
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 14

0



logistics

• Midterm grades are on Moodle.
• Average was 32.67, median 33, standard deviation 6.8
• Come to office hours if you would like to see your
exam/discuss solutions.

1



summary

Last Few Weeks: Low-Rank Approximation and PCA

• Compress data that lies close to a k-dimensional subspace.
• Equivalent to finding a low-rank approximation of the data
matrix X: X ≈ XVVT.

• Optimal solution via PCA (eigendecomposition of XTX or
equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

• How do we compress data that does not lie close to a
k-dimensional subspace?

• Spectral methods (SVD and eigendecomposition) are still key
techniques in this setting.

• Spectral graph theory, spectral clustering.

2



summary

Last Few Weeks: Low-Rank Approximation and PCA

• Compress data that lies close to a k-dimensional subspace.
• Equivalent to finding a low-rank approximation of the data
matrix X: X ≈ XVVT.

• Optimal solution via PCA (eigendecomposition of XTX or
equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

• How do we compress data that does not lie close to a
k-dimensional subspace?

• Spectral methods (SVD and eigendecomposition) are still key
techniques in this setting.

• Spectral graph theory, spectral clustering.

2



summary

Last Few Weeks: Low-Rank Approximation and PCA

• Compress data that lies close to a k-dimensional subspace.
• Equivalent to finding a low-rank approximation of the data
matrix X: X ≈ XVVT.

• Optimal solution via PCA (eigendecomposition of XTX or
equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

• How do we compress data that does not lie close to a
k-dimensional subspace?

• Spectral methods (SVD and eigendecomposition) are still key
techniques in this setting.

• Spectral graph theory, spectral clustering.

2



summary

Last Few Weeks: Low-Rank Approximation and PCA

• Compress data that lies close to a k-dimensional subspace.
• Equivalent to finding a low-rank approximation of the data
matrix X: X ≈ XVVT.

• Optimal solution via PCA (eigendecomposition of XTX or
equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

• How do we compress data that does not lie close to a
k-dimensional subspace?

• Spectral methods (SVD and eigendecomposition) are still key
techniques in this setting.

• Spectral graph theory, spectral clustering.
2



entity embeddings

End of Last Class: Embedding objects other than vectors into
Euclidean space.

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation

3



entity embeddings

End of Last Class: Embedding objects other than vectors into
Euclidean space.

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation

3



entity embeddings

End of Last Class: Embedding objects other than vectors into
Euclidean space.

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation

3



example: latent semantic analysis

4



example: latent semantic analysis

4



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

5



example: latent semantic analysis

If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1

Another View: Each column of Y represents a ‘topic’. y⃗i(j) indicates
how much doci belongs to topic j. z⃗a(j) indicates how much worda
associates with that topic.

6



example: latent semantic analysis

If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1

Another View: Each column of Y represents a ‘topic’. y⃗i(j) indicates
how much doci belongs to topic j. z⃗a(j) indicates how much worda
associates with that topic.

6



example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XXT.
The eigendecomposition of XXT is XXT = VΣ2VT.

• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.

7



example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.

• The columns of Vk are equivalently: the top k eigenvectors of XXT.
The eigendecomposition of XXT is XXT = VΣ2VT.

• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.

7



example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XXT.

The eigendecomposition of XXT is XXT = VΣ2VT.
• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.

7



example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XXT.
The eigendecomposition of XXT is XXT = VΣ2VT.

• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.

7



example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XXT.
The eigendecomposition of XXT is XXT = VΣ2VT.

• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.

7



example: latent semantic analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if wordi and wordj appear in many of the same
documents.

• In an SVD decomposition we set Z = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of XXT.
The eigendecomposition of XXT is XXT = VΣ2VT.

• What is the best rank-k approximation of XXT? I.e.
argminrank−k B ∥XXT − B∥F

• XXT = VkΣ2
kVTk = ZZT.

7



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XXT: where (XXT)a,b is
the number of documents that both worda and wordb appear in.

• Think about XXT as a similarity matrix (gram matrix, kernel matrix)
with entry (a,b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur
in, number of time both appear in the same window of w words, in
similar positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

8



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XXT: where (XXT)a,b is
the number of documents that both worda and wordb appear in.

• Think about XXT as a similarity matrix (gram matrix, kernel matrix)
with entry (a,b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur
in, number of time both appear in the same window of w words, in
similar positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

8



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XXT: where (XXT)a,b is
the number of documents that both worda and wordb appear in.

• Think about XXT as a similarity matrix (gram matrix, kernel matrix)
with entry (a,b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur
in, number of time both appear in the same window of w words, in
similar positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

8



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XXT: where (XXT)a,b is
the number of documents that both worda and wordb appear in.

• Think about XXT as a similarity matrix (gram matrix, kernel matrix)
with entry (a,b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur
in, number of time both appear in the same window of w words, in
similar positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc. 8



example: word embedding

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.

9



example: word embedding

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.

9



similarity via graphs

A common way of encoding similarity is via a graph. E.g., a
k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.

Is this set of points compressible? Does it lie close to a
low-dimensional subspace?

10



similarity via graphs

A common way of encoding similarity is via a graph. E.g., a
k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.

Is this set of points compressible? Does it lie close to a
low-dimensional subspace?

10



similarity via graphs

A common way of encoding similarity is via a graph. E.g., a
k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.

Is this set of points compressible? Does it lie close to a
low-dimensional subspace?

10



similarity via graphs

A common way of encoding similarity is via a graph. E.g., a
k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.

Is this set of points compressible? Does it lie close to a
low-dimensional subspace?

10



similarity via graphs

A common way of encoding similarity is via a graph. E.g., a
k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.

Is this set of points compressible? Does it lie close to a
low-dimensional subspace?

10



linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

In LSA example, when X is the term-document matrix, XTX is like an
adjacency matrix, where worda and wordb are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).

11



linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

In LSA example, when X is the term-document matrix, XTX is like an
adjacency matrix, where worda and wordb are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).

11



linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

In LSA example, when X is the term-document matrix, XTX is like an
adjacency matrix, where worda and wordb are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).

11



normalized adjacency matrix

What is the sum of entries in the ith column of A?

The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.

12



normalized adjacency matrix

What is the sum of entries in the ith column of A? The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.

12



normalized adjacency matrix

What is the sum of entries in the ith column of A? The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.

12



normalized adjacency matrix

What is the sum of entries in the ith column of A? The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.

12



normalized adjacency matrix

What is the sum of entries in the ith column of A? The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.

12



normalized adjacency matrix

What is the sum of entries in the ith column of A? The
(weighted) degree of vertex i.

Often, A is normalized as Ā = D−1/2AD−1/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and applying linear algebraic techniques.

12



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2.

These are
just the eigenvectors of A.

13



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2.

These are
just the eigenvectors of A.

13



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. These are
just the eigenvectors of A.

13



adjacency matrix eigenvectors

• Similar vertices (close with regards to graph proximity)
should have similar embeddings. I.e., Vk(i) should be similar
to Vk(j).

14



adjacency matrix eigenvectors

• Similar vertices (close with regards to graph proximity)
should have similar embeddings. I.e., Vk(i) should be similar
to Vk(j).

14



spectral embedding

15



spectral clustering

A very common task aside from just embedding points via
graph based similarity and SVD, is to partition or cluster
vertices based on this similarity.

Non-linearly separable data.

16



spectral clustering

A very common task aside from just embedding points via
graph based similarity and SVD, is to partition or cluster
vertices based on this similarity.

Non-linearly separable data.

16



spectral clustering

A very common task aside from just embedding points via
graph based similarity and SVD, is to partition or cluster
vertices based on this similarity.

Community detection in naturally occuring networks.

16



cut minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let v⃗ ∈ Rn represent a cut: v⃗(i) = 1 if i ∈ S and v⃗(i) = −1 if i ∈ T.
Want v⃗ to have roughly equal numbers of 1s and −1s. I.e., v⃗T⃗1 ≈ 0.

17



cut minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let v⃗ ∈ Rn represent a cut: v⃗(i) = 1 if i ∈ S and v⃗(i) = −1 if i ∈ T.
Want v⃗ to have roughly equal numbers of 1s and −1s. I.e., v⃗T⃗1 ≈ 0.

17



cut minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let v⃗ ∈ Rn represent a cut: v⃗(i) = 1 if i ∈ S and v⃗(i) = −1 if i ∈ T.
Want v⃗ to have roughly equal numbers of 1s and −1s. I.e., v⃗T⃗1 ≈ 0.

17



cut minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let v⃗ ∈ Rn represent a cut: v⃗(i) = 1 if i ∈ S and v⃗(i) = −1 if i ∈ T.
Want v⃗ to have roughly equal numbers of 1s and −1s. I.e., v⃗T⃗1 ≈ 0.

17



the laplacian view

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector v⃗,

v⃗TL⃗v = v⃗TDv⃗− v⃗TA⃗v =
n∑
i=1

d(i)⃗v(i)2 −
n∑
i=1

n∑
j=1

A(i, j) · v(i) · v(j)

18



the laplacian view

For a graph with adjacency matrix A and degree matrix D, L = D− A is
the graph Laplacian.

For any vector v⃗,

v⃗TL⃗v = v⃗TDv⃗− v⃗TA⃗v =
n∑
i=1

d(i)⃗v(i)2 −
n∑
i=1

n∑
j=1

A(i, j) · v(i) · v(j)

18



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈{−1,1}n

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈{−1,1}n

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈Rd with ∥⃗v∥=1

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



the laplacian view

For a cut indicator vector v⃗ ∈ {−1, 1}n with v⃗(i) = −1 for i ∈ S
and v⃗(i) = 1 for i ∈ T:

v⃗TLV⃗ =
∑
(i,j)∈E

(⃗v(i)− v⃗(j))2 = 4 · cut(S, T).

So minimizing v⃗TL⃗v corresponds to minimizing the cut size.

argmin
v∈Rd with ∥⃗v∥=1

v⃗TLV⃗

By the Courant-Fischer theorem, v⃗ is the smallest eigenvector
of L = D− A.

19



smallest laplacian eigenvector

We have:

v⃗n =
1√
n
· 1⃗ = argmin

v∈Rdwith ∥⃗v∥=1
v⃗TLV⃗

with v⃗TnL⃗vn = 0.

20



smallest laplacian eigenvector

We have:

v⃗n =
1√
n
· 1⃗ = argmin

v∈Rdwith ∥⃗v∥=1
v⃗TLV⃗

with v⃗TnL⃗vn = 0.

20



second smallest laplacian eigenvector

By Courant-Fischer, second small eigenvector is obtained
greedily:

v⃗1 = argmin
v∈Rdwith ∥⃗v∥=1

v⃗TLV⃗

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 v⃗1=0

v⃗TLV⃗

If v⃗2 were binary {−1, 1}d, orthogonality condition ensures that
there are an equal number of vertices on each side of the cut.
When v⃗2 ∈ Rd, enforces a ‘relaxed’ version of this constraint.

21



second smallest laplacian eigenvector

By Courant-Fischer, second small eigenvector is obtained
greedily:

v⃗1 = argmin
v∈Rdwith ∥⃗v∥=1

v⃗TLV⃗

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 v⃗1=0

v⃗TLV⃗

If v⃗2 were binary {−1, 1}d, orthogonality condition ensures that
there are an equal number of vertices on each side of the cut.

When v⃗2 ∈ Rd, enforces a ‘relaxed’ version of this constraint.

21



second smallest laplacian eigenvector

By Courant-Fischer, second small eigenvector is obtained
greedily:

v⃗1 = argmin
v∈Rdwith ∥⃗v∥=1

v⃗TLV⃗

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 v⃗1=0

v⃗TLV⃗

If v⃗2 were binary {−1, 1}d, orthogonality condition ensures that
there are an equal number of vertices on each side of the cut.
When v⃗2 ∈ Rd, enforces a ‘relaxed’ version of this constraint.

21



cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 1⃗=0

v⃗TLV⃗

Set S to be all nodes with v⃗2(i) < 0, T to be all with v⃗2(i) ≥ 0.

The Shi-Malik normalized cuts algorithm is a commonly used
variance on this approach, using the normalize Laplacian
D−1/2LD−1/2.

22



cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 1⃗=0

v⃗TLV⃗

Set S to be all nodes with v⃗2(i) < 0, T to be all with v⃗2(i) ≥ 0.

The Shi-Malik normalized cuts algorithm is a commonly used
variance on this approach, using the normalize Laplacian
D−1/2LD−1/2.

22



cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 1⃗=0

v⃗TLV⃗

Set S to be all nodes with v⃗2(i) < 0, T to be all with v⃗2(i) ≥ 0.

The Shi-Malik normalized cuts algorithm is a commonly used
variance on this approach, using the normalize Laplacian
D−1/2LD−1/2.

22



cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

v⃗2 = argmin
v∈Rdwith ∥⃗v∥=1, v⃗T2 1⃗=0

v⃗TLV⃗

Set S to be all nodes with v⃗2(i) < 0, T to be all with v⃗2(i) ≥ 0.

The Shi-Malik normalized cuts algorithm is a commonly used
variance on this approach, using the normalize Laplacian
D−1/2LD−1/2.

22



laplacian embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

v⃗TL⃗v =
∑
(i,j)∈E

[⃗v(i)− v⃗(j)]2.

Embedding points with coordinates given by
[⃗vn−1(j), v⃗n−2(j), . . . , v⃗n−k(j)] ensures that coordinates connected by
edges have minimum Euclidean distance.

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Etc...

23



laplacian embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

v⃗TL⃗v =
∑
(i,j)∈E

[⃗v(i)− v⃗(j)]2.

Embedding points with coordinates given by
[⃗vn−1(j), v⃗n−2(j), . . . , v⃗n−k(j)] ensures that coordinates connected by
edges have minimum Euclidean distance.

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Etc...

23



laplacian embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

v⃗TL⃗v =
∑
(i,j)∈E

[⃗v(i)− v⃗(j)]2.

Embedding points with coordinates given by
[⃗vn−1(j), v⃗n−2(j), . . . , v⃗n−k(j)] ensures that coordinates connected by
edges have minimum Euclidean distance.

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Etc...

23



laplacian embedding

The smallest eigenvectors of L = D− A give the orthogonal
‘functions’ that are smoothest over the graph. I.e., minimize

v⃗TL⃗v =
∑
(i,j)∈E

[⃗v(i)− v⃗(j)]2.

Embedding points with coordinates given by
[⃗vn−1(j), v⃗n−2(j), . . . , v⃗n−k(j)] ensures that coordinates connected by
edges have minimum Euclidean distance.

• Laplacian Eigenmaps

• Locally linear embedding

• Isomap

• Etc...

23



Questions?

24


