

For symmetric \(X \) (like \(A - \mathbb{E}[A] \)) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second eigenvectors of \(A \) and \(\mathbb{E}[A] \) are close. How does this relate to their difference in spectral norm?
Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $\|A - \overline{A}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i, for all i: \[
abla\theta(v_i, \overline{v}_i) \leq \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|} \quad 1, 1+\xi\]

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of \overline{A}.

The errors get large if there are eigenvalues with similar magnitudes.
For the matrix A, we have

$$A = V \Lambda V^T$$

with eigenvalues

$$\lambda_1(A) = 1 + \varepsilon$$
$$\lambda_2(A) = 1$$

and eigenvectors

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

For the perturbed matrix \tilde{A}, we have

$$\lambda_1(\tilde{A}) = 1 + \varepsilon$$
$$\lambda_2(\tilde{A}) = 1$$

and eigenvectors

$$\tilde{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \tilde{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The difference $A - \tilde{A}$ is given by

$$A - \tilde{A} = \begin{bmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{bmatrix}$$

The angle between v_1 and \tilde{v}_1 is

$$\sin \theta(v_1, \tilde{v}_1) = \frac{\varepsilon}{\varepsilon} = 1$$

The norm of the difference is

$$||A - \tilde{A}||_2 = \varepsilon$$
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,
\[\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}). \]

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,
\[\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|} \]

Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),
\[
\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).
\]

Claim 2 (Davis-Kahan): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),
\[
\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}
\]

Recall: \(\mathbb{E}[A] \), has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2} \), \(\lambda_2 = \frac{(p-q)n}{2} \), \(\lambda_i = 0 \) for \(i \geq 3 \).
\[
\min_{j \neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right).
\]
APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),
\[
\| A - \mathbb{E}[A] \|_2 \leq O(\sqrt{pn}).
\]

Claim 2 (Davis-Kahan): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),
\[
\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}
\]

Recall: \(\mathbb{E}[A] \), has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2}, \lambda_2 = \frac{(p-q)n}{2}, \lambda_i = 0 \) for \(i \geq 3 \).
\[
\min_{j \neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right)
\]

Typically, \(\frac{(p-q)n}{2} \) will be the minimum of these two gaps.
APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),

\[\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}). \]

Claim 2 (Davis-Kahan): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),

\[\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p - q)n/2} = O \left(\frac{\sqrt{p}}{(p - q)\sqrt{n}} \right) \]

Recall: \(\mathbb{E}[A] \), has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2}, \lambda_2 = \frac{(p-q)n}{2}, \lambda_i = 0 \) for \(i \geq 3 \).

Typically, \(\frac{(p-q)n}{2} \) will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)\).
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2 n} \right) \) (exercise).

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2n} \right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1
\end{bmatrix}
\]

\[\bar{v}_2\]

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2n} \right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,c} \): the community indicator vector.

\[
\begin{align*}
\begin{array}{c}
V_2(i) \\
\bar{V}_2(i)
\end{array}
& \leq 0 \\
& \frac{1}{\sqrt{n}} \\
& \text{second eig. of } A \\
& \text{Every } i \text{ where } v_2(i), \bar{v}_2(i) \text{ differ in sign contributes } \geq \frac{1}{n} \text{ to } \|v_2 - \bar{v}_2\|_2^2.
\end{align*}
\]

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2 n} \right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.

\[
\begin{align*}
\|v_2 - \bar{v}_2\|_2^2 &\geq \frac{1}{n} \sum_{i=1}^{n} |v_2(i) - \bar{v}_2(i)|^2 \\
\text{Every } i \text{ where } v_2(i), \bar{v}_2(i) \text{ differ in sign contributes } &\geq \frac{1}{n} \text{ to } \|v_2 - \bar{v}_2\|_2^2.
\end{align*}
\]

- So they differ in sign in at most \(O \left(\frac{p}{(p-q)^2} \right) \) positions.

\[
A \text{ adjacency matrix of random stochastic block model graph. } p: \text{ connection probability within clusters. } q < p: \text{ connection probability between clusters. } n: \text{ number of nodes. } v_2, \bar{v}_2: \text{ second eigenvectors of } A \text{ and } \mathbb{E}[A] \text{ respectively.}
\]
Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

![Diagram](image.png)
Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

- Why does the error increase as q gets close to p?
APPLICATION TO STOCHASTIC BLOCK MODEL

\[A = \begin{bmatrix} P & Q \\ Q & P \end{bmatrix} \]

Generative models

Upshot: If \(G \) is a stochastic block model graph with adjacency matrix \(A \), if we compute its second large eigenvector \(v_2 \) and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but \(O\left(\frac{p}{(p-q)^2}\right) \) nodes.

\[B = \begin{bmatrix} \frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} \end{bmatrix}, C = \begin{bmatrix} \frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} \end{bmatrix} \]

- Why does the error increase as \(q \) gets close to \(p \)?
- Even when \(p - q = O(1/\sqrt{n}) \), assign all but an \(O(n) \) fraction of nodes correctly. E.g., assign 99% of nodes correctly.
Questions on spectral partitioning?
We have talked about the eigendecomposition and SVD as ways to compress data, to embed entities like words and documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?
To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

$AV = U \Sigma V^T = U \Sigma$.*
COMPUTING THE SVD

To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

- Compute $A^T A = O(n d^2)$ runtime.
COMPUTING THE SVD

To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

- Compute $A^T A - O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = V \Lambda V^T - O(d^3)$ runtime.
To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

- Compute $A^T A - O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = \Sigma \Lambda V^T - O(d^3)$ runtime.
- Compute $L = AV$. Set $\sigma_i = \|L_i\|_2$ and $U_i = L_i/\|L_i\|_2$. $- O(nd^2)$ runtime.
To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

- Compute $A^T A - O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = V \Lambda V^T - O(d^3)$ runtime.
- Compute $L = AV$. Set $\sigma_i = \|L_i\|_2$ and $U_i = L_i/\|L_i\|_2$. $- O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3)$
To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, first compute \mathbf{V}. Then compute $\mathbf{U} \mathbf{\Sigma} = \mathbf{AV}$.

- Compute $\mathbf{A}^T \mathbf{A} - O(n d^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^T \mathbf{A} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^T - O(d^3)$ runtime.
- Compute $\mathbf{L} = \mathbf{AV}$. Set $\sigma_i = \|L_i\|_2$ and $\mathbf{U}_i = L_i / \|L_i\|_2$. $- O(n d^2)$ runtime.

Total runtime: $O(n d^2 + d^3) = O(n d^2)$ (assume w.l.o.g. $n \geq d$)
To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

- Compute $A^T A - O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = V \Lambda V^T - O(d^3)$ runtime.
- Compute $L = AV$. Set $\sigma_i = \|L_i\|_2$ and $U_i = L_i / \|L_i\|_2$. $- O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \geq d$)

- If we have $n = 10$ million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!
To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U \Sigma V^T$, first compute V. Then compute $U \Sigma = AV$.

- Compute $A^T A = O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = V \Lambda V^T = O(d^3)$ runtime.
- Compute $L = AV$. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $- O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \geq d$)

- If we have $n = 10$ million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!
- The worlds fastest super computers compute at ≈ 100 petaFLOPS = 10^{17} FLOPS (floating point operations per second).
To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U\Sigma V^T$, first compute V. Then compute $U\Sigma = AV$.

- Compute $A^T A$ – $O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = V\Lambda V^T$ – $O(d^3)$ runtime.
- Compute $L = AV$. Set $\sigma_i = \|L_i\|_2$ and $U_i = L_i/\|L_i\|_2$. – $O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \geq d$)

- If we have $n = 10$ million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!

- The worlds fastest super computers compute at ≈ 100 petaFLOPS = 10^{17} FLOPS (floating point operations per second).

- This is an easy task for them – but no one else.
To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors for $k \ll d$.
To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors for $k \ll d$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.

\[\begin{array}{cc}
\end{array} \]
To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors for $k \ll d$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.
- Use an iterative algorithm to compute an approximation to the top k singular vectors V_k.
To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors for $k \ll d$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.
- Use an iterative algorithm to compute an approximation to the top k singular vectors V_k.
- Runtime will be roughly $O(ndk)$ instead of $O(nd^2)$.
FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors for $k \ll d$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.
- Use an iterative algorithm to compute an approximation to the top k singular vectors V_k.
- Runtime will be roughly $O(ndk)$ instead of $O(nd^2)$.

Won’t cover: randomized methods, which can be much faster in some cases.
In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

\[
O(n^2) \quad O(n^3)
\]

· Directly manipulate the entries of the input matrix \(A \). Typically run in \(O(n^3) \) time for an \(n \times n \) matrix.
In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. Ax_1, Ax_2, \ldots, Ax_t.
In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. Ax_1, Ax_2, \ldots, Ax_t.
- Runtime is $\#$ iterations $t \times$ matrix vector multiplication time $= O(\text{nnz}(A) \cdot t) = O(ndt)$ where $\text{nnz}(A)$ is the number of nonzero entries in A.
In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. Ax_1, Ax_2, \ldots, Ax_t.
- Runtime is $\#$ iterations $t \times$ matrix vector multiplication time $= O(\text{nnz}(A) \cdot t) = O(ntd)$ where nnz(A) is the number of nonzero entries in A.
- Not just for sparse matrices!
Matlab:

```
svd and eig vs. svds and eigs
```

SciPy (Python):

```
scipy.linalg.svd vs. scipy.sparse.linalg.svd
```

\(\text{direct} \quad \text{(slow)}\)

\(\text{iterative} \quad \text{(fast)}\)
Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k = 1$ singular vectors.
Power Method: The most fundamental iterative method for approximate SVD. Applies to computing \(k = 1 \) singular vectors.

Goal: Given \(A \in \mathbb{R}^{n \times d} \), with SVD \(A = U \Sigma V \), find \(\tilde{z} \approx \tilde{v}_1 \).
Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k = 1$ singular vectors.

Goal: Given $A \in \mathbb{R}^{n \times d}$, with SVD $A = U\Sigma V$, find $\tilde{z} \approx \tilde{v}_1$.

- Choose $\tilde{z}^{(0)}$ randomly. E.g. $\tilde{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.
- For $i = 1, \ldots, t$
 - $\tilde{z}^{(i)} = A^T \cdot (A\tilde{z}^{(i-1)})$
 - $n_i = \|\tilde{z}^{(i)}\|_2$
 - $\tilde{z}^{(i)} = \tilde{z}^{(i)} / n_i$

Return \tilde{Z}_t
Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k = 1$ singular vectors.

Goal: Given $A \in \mathbb{R}^{n \times d}$, with SVD $A = U \Sigma V$, find $\tilde{z} \approx v_1$.

- Choose $\tilde{z}^{(0)}$ randomly. E.g. $\tilde{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.
- For $i = 1, \ldots, t$
 - $\tilde{z}^{(i)} = A^T \cdot (A \tilde{z}^{(i-1)})$
 - $n_i = \|\tilde{z}^{(i)}\|_2$
 - $\tilde{z}^{(i)} = \tilde{z}^{(i)} / n_i$

Return \tilde{z}_t

Total Runtime: $O(ndt)$
Write $\tilde{z}^{(0)}$ in the right singular vector basis:

$$
\tilde{z}^{(0)} = c_1 \tilde{V}_1 + c_2 \tilde{V}_2 + \ldots + c_d \tilde{V}_d
$$
Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$$

Update step: $\vec{z}^{(i)} = A^T \cdot (A \vec{z}^{(i-1)}) = V \Sigma^2 V^T \vec{z}^{(i-1)}$ (then normalize)
POWER METHOD INTUITION

Write $\bar{z}^{(0)}$ in the right singular vector basis:

$$\bar{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$$

Update step: $\bar{z}^{(i)} = A^T \cdot (A\bar{z}^{(i-1)}) = V \Sigma^2 V^T \bar{z}^{(i-1)}$ (then normalize)

Claim:

$$\bar{z}^{(1)} = \frac{1}{n_1} \left[c_1 \cdot \sigma_1^2 \vec{v}_1 + c_2 \cdot \sigma_2^2 \vec{v}_2 + \ldots + c_d \cdot \sigma_d^2 \vec{v}_d \right]$$
Claim:

\[\begin{aligned}
 \tilde{z}^{(t)} &= \frac{1}{\prod_{i=1}^{t} n_i} \left[c_1 \cdot \sigma_1^{2t} \vec{v}_1 + c_2 \cdot \sigma_2^{2t} \vec{v}_2 + \ldots + c_d \cdot \sigma_d^{2t} \vec{v}_d \right]
\end{aligned} \]

After \(t \) iterations, you have ‘powered’ up the singular values, making the component in the direction of \(\vec{v}_1 \) much larger, relative to the other components.
Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the “gap” between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps:

$$\|\vec{v}_1 - \vec{z}^{(t)}\|_2 \leq \epsilon.$$
Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the “gap” between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps:

$$\|\vec{v}_1 - \vec{z}^{(t)}\|_2 \leq \epsilon.$$

Total runtime: $O\left(\text{nnz}(A) \cdot \frac{\log d/\epsilon}{\gamma}\right) = O\left(nd \cdot \frac{\log d/\epsilon}{\gamma}\right).$
Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the “gap” between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t = O \left(\frac{\log d/\epsilon}{\gamma} \right)$ steps:

$$\| \vec{v}_1 - \vec{z}^{(t)} \|_2 \leq \epsilon.$$

Total runtime: $O \left(\text{nnz}(A) \cdot \frac{\log d/\epsilon}{\gamma} \right) = O \left(nd \cdot \frac{\log d/\epsilon}{\gamma} \right)$.

Next Time: Will analyze this method formally.