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logistics

• Midterm grades are on Moodle.
• Average was 32.67, median 33, standard deviation 6.8
• Come to office hours if you would like to see your
exam/discuss solutions.
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summary

Last Few Weeks: Low-Rank Approximation and PCA

• Compress data that lies close to a k-dimensional subspace.
• Equivalent to finding a low-rank approximation of the data
matrix X: X ≈ XVVT.

• Optimal solution via PCA (eigendecomposition of XTX or
equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

• How do we compress data that does not lie close to a
k-dimensional subspace?

• Spectral methods (SVD and eigendecomposition) are still key
techniques in this setting.

• Spectral graph theory, spectral clustering.
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entity embeddings

End of Last Class: Embedding objects other than vectors into
Euclidean space.

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation
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example: latent semantic analysis
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example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1

Another View: Each column of Y represents a ‘topic’. y⃗i(j) indicates
how much doci belongs to topic j. z⃗a(j) indicates how much worda
associates with that topic.
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example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XXT.
The eigendecomposition of XXT is XXT = VΣ2VT.

• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.
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example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XXT: where (XXT)a,b is
the number of documents that both worda and wordb appear in.

• Think about XXT as a similarity matrix (gram matrix, kernel matrix)
with entry (a,b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur
in, number of time both appear in the same window of w words, in
similar positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.
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example: word embedding

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.
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similarity via graphs

A common way of encoding similarity is via a graph. E.g., a
k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.

Is this set of points compressible? Does it lie close to a
low-dimensional subspace?
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linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

In LSA example, when X is the term-document matrix, XTX is like an
adjacency matrix, where worda and wordb are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).
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normalized adjacency matrix

What is the sum of entries in the ith column of A?

The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.
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adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2.

These are
just the eigenvectors of A.
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adjacency matrix eigenvectors

• Similar vertices (close with regards to graph proximity)
should have similar embeddings. I.e., Vk(i) should be similar
to Vk(j).
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spectral embedding
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spectral clustering

A very common task aside from just embedding points via
graph based similarity and SVD, is to partition or cluster
vertices based on this similarity.

Non-linearly separable data.
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spectral clustering

A very common task aside from just embedding points via
graph based similarity and SVD, is to partition or cluster
vertices based on this similarity.

Community detection in naturally occuring networks.
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cut minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let v⃗ ∈ Rn represent a cut: v⃗(i) = 1 if i ∈ S and v⃗(i) = −1 if i ∈ T.
Want v⃗ to have roughly equal numbers of 1s and −1s. I.e., v⃗T⃗1 ≈ 0.
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the laplacian view

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector v⃗,

v⃗TL⃗v = v⃗TDv⃗− v⃗TA⃗v =
n∑
i=1

d(i)⃗v(i)2 −
n∑
i=1

n∑
j=1

A(i, j) · v(i) · v(j)
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the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈{−1,1}n

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈{−1,1}n

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈Rd with ∥⃗v∥=1

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈Rd with ∥⃗v∥=1

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



smallest laplacian eigenvector

We have:

v⃗n =
1√
n
· 1⃗ = argmin

v∈Rdwith ∥⃗v∥=1
v⃗TLV⃗

with v⃗TnL⃗vn = 0.

20



smallest laplacian eigenvector

We have:

v⃗n =
1√
n
· 1⃗ = argmin

v∈Rdwith ∥⃗v∥=1
v⃗TLV⃗

with v⃗TnL⃗vn = 0.
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second smallest laplacian eigenvector

By Courant-Fischer, second small eigenvector is obtained
greedily:

v⃗1 = argmin
v∈Rdwith ∥⃗v∥=1

v⃗TLV⃗

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 v⃗1=0

v⃗TLV⃗

If v⃗2 were binary {−1, 1}d, orthogonality condition ensures that
there are an equal number of vertices on each side of the cut.
When v⃗2 ∈ Rd, enforces a ‘relaxed’ version of this constraint.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 1⃗=0

v⃗TLV⃗

Set S to be all nodes with v⃗2(i) < 0, T to be all with v⃗2(i) ≥ 0.

The Shi-Malik normalized cuts algorithm is a commonly used
variance on this approach, using the normalize Laplacian
D−1/2LD−1/2.
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Find a good partition of the graph by computing

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 1⃗=0
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variance on this approach, using the normalize Laplacian
D−1/2LD−1/2.

22



laplacian embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

v⃗TL⃗v =
∑
(i,j)∈E

[⃗v(i)− v⃗(j)]2.

Embedding points with coordinates given by
[⃗vn−1(j), v⃗n−2(j), . . . , v⃗n−k(j)] ensures that coordinates connected by
edges have minimum Euclidean distance.

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Etc...
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Questions?
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