COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 14

- Midterm grades are on Moodle.
- Average was 32.67, median 33, standard deviation 6.8
- Come to office hours if you would like to see your exam/discuss solutions.

Last Few Weeks: Low-Rank Approximation and PCA

SUMMARY

Last Few Weeks: Low-Rank Approximation and PCA

- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix X: $X \approx XVV^{T}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).

SUMMARY

Last Few Weeks: Low-Rank Approximation and PCA

- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix X: $X \approx XVV^{T}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

Last Few Weeks: Low-Rank Approximation and PCA

- \cdot Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix X: $X \approx XVV^{T}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).

This Class: Non-linear dimensionality reduction.

- How do we compress data that does not lie close to a *k*-dimensional subspace?
- Spectral methods (SVD and eigendecomposition) are still key techniques in this setting.
- · Spectral graph theory, spectral clustering.

End of Last Class: Embedding objects other than vectors into Euclidean space.

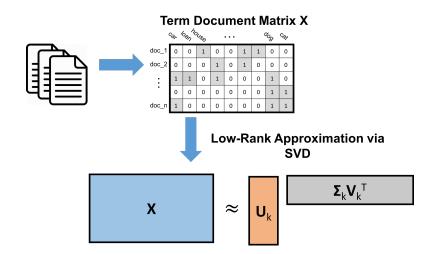
End of Last Class: Embedding objects other than vectors into Euclidean space.

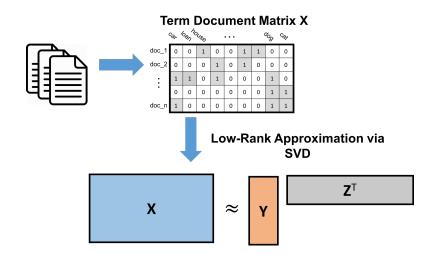
- · Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

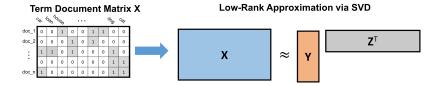
End of Last Class: Embedding objects other than vectors into Euclidean space.

- · Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- \cdot Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation

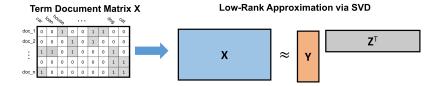






• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

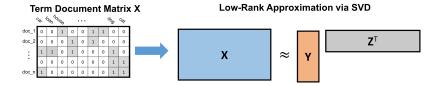
$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{\mathbf{y}}_i, \vec{\mathbf{z}}_a \rangle.$$



• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^{\mathsf{T}}\|_{\mathsf{F}}$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.

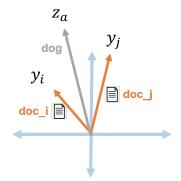


• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^{T}\|_{F}$ is small, then on average,

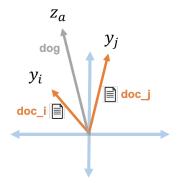
$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$.

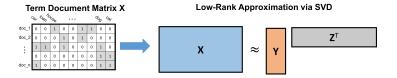
If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$



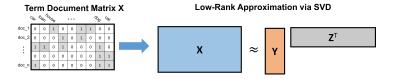
If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$



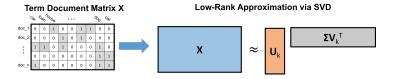
Another View: Each column of **Y** represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic *j*. $\vec{z_a}(j)$ indicates how much word_a associates with that topic.



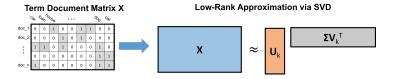
• Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.



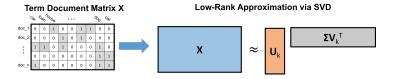
- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.



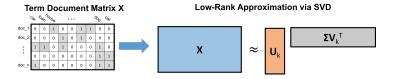
- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of XX^T .



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of XX^T . The eigendecomposition of XX^T is $XX^T = V\Sigma^2 V^T$.



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of XX^T . The eigendecomposition of XX^T is $XX^T = V\Sigma^2 V^T$.
- What is the best rank-*k* approximation of XX^{T} ? I.e. arg min_{rank *k* B $||XX^{T} B||_{F}$}



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of XX^T . The eigendecomposition of XX^T is $XX^T = V\Sigma^2 V^T$.
- What is the best rank-*k* approximation of XX^{T} ? I.e. arg min_{rank *k* B $||XX^{T} B||_{F}$}
- $\mathbf{X}\mathbf{X}^{\mathsf{T}} = \mathbf{V}_k \mathbf{\Sigma}_k^2 \mathbf{V}_k^{\mathsf{T}} = \mathbf{Z}\mathbf{Z}^{\mathsf{T}}.$

• Embedding is via low-rank approximation of XX^T : where $(XX^T)_{a,b}$ is the number of documents that both *word*_a and *word*_b appear in.

• Embedding is via low-rank approximation of XX^T : where $(XX^T)_{a,b}$ is the number of documents that both *word*_a and *word*_b appear in.

• Think about XX^T as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.

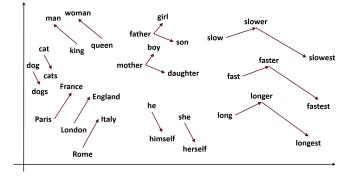
• Embedding is via low-rank approximation of XX^{T} : where $(XX^{T})_{a,b}$ is the number of documents that both *word*_a and *word*_b appear in.

- Think about XX^T as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of time both appear in the same window of *w* words, in similar positions of documents in different languages, etc.

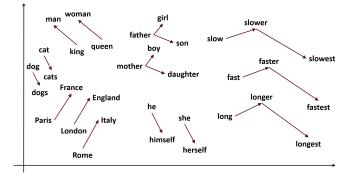
• Embedding is via low-rank approximation of XX^T : where $(XX^T)_{a,b}$ is the number of documents that both *word*_a and *word*_b appear in.

- Think about XX^T as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of time both appear in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing **XX**^T with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.

EXAMPLE: WORD EMBEDDING



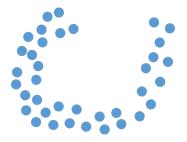
EXAMPLE: WORD EMBEDDING



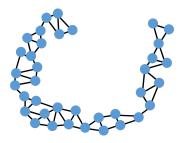
Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

• Connect items to similar items, possibly with higher weight edges when they are more similar.

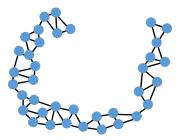
• Connect items to similar items, possibly with higher weight edges when they are more similar.



• Connect items to similar items, possibly with higher weight edges when they are more similar.



• Connect items to similar items, possibly with higher weight edges when they are more similar.



Is this set of points compressible? Does it lie close to a low-dimensional subspace?

• Connect items to similar items, possibly with higher weight edges when they are more similar.

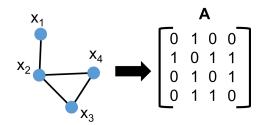
Is this set of points compressible? Does it lie close to a low-dimensional subspace?

Once we have connected *n* data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j}$ = edge weight between nodes *i* and *j*

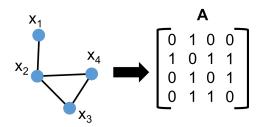
Once we have connected *n* data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j}$ = edge weight between nodes *i* and *j*



Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

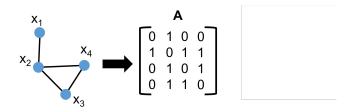
 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j}$ = edge weight between nodes *i* and *j*



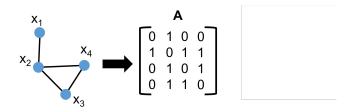
In LSA example, when **X** is the term-document matrix, $\mathbf{X}^T \mathbf{X}$ is like an adjacency matrix, where *word*_a and *word*_b are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).



What is the sum of entries in the *i*th column of A?

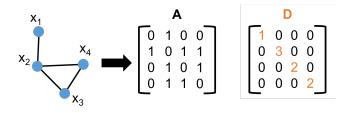


What is the sum of entries in the *i*th column of *A*? The (weighted) degree of vertex *i*.



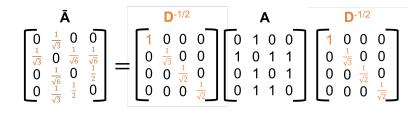
What is the sum of entries in the *i*th column of A? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ where **D** is the degree matrix.



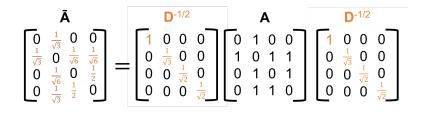
What is the sum of entries in the *i*th column of *A*? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ where **D** is the degree matrix.



What is the sum of entries in the *i*th column of *A*? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ where **D** is the degree matrix.



What is the sum of entries in the *i*th column of *A*? The (weighted) degree of vertex *i*.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ where **D** is the degree matrix.

Spectral graph theory is the field of representing graphs as matrices and applying linear algebraic techniques.

How do we compute an optimal low-rank approximation of A?

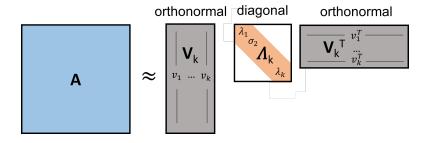
How do we compute an optimal low-rank approximation of A?

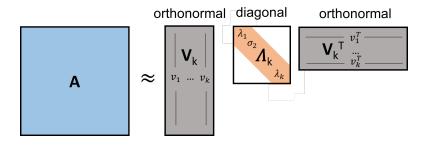
• Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$.

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$. These are just the eigenvectors of **A**.

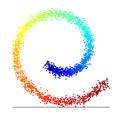
ADJACENCY MATRIX EIGENVECTORS





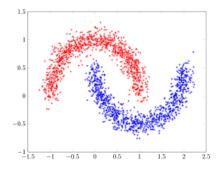
 Similar vertices (close with regards to graph proximity) should have similar embeddings. I.e., V_k(i) should be similar to V_k(j).

SPECTRAL EMBEDDING



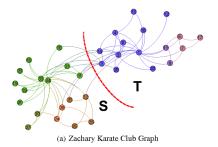
A very common task aside from just embedding points via graph based similarity and SVD, is to partition or cluster vertices based on this similarity. A very common task aside from just embedding points via graph based similarity and SVD, is to partition or cluster vertices based on this similarity.

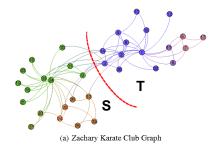
Non-linearly separable data.

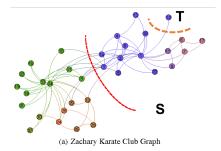


A very common task aside from just embedding points via graph based similarity and SVD, is to partition or cluster vertices based on this similarity.

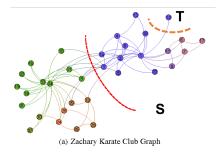
Community detection in naturally occuring networks.





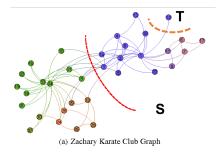


Small cuts are often not informative.



Small cuts are often not informative.

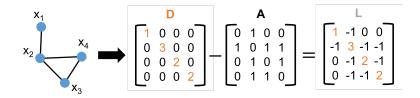
Solution: Encourage cuts that separate large sections of the graph.



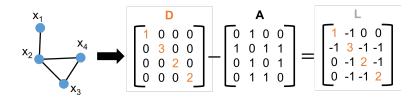
Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let $\vec{v} \in \mathbb{R}^n$ represent a cut: $\vec{v}(i) = 1$ if $i \in S$ and $\vec{v}(i) = -1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of 1s and -1s. I.e., $\vec{v}^T \vec{1} \approx 0$. For a graph with adjacency matrix **A** and degree matrix **D**, $\mathbf{L} = \mathbf{D} - \mathbf{A}$ is the graph Laplacian.



For a graph with adjacency matrix **A** and degree matrix **D**, $\mathbf{L} = \mathbf{D} - \mathbf{A}$ is the graph Laplacian.



For any vector \vec{v} ,

$$\vec{v}^{T}L\vec{v} = \vec{v}^{T}D\vec{v} - \vec{v}^{T}A\vec{v} = \sum_{i=1}^{n} d(i)\vec{v}(i)^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} A(i,j) \cdot v(j) \cdot v(j)$$

$$\vec{\mathbf{v}}^T L \vec{\mathbf{V}} = \sum_{(i,j)\in E} (\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j))^2 = 4 \cdot cut(S,T).$$

So minimizing $\vec{v}^T L \vec{v}$ corresponds to minimizing the cut size.

$$\vec{\mathbf{v}}^T L \vec{\mathbf{V}} = \sum_{(i,j)\in E} (\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j))^2 = 4 \cdot cut(S,T).$$

So minimizing $\vec{v}^T L \vec{v}$ corresponds to minimizing the cut size.

arg min $\vec{v}^T L \vec{V}$ $v \in \{-1,1\}^n$

$$\vec{\mathbf{v}}^T L \vec{\mathbf{V}} = \sum_{(i,j)\in E} (\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j))^2 = 4 \cdot cut(S,T).$$

So minimizing $\vec{v}^T L \vec{v}$ corresponds to minimizing the cut size.

arg min
$$\vec{v}^T L \vec{V}$$

 $v \in \mathbb{R}^d$ with $\|\vec{v}\| = 1$

$$\vec{\mathbf{v}}^T L \vec{\mathbf{V}} = \sum_{(i,j)\in E} (\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j))^2 = 4 \cdot cut(S,T).$$

So minimizing $\vec{v}^T L \vec{v}$ corresponds to minimizing the cut size.

arg min
$$\vec{v}^T L \vec{V}$$

 $v \in \mathbb{R}^d$ with $\|\vec{v}\| = 1$

By the Courant-Fischer theorem, \vec{v} is the smallest eigenvector of L = D - A.

SMALLEST LAPLACIAN EIGENVECTOR

We have:

$$\vec{v}_n = \frac{1}{\sqrt{n}} \cdot \vec{1} = \operatorname*{arg\,min}_{v \in \mathbb{R}^d \text{with } \|\vec{v}\|=1} \vec{v}^T L \vec{V}$$

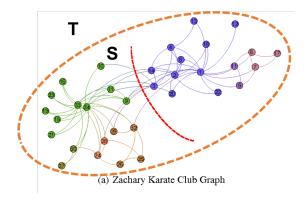
with $\vec{v}_n^T L \vec{v}_n = 0$.

SMALLEST LAPLACIAN EIGENVECTOR

We have:

$$\vec{v}_n = \frac{1}{\sqrt{n}} \cdot \vec{1} = \operatorname*{arg\,min}_{v \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1} \vec{v}^T L \vec{V}$$

with $\vec{v}_n^T L \vec{v}_n = 0$.



By Courant-Fischer, second small eigenvector is obtained greedily:

$$\vec{v}_1 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d \text{with } \|\vec{v}\|=1} \vec{v}^T L \vec{V}$$

$$\vec{v}_2 = \operatorname*{arg\,min}_{v \in \mathbb{R}^d \text{with} \|\vec{v}\| = 1, \ \vec{v}_2^T \vec{v}_1 = 0} \vec{v}^T L \vec{V}$$

By Courant-Fischer, second small eigenvector is obtained greedily:

$$ec{v}_1 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d ext{with } \|ec{v}\| = 1} ec{v}^T L ec{V}$$

$$\vec{v}_2 = \operatorname*{arg\,min}_{v \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1, \ \vec{v}_2^T \vec{v}_1 = 0} \vec{v}^T L \vec{V}$$

If \vec{v}_2 were binary $\{-1,1\}^d$, orthogonality condition ensures that there are an equal number of vertices on each side of the cut.

By Courant-Fischer, second small eigenvector is obtained greedily:

$$ec{v}_1 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d ext{with } \|ec{v}\| = 1} ec{v}^T L ec{V}$$

$$\vec{v}_2 = \operatorname*{arg\,min}_{v \in \mathbb{R}^d \text{with } \|\vec{v}\|=1, \ \vec{v}_2^T \vec{v}_1 = 0} \vec{v}^T L \vec{V}$$

If \vec{v}_2 were binary $\{-1,1\}^d$, orthogonality condition ensures that there are an equal number of vertices on each side of the cut. When $\vec{v}_2 \in \mathbb{R}^d$, enforces a 'relaxed' version of this constraint.

Find a good partition of the graph by computing

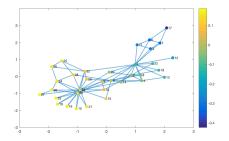
$$ec{v}_2 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d ext{ with } \|ec{v}\| = 1, \ ec{v}_2^T ec{1} = 0} ec{v}^T L ec{V}$$

Set S to be all nodes with $\vec{v}_2(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.

Find a good partition of the graph by computing

$$ec{v}_2 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d ext{ with } \|ec{v}\| = 1, \ ec{v}_2^T ec{1} = 0} ec{v}^T L ec{V}$$

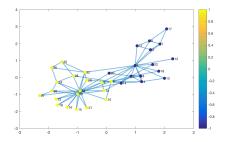
Set S to be all nodes with $\vec{v}_2(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.



Find a good partition of the graph by computing

$$ec{v}_2 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d ext{ with } \|ec{v}\| = 1, \ ec{v}_2^T ec{1} = 0} ec{v}^T L ec{V}$$

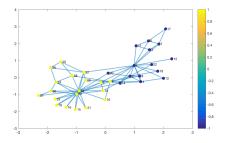
Set S to be all nodes with $\vec{v}_2(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.



Find a good partition of the graph by computing

$$ec{v}_2 = \mathop{\mathrm{arg\,min}}_{v \in \mathbb{R}^d ext{ with } \|ec{v}\| = 1, \ ec{v}_2^T ec{1} = 0} ec{v}^T L ec{V}$$

Set S to be all nodes with $\vec{v}_2(i) < 0$, T to be all with $\vec{v}_2(i) \ge 0$.



The Shi-Malik normalized cuts algorithm is a commonly used variance on this approach, using the normalize Laplacian $\mathbf{D}^{-1/2}\mathbf{I}\mathbf{D}^{-1/2}$

$$\vec{\mathbf{v}}^T L \vec{\mathbf{v}} = \sum_{(i,j)\in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

$$\vec{\mathbf{v}}^T L \vec{\mathbf{v}} = \sum_{(i,j)\in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum Euclidean distance.

$$\vec{\mathbf{v}}^T L \vec{\mathbf{v}} = \sum_{(i,j)\in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum Euclidean distance.

$$\vec{\mathbf{v}}^T L \vec{\mathbf{v}} = \sum_{(i,j)\in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum Euclidean distance.

- Laplacian Eigenmaps
- Locally linear embedding
- Isomap
- Etc...

Questions?