
Generating Natural-language Process
Descriptions from Formal Process Models

Stefan C. Christov1, Tiffany Y. Chao1, and Lori A. Clarke1

Dept. of Computer Science, University of Massachusetts, Amherst, MA 01003
{christov, clarke}@cs.umass.edu, tiffany.y.chao@boeing.com

Abstract. Process models are often used to support the understanding
and analysis of complex systems. The accuracy of such process models
usually requires that various stakeholders review, evaluate, correct, and
propose improvements to these models. Some stakeholders, however, may
not have the skills to understand the process models except at a relatively
superficial level. To address this issue, we have developed an approach for
automatically generating natural-language process descriptions based on
formal process models. Unlike existing electronic process guides, these
process descriptions are generated completely automatically and can de-
scribe complex process features, such as exception handling, concurrency,
and non-deterministic choice. The generated process descriptions have
been well-received by domain experts from several fields and have also
proven useful to process programmers. We describe our template-based
approach, the resulting hypertext representation, and report on a user
study that compares the understandability of the generated textual de-
scription and a diagrammatic process representation.

Keywords: natural-language process description, electronic process guide, pro-
cess modeling, continuous process improvement

1 Introduction

Process models are often used to describe the interaction among humans, soft-
ware systems, and hardware components [8, 9, 11, 20]. For human-intensive sys-
tems, such as life-critical medical procedures, search and rescue operations, and
command and control management, humans require extensive expertise and play
a critical role in the success of the overall system mission [10, 14, 16]. Thus, the
process models for such systems must accurately represent the important roles
that such humans play. To develop accurate models of a human-intensive process,
it is usually important that the various stakeholders carefully review, evaluate,
correct, and propose improvements to these models. Some stakeholders (e.g.,
domain experts, process performers, user interface designers, even some pro-
grammers), however, might not be experts in process modeling. Consequently,
such stakeholders may not have the skills to understand the process models ex-
cept at a relatively superficial level. We have seen this problem in our own work



on modeling medical procedures. Medical professionals may be able to point out
glaring misrepresentations, but are not sufficiently versed in modeling to fully
understand the implications, for example, of complex control flow such as the
handling of exceptional situations and concurrent execution.

To help stakeholders with diverse backgrounds understand complex pro-
cesses, we have developed the Little-JIL Narrator. The Narrator takes a Little-
JIL [6] process model, a set of templates of English phrases that define the dif-
ferent semantic elements of the process modeling language, and customization
rules, and weaves together a textual, hyper-linked, description of the process
model. In addition to a natural-language description of the process model, this
textual representation includes a table of contents and an index of process steps.
The generated narrative has been well received by the non-computing domain
experts with whom we have been working. Surprisingly, the computer scien-
tists involved in these projects have also found it to be a useful representation
for reviewing the evolving process models. A user-study we performed indicates
that the ability of the narrative to support process understanding by computer
science students is comparable to that of an existing diagrammatic process rep-
resentation. Moreover, the narrative seems to be a useful training guide to help
novices learn about a complex process.

Requirements and design documents often include a natural-language de-
scription of a system. There is often a mismatch, however, between these natural-
language descriptions and a formal description of the same process [8]. The
natural-language descriptions are often imprecise and incomplete, and quickly
become out-of-sync with evolving formal descriptions. The generated narrative
created by our prototype tool, however, is as precise and complete as the Little-
JIL process model from which it is derived and can easily be rederived whenever
the process model is changed. On the other hand, it is also a more detailed and
verbose representation than most human-created natural-language descriptions.
To overcome this awkwardness, customization rules can be used to selectively
remove some of the details and to control the level of explanation.

In this paper, we describe the Little-JIL Narrator. The next section discusses
related work. Section 3 presents a simplified Little-JIL process model based
on a real-world medical process and then provides and explains the generated
narrative. Section 4 then provides an overview of the Narrator design. Section 5
describes a user study we performed to evaluate the Narrator, our experience
with using the Narrator with real-world processes and some issues that were
encountered. The final section discusses future research directions and concludes
the paper.

2 Related Work

The importance of describing processes to various stakeholders, perhaps from
different backgrounds, is well-established. In some early efforts to accomplish
this, organizations created paper-based process guides or manuals that describe,
largely in natural language, the process of interest. It has been observed, however,



that such paper-based guides are difficult to navigate due to their inherently
linear structure and significant size, time-consuming to develop, hard to keep in
sync with the evolving process (or its formal description), and nearly impossible
to customize. Thus, such paper-based guides are not very effective and rarely
created or used [13].

To alleviate some of the disadvantages of paper-based process guides, organi-
zations have resorted to electronic process guides (EPGs), which usually contain
hyperlinks that facilitate navigation. Using hyperlinks addresses to some extent
the navigation problems with paper-based process guides. Manually creating and
maintaining EPGs remains a large problem. For example, [5] reports that dur-
ing the maintenance of a V-Modell guide, “when changing the glossary structure
to tool-tip style, some 2000 links had to be updated.” As a result, some tools
have been proposed to automatically generate EPGs, such as Adonis [1], ARIS
[2], Eclipse Process Framework (EPF) Composer [12], and Spearmint [4]. Such
tools use a process model as input to the generator that automatically creates
a hyperlinked EPG based on that process model. The process model is usually
captured in some notation that supports constructs such as activities and their
hierarchical decomposition, artifacts and resources, roles, and the relationships
between these constructs (e.g., which role is responsible for which activity, what
resources are needed to perform an activity, and what artifacts are produced
by an activity). Process engineers can then associate detailed natural-language
descriptions with these components of a process model.

Once a process model is in place, an EPG generator can use it to create a hy-
perlinked document describing the process. EPF Composer and Spearmint, for
instance, create a document that has a section showing the decomposition of the
process activities (as a summary view of the process) and another section with a
detailed natural-language description of the selected activity/artifact/role. These
sections, however, contain little indication of the order, or the flow of control
among the process activities. The section that provides a summary view of the
process, for example, shows the hierarchical decomposition of the process ac-
tivities, but not the order in which they need to be executed. The detailed,
natural-language description of the selected activity may contain some informa-
tion about control flow, but this information is included in a non-systematic way
as it is up to the person who writes the description to decide how much control
flow information to include.

Another concern with the natural-language process descriptions generated
by the tools mentioned above is related to the lack of semantic richness of the
process notations used to create the process models that are in turn the basis for
the generation of EPGs. Such process notations often lack support for complex
exception handling behavior, concurrency and synchronization mechanisms, or
even mechanisms for simpler constructs such as looping. For example, [17] re-
ports that the EPF Composer was not able to represent parts of a software
development process because EPF Composer could not adequately model the
looping at the activity level.



Fig. 1. An example chemotherapy process.

The hyperlinked, natural-language description generated by the Little-JIL
Narrator described here contains information about resources, artifacts and
agents, similar to the EPGs generated by the tools discussed above, but also
includes a detailed description of the control flow. The Little-JIL language pro-
vides complex control flow constructs, such as support for exceptional behavior,
concurrency, synchronization, and recursion, thereby making the generation of
the narrative more useful, but more challenging. Finally, the full description is
automatically generated from the process model, eliminating the issues related
to manual creation and maintenance mentioned above.

3 Example

This section presents a part of a Little-JIL process model for a chemotherapy
process, and then shows and explains the natural-language description generated
from this process model using the Narrator. Chemotherapy is a very high-risk
medical procedure since incorrect administration of chemotherapy medications
can be fatal for patients or cause them irreversible harm. As a result, complex
and sophisticated processes are in place to ensure that proper checks are done
and that the risk of harming patients is minimized.

The main building block of a Little-JIL process model is the step, which
corresponds to an activity performed by human or automated agents and is
iconically represented by a black rectangle. Little-JIL process models contain a
hierarchical decomposition of steps.

Prepare for and administer first cycle of chemotherapy is a sequential step
(indicated by the arrow in the step rectangle), which means that its substeps
need to be performed in left to right order. The substep install portacath (a
portacath is a device for intravenous access) is an optional step (indicated by
the question mark above the step). This means that it is up to the step’s agent
to decide whether to perform that step. Since not all chemotherapy regimens
require the installation of a portacath, the agent may decide not to execute this
step for some patients.



Fig. 2. Elaboration of perform consultation and assessment.

The substep perform consultation and assessment is further elaborated in
Figure 2. This step has a prerequisite (indicated by the filled triangle to the left
of the step rectangle) to represent the fact that before the patient consultation
and assessment can start, the patient biopsy must have been performed.

The substep create treatment plan and orders is a parallel step (indicated
by the equal sign on the step rectangle), representing the fact that the oncol-
ogist can choose to create the treatment plan, the chemotherapy orders, and
the premedication orders in any order, including simultaneously. Furthermore,
the oncologist can choose between two alternative options for how to create
the treatment plan—use a standardized treatment plan (a careset) or create the
treatment plan from scratch, expressed by making create treatment plan a choice
step (represented by a circle over a line in the step rectangle).

While performing the step confirm pathology report indicates cancer in Fig-
ure 2, the oncologist may discover that the pathology report does not indicate
cancer. This unusual circumstance is modeled by using Little-JIL’s exception
handling mechanisms. The step confirm pathology report indicates cancer in Fig-
ure 2 throws the exception PathologyReportDoesNotIndicateCancer. The excep-
tion propagates up the step tree until a matching exception handler is found.
An exception handler is itself a regular step and, as any step, it can be decom-
posed to any desired level of detail. Once the handler step consider alternative
treatment (in Figure 1) is performed, Little-JIL’s continuation action semantics
are used to indicate how the process should continue. In this example, the con-
tinuation action is complete (indicated by the label on the edge connecting the
handler and its parent step), which means that the parent step prepare for and
administer first cycle of chemotherapy is considered completed.



In Little-JIL, each step is performed by humans or automated agents. For ex-
ample, the step perform initial review of patient records in Figure 1 is performed
by a Practice Registered Nurse (RN) and a Pharmacist. To reduce visual clutter,
we did not annotate every step in Figures 1 and 2 with agents.

The rich semantics of Little-JIL allow the model of the chemotherapy process
to capture many aspects of the real-world process concisely. While these features
of Little-JIL and other similar process notations make process models attractive
to system engineers and other people trained in these notations, people without
such training may prefer textual rather than a diagrammatical representations.
Figure 3 shows the automatically generated textual narrative created by the
Narrator from the process model shown in Figures 1 and 2.

The narrative consists of two main parts: a table of contents on the left and
the descriptive part on the right. The table of contents lists the names of the
steps from the process model and uses the same icons used in the diagramatic
representation to represent the step kinds (e.g., sequential, parallel, choice step).
The parent/child relationship from the Little-JIL process model tree is captured
by the indentation in the table of contents. The table of contents also shows
the exception handlers. For example, the step consider alternative treatment
is an exception handler, indicated by the icon on the left, which shows the
continuation action (in this case complete) that needs to be taken after the
handling of an exception is done. Each step in the table of contents is also a
hyperlink and clicking on it will bring up a more detailed description of that
step in the descriptive part of the narrative.

The descriptive part of the narrative (the right part of Figure 3) contains
a section for each step in the process model. This step section consists of sev-
eral subsections that present various attributes of the given step, such as name,
pre/post requisites, substep sequencing information, exceptions, and required
resources. For instance, the step section for Perform Consultation And Assess-
ment contains a subsection about the step’s prerequisite, a subsection about the
step’s substeps and the order in which they have to be executed, and a subsection
about an exception that the step throws and how that exception is handled.

Unlike the diagrammatic representation of the process model in Figures 1
and 2 where familiarity with the notation semantics is assumed, the descriptive
part provides sentences to explain the process. For example, the step section for
Perform Consultation And Assessment in Figure 3 explains what it means for
the step to be a sequential step, namely that its substeps need to be completed
in the listed order.

The descriptive part of the narrative also uses hyperlinks to facilitate nav-
igation. When the substep perform tasks on day of chemotherapy (in the step
section for Prepare For And Administer First Cycle of Chemotherapy) is clicked,
for example, its step section will be displayed and the user will see the detailed
information associated with that step. Another facility to help with navigation
is an alphabetized index of step names (shown in the bottom right part of Fig-
ure 3), where each step is represented as a hyperlink that can be clicked to
display the description for that step. The index can be opened at any time by



Fig. 3. The automatically generated narrative for process model in Fig. 1 and 2.

clicking on Index of step names on the top of the main part of the narrative and
closed when not needed.

The narrative uses the same icons as the diagrammatic view of the process
model. Although these icons are not necessary to understand the narrative view,
they might be helpful for users who would like to work with both views at the
same time. They also provide some visual grouping of sentences based on the
icon the sentences are associated with. The meaning of the icons can be seen
in a legend (shown in the top right part of Figre 3), which can be opened and
closed the same way as the index of step names.

4 Design Approach

Figure 4 shows the high-level architecture of the Narrator. The Little-JIL Pro-
cess Model, the Phrasing Templates, and the Customization Rules are used by
the Narration Weaver to produce the Narrative Content, which contains just
the content and the structure without any formatting of the natural-language
document to be generated. The Formatting Weaver then combines the Narrative



Fig. 4. Architecture of the Little-JIL Narrator.

Content together with the Formatting Templates to produce the final Generated
Narrative.

Phrasing Templates. The Phrasing Templates are parameterized, natural-
language phrases that correspond to the different semantic features of the Little-
JIL process language (e.g., what it means for a step to be sequential), where
the parameters represent information that is specific to a given process model.
Figure 5 shows three example phrasing templates. The first phrasing template
is used with sequential process steps to generate a sentence explaining the order
of execution of their substeps.

The second phrasing template in Figure 5 is used to generate a sentence that
explains what it means for a step to have a prerequisite. For instance, applying
this phrasing template to the step perform consultation and assessment (in Fig-
ure 2) and its prerequisite perform biopsy on patient results in the sentence Be-
fore beginning “perform consultation and assessment”, the step “perform biopsy
on patient” must be completed successfully. This exact sentence can be seen in
the step section for Perform Consultation And Assessment in Figure 3.

The third phrasing template in Figure 5 is used to generate a sentence ex-
plaining what it means for a step to throw an exception and how it is handled.
For instance, applying this phrasing template to the step perform consultation
and assessment, which can throw the exception PathologyReportDoesNotIndi-
cateCancer (as shown in Figure 1), results in the sentence If Pathology Report
Does Not Indicate Cancer, then consider alternative treatment and complete
“prepare for and administer first cycle of chemotherapy.” This sentence briefly
captures what the exceptional event is, how it is dealt with (i.e., by executing
the exception handler consider alternative treatment) and how normal process
execution is resumed after the exception has been handled.

To [stepName], the following need to be done in the listed order [substepsList].

Before beginning to [stepName], the [activityName] [prerequisite] must be
completed successfully.

If [exception], then [handler] and then complete [parentStepName].

Fig. 5. Example phrasing templates.



Customization Rules. The Customization Rules in the Narrator architec-
ture in Figure 4 represent a set of user preferences to customize the content and
the structure of the generated natural-language narrative. The Narrator sup-
ports the use of synonyms. For example, different words can be used to refer to
a process activity. The parameter [activityName] in the second phrasing tem-
plate in Figure 5 is a placeholder for such a synonym. The word “step” was
used in place of [activityName] when this phrasing template was instantiated to
describe the prerequisite of Perform Consultation and Assessment in Figure 3.

Another kind of customization supported by the Little-JIL Narrator deals
with the ability to hide or show certain kinds of process information. For exam-
ple, the user can select to hide or show sentences that present information about
the resources in a process model. Before the narrative shown in Figure 3 was gen-
erated, the option to show resources was selected. Thus, resource information,
such as the human agents responsible for executing the process steps, is included
in the narrative. The user can choose to hide this information or, alternatively,
the user can choose to include additional information about the resources and
the artifacts used in the process. Choosing to include such additional informa-
tion results in the narrative containing sentences such as Successful completion
of the step “perform consultation and assessment” should yield the chemo or-
ders. The Narrator also provides the flexibility to choose what kinds of process
steps to associate certain information with. For example, the user can choose to
show resource information only for leaf steps but not intermediate steps. This is
sometimes useful as intermediate steps in Little-JIL are often used for coordina-
tion purposes, whereas the actual work performed by agents is modeled by leaf
steps.

The Little-JIL Narrator also provides facilities to customize the sentence
structure of the generated narrative. For instance, the user can define when the
substeps of a step should be enumerated as a comma-separated phrase or when
they should be shown as a list.

Formatting Templates. The Narrative Content artifact produced by the
Narration Weaver (as shown in Figure 4) contains the raw content of the gen-
erated narrative, but does not have any formatting information. It is the job
of the Formatting Templates to define the presentation style of the generated
narrative. This design essentially follows the well-established recommendations
from the web application domain to separate content from presentation.

For Figure 3, for example, the Formatting Templates were responsible for
defining text font, text color, text size, text style (e.g., bold vs. non-bold), spac-
ing information and background color for the table of contents, the main part
of the narrative, the index and the legend. The Formatting Templates were also
responsible for associating images (e.g, arrow, filled circle, check mark, etc.) with
the different sections of the narrative and for the visualization (indentation and
vertical lines that help keeping track of the hierarchical decomposition) of the ta-
ble of contents. The set of Formatting Templates used by the Formatting Weaver
in this example resulted in an HTML-based generated narrative. A different set



of Formatting Templates could be used to produce a plain text (not hyperlinked)
narrative or a narrative in some other document format.

In terms of implementation, the Phrasing Templates, the Customization
Rules, and the Narrative Content artifacts are currently XML documents follow-
ing a schema we defined. The Narration Weaver is a Java system. The formatting
templates are expressed as XSLT [3] templates and the Formatting Weaver is
therefore an XSLT processor.

5 Evaluation and Discussion

5.1 User study

Design. We conducted a user study to compare the understandablility of the
generated narrative and the Little-JIL diagrammatic representation. We created
two Little-JIL diagrams and their corresponding narratives. The two models were
of equal complexity, in terms of their size and the language features they em-
ployed. In fact, one model was created by essentially “reshuffling” the steps in the
other one. For each process model, we also created a questionnaire consisting of
nine questions testing the understanding of the process. The two questionnaires
were of equal complexity since they were almost identical except for variations
in step names. We used colors for step names (e.g., perform blue) as opposed
to names of real activities (e.g., drive to work) to not bias the results based
on a subject’s experience with a domain. We also included a final questionnaire
with 5 open-ended questions asking for general feedback about the two pro-
cess representations. The process descriptions and questionnaires are available
at www.cs.umass.edu/~christov/processNotationsStudy.html .

Half of the subjects were presented with the narrative representation of pro-
cess model 1 followed by the diagrammatic representation of process model 2;
the other half of the subjects were presented with the diagrammatic representa-
tion of process model 1 followed by the narrative representation of process model
2. We presented the two process representations in different orders to the two
groups of subjects, because even though the understanding of process model 1
should not have helped with understanding process model 2, the subjects might
have improved their understanding of fundamental process concepts (such as
various kinds of control flow, exception handling and artifact use). The subjects
were assigned randomly to one of these two groups. Subjects were given a 10-
15 minutes training in their first process model representations (the narrative
or the diagrammatic representation). Then, the subjects were presented with a
process model in that representation and with the questionnaire for that pro-
cess model. After the subjects answered the questionnaire (there was no time
limit imposed), that subjects were given a 10-15 minutes training in the other
process model representation. Then, the subjects were presented with the pro-
cess model for their second process represented in their second representation
and with the questionnaire for that process model. After the subjects answered
the second questionnaire (again, no time limit was imposed), the subjects were
presented with the final questionnaire. 16 subjects participated in the study: 6



a b c
Table 1. Study results.

graduate and 9 undergraduate computer science students and one non-computer
science undergraduate student. We excluded students who had experience with
the Little-JIL diagrammatic or narrative representations.

Results. On average, the number of correct responses per subject taking into
account the questions for both models was slightly higher when the subjects
were using the diagrams—6.3 vs. 5.5, p = 0.037 (Table 1a). This table also
shows a small increase in the average number of correctly answered questions for
process model 2 for both representations. Since process model 2 was presented
after process model 1, this might suggest that whichever representation was
introduced to the subjects first had an influence on facilitating the understanding
of the second representation.

The subjects took longer time on average to answer the questions about
process model 1 when they were using the diagrams—18.57 minutes vs. 11.22
minutes with the narrative, p = 0.007 (Table 1b). This might suggest that the
narrative is easier to learn and use, if a person does not have familiarity with a
process modeling notation and/or process modeling concepts.

The time to answer the second set of equally difficult questions about process
model 2 using the diagrams, however, decreased by more than half after the
subjects had used the narrative to answer the questions about process model 1
(p = 0.0001). This might suggest that using the narrative to introduce process
modeling concepts, and specifically concepts captured by the Little-JIL language,
facilitates subsequent understanding of the Little-JIL diagrams.

Table 1c seems to indicate that the diagrams made questions 2, 3 and 7
easier to answer, whereas the narrative made questions 8 and 9 easier to answer1.
Question 2 was about prerequisites, 3 about parallel execution and 7 about the
number of times a step can be executed. Questions 8 and 9 were about artifacts.
This might suggest the merit of both representations in terms of facilitating the
understanding of different kinds of process information. The difference between

1 Question 4 was excluded from our analysis because it covered the difficult concept of
non-deterministic choice and the training we provided might not have been sufficient
to answer this question. It was answered correctly by only one person when they were
using the narrative.



the number of correct responses for questions 2 and 7 was statistically significant
(p = 0.002 and p = 0.004) and for question 9 (p = 0.083) it was between the
significance levels of p = 0.1 and p = 0.05.

6 subjects (37.5%) found the narrative easier to understand, the other 10
preferred the diagrams. The answers to the open-ended, qualitative questions
also indicated that the order of step execution was easier to understand with the
narrative, whereas the number of times a step needs to be performed was easier
to understand with the diagrams. Several people mentioned that the narrative
was easier to understand at first with little training, which seems to be supported
by the results in Table 1b.

Threats to validity. All of the study subjects, except one, were computer
science students and indicated that they have programming experience. We plan
to repeat the user study with non-computer scientists to see if familiarity with
programming might have influenced the results (e.g., familiarity with program-
ming might have made the diagrams easier to understand).

Immediately before the subjects were given the questionnaires, the subjects
received focused training about how each of the two process representations
expresses process information that the subsequent questionnaires asked about.
In a real-world situation, the amount of time between training and a subsequent
use of one of the process representations might be much longer. Furthermore,
the training might not necessarily cover the representation of some kinds of
information (e.g., exception handling) that needs to be understood later on.
Thus, users of the process representations might forget or might have never been
trained how certain kinds of information are represented in a given notation. We
expect that in situations like this, the narrative might be easier to understand
since it explicitly explains process information in natural language and is thus
more self-explanatory.

Due to time constraints on the study sessions, the two process models used
were relatively small (19 steps each). Realistic process models, especially models
of complex human-intensive processes, however, could be larger. It is not clear
whether the results obtained in the study will apply to such larger models.

5.2 Experience

We have used the Narrator to generate natural-language descriptions of several
large Little-JIL models of real-world processes from the medical and negotiations
domains [8, 9, 15]. In particular, we have applied the tool to a chemotherapy, a
blood transfusion, and an online dispute resolution (ODR) process model. These
process models were developed in collaboration with domain experts as part of
case studies evaluating the application of process modeling and formal analysis
technology in support of continuous process improvement. The chemotherapy
process model had 467 Little-JIL steps (207 of which were related to the handling
of 59 exceptional situations); the blood transfusion process model had 248 Little-
JIL steps (37 of which were related to the handling of 15 exceptional situations);
and the ODR process model had 209 Little-JIL steps (108 of which were related
to the handling of 19 exceptional situations).



Even though the Little-JIL Narrator is an early prototype, our experiences
with it have been positive and promising. The medical professionals from whom
we elicited the medical processes expressed satisfaction with the generated nar-
rative. They liked the fact that the process was described in natural language
that they could easily understand and, at the same time, the description was
precise yet contained a significant level of detail. Furthermore, since the narra-
tive is automatically generated from a Little-JIL process model, we were able to
show the domain experts the most up-to-date natural-language description and
discuss the latest process changes and additions with them. The ODR domain
expert, however, preferred to look at the diagrammatic depiction of the Little-
JIL ODR process model and have a process programmer explain the semantics of
the Little-JIL iconography. This experience suggests that although a generated
natural-language description of a process model is beneficial to certain domain
experts, it is certainly not a replacement for the diagrammatic view and the two
representations could complement each other in an EPG.

Besides being beneficial to domain experts, the generated narrative turned
out to be beneficial to Little-JIL process programmers as well. Being able to
look at the natural-language narrative helped reveal errors in the process model
that were not immediately noticeable in the diagrammatic representation. For
example, artifact flow is not easily visible in the diagrammatic representation
and inspecting the generated narrative helped pinpoint omissions or unnecessary
additions of artifacts. The ability to automatically and quickly (it takes about
a second for a process model with several hundred steps) generate a narrative
makes the Little-JIL Narrator a useful tool for debugging process models.

Perhaps one obvious disadvantage of the generated Narrative is its size. The
natural-language descriptions of the non-trivial process models we worked with
tended to be quite long and verbose. Unfortunately this is inevitable when try-
ing to express precisely and completely in natural language all the information
captured in a process model created in a semantically rich process language. The
customization rules that the Little-JIL narrator supports were useful in address-
ing this issue, by allowing the user to selectively hide or show information and
thus focus interest on selected aspects of the process model (e.g., control flow
only, but no artifact flow).

The separation of concerns supported by the design of the Narrator allowed
for easy modifications to the tool. In particular, it was easy to experiment with
and change in the description of the semantics of the language, as only the
pertinent phrasing templates had to be changed. Similarly, it was easy to modify
the look-and-feel of the generated HTML document based on user feedback
because only the formatting templates had to be changed.

5.3 Issues

To generate text automatically that reads naturally to humans requires that
the process models be written according to some guidelines or conventions. To
be able to plug step names from the Little-JIL process model directly into the
phrasing templates, for example, we assume that step names start with a verb.



Our experience with the Little-JIL Narrator, and with process models in general,
indicates that this assumption about step names is reasonable and not very
limiting.

Another difficulty that we encountered was related to the combination of
the semantic richness of Little-JIL and the need to statically determine certain
kinds of information. For example, to perform a choice step, any of its substeps
can be chosen, and if the chosen substep is completed successfully, then the
parent choice step is completed successfully as well. If the selected chosen step
fails, however, the agent can choose to perform any of the remaining substeps of
the choice step. Thus, when generating the natural language for this situation,
we simply do not specify exactly which of the remaining substeps needs to be
performed next but indicate the set of choices.

Generating natural language that accurately describes artifact flow also proved
to be challenging. Since Little-JIL is a scoped process modeling language, some
artifacts pass through certain steps just to reach steps in different scopes, but
such artifacts are not necessarily used or modified in the steps they pass through.
For such artifacts, the current phrasing is that they may get used or modified.
One possible approach for improving the precision of the generated description
is to have the creator of the process model explicitly provide information about
when an artifact is used and/or modified. Such annotations would also improve
the accuracy of some of the analysis approaches that we also apply [7, 8, 18, 21].

Another challenge is representing the rich exception handling semantics of
Little-JIL. As in many scoped (process) programming languages, when an ex-
ception is thrown, the handler may not be located in the immediate enclosing
scope. Thus, there needs to be a search for the matching handler. When de-
scribing exception handling, the natural-language narrative needs to specify the
appropriate handler as well as how the process returns to normal flow once an ex-
ception has been handled. This is complicated by the several exception-handling
continuation semantics of Little-JIL, by the fact that the continuation action
depends on the context of the handler (i.e., the kind of step, such as parallel or
sequential step, to which it is attached), and by the fact that an exception han-
dler can throw an exception itself. These complications lead to a large number
of phrasing templates to describe exceptional flow (over 100) and to challenges
in determining which text to generate statically. While we have created most
of the necessary phrasing templates to describe Little-JIL’s exception handling
semantics, for the sake of simplicity, the current implementation of the Narrator
supports the generation of natural language for just the most commonly used
exception handling constructs.

6 Conclusion and Future Work

There are several directions for potential improvement of the Little-JIL Narrator
approach. Linking the generated narrative to a glossary of terms, or ontology,
seems to be a useful direction. Such a capability is already supported by some



EPG tools, such as Spearmint. A glossary may help novice process performers
who are not familiar with all the domain terminology.

Another area of improvement is including additional customization rules.
Although the customization rules currently supported by the Narrator are very
helpful for selectively filtering content and displaying information of interest,
more extensive tailoring could further improve the usability of the process de-
scriptions [19]. For example, being able to present only the part of a process
description related to a specific role would focus the description and may make
it easier to navigate and understand that specific process role.

The index generated by the Narrator could also be improved. It currently
contains only step names, but it may be useful to have indexes that include
resource names, exceptions, and roles.

Our initial experience with the Little-JIL Narrator has been promising. We
have applied the Narrator to several large models of real-world processes from
the medical and negotiations domains; the generated narrative has been well-
received by domain experts and it seems to be useful to process programmers
for discovering errors in a process model. A user study in which the narrative
was compared to the Little-JIL diagrammatic representation, indicates that the
narrative provides similar level of process understanding as the diagrams and
it seems to make certain kinds of process information (i.e., artifacts) easier to
understand. Study subjects took less time to learn and use the narrative when it
was introduced as a first process notation to them and, furthermore, introducing
the narrative before the diagrams was associated with a significant decrease of
the time needed to learn and start using the diagrammatic representation. A
large fraction of the study subjects (37.5%) indicated that the narrative is easier
to understand than the diagrammatic notation.

The user study results and our experience indicate that the narrative is not a
substitute for a diagrammatic process representation, but the narrative seems to
provide added value in terms of understanding process models. Thus, we believe
the narrative could complement other representations in making process models
accessible to various stakeholders with different background and training.

7 Acknowledgments

This material is based upon work supported by the National Science Foundation
under Awards CCF-0820198, CCF-0905530 and IIS-0705772, and by a Gift from
the Baystate Medical Center, Rays of Hope Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the NSF.

The authors gratefully acknowledge the contributions of Eric Raboin, who de-
veloped the first version of the Little-JIL Narrator and whose work contributed to
the look-and-feel of the tool, and of Meagan Day, who made contributions to the
phrasing templates. The authors also gratefully acknowledge George Avrunin,
Heather Conboy, Elizabeth Henneman, Lee Osterweil, and Sandy Wise for the
discussions and feedback on the Little-JIL Narrator.



References

1. Adonis, www.boc-group.com/at, www.boc-group.com/at

2. Aris, www.ids-scheer.de, www.ids-scheer.de

3. XSL transformations (XSLT) version 2.0, www.w3.org/tr/xslt20, www.w3.org/TR/
xslt20

4. Becker-Kornstaedt, U., Hamann, D., Kempkens, R., Rösch, P., Verlage, M., Webby,
R., Zettel, J.: Support for the process engineer: The Spearmint approach to software
process definition and process guidance. In: Proceedings of the 11th International
Conference on Advanced Information Systems Engineering. pp. 119–133. CAiSE
’99, Springer-Verlag (1999), http://portal.acm.org/citation.cfm?id=646087.

679892

5. Becker-Kornstaedt, U., Verlage, M.: The V-modell guide: Experience with a web-
based approach for process support. In: Proceedings of Software Technology and
Engineering Practice (STEP). pp. 161–168. IEEE Computer Society Press (1999)

6. Cass, A.G., Lerner, B.S., Stanley M. Sutton, J., McCall, E.K., Wise, A., Osterweil,
L.J.: Little-JIL/Juliette: a process definition language and interpreter. In: ICSE
’00: Proceedings of the 22nd International Conference on Software Engineering.
pp. 754–757. ACM (2000)

7. Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Automatic fault tree deriva-
tion from Little-JIL process definitions. In: SPW/ProSim. LNCS, vol. 3966, pp.
150–158. Shanghai (May 2006)

8. Chen, B., Avrunin, G.S., Henneman, E.A., Clarke, L.A., Osterweil, L.J., Henne-
man, P.L.: Analyzing medical processes. In: ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering. pp. 623–632. ACM (2008)

9. Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Brown, D.,
Cassells, L., Mertens, W.: Formally defining medical processes. Methods of Infor-
mation in Medicine. Special Topic on Model-Based Design of Trustworthy Health
Information Systems 47(5), 392–398 (2008)

10. Clarke, L.A., Osterweil, L.J., Avrunin, G.S.: Supporting human-intensive systems.
In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. pp. 87–92. FoSER ’10, ACM (2010), http://doi.acm.org/10.1145/

1882362.1882381

11. Damas, C., Lambeau, B., Roucoux, F., van Lamsweerde, A.: Analyzing critical
process models through behavior model synthesis. In: ICSE ’09: Proceedings of
the 2009 IEEE 31st International Conference on Software Engineering. pp. 441–
451. IEEE Computer Society (2009)

12. Haumer, P.: Increasing development increasing development knowledge with
EPFC. Eclipse Review pp. 26–33 (2006)

13. Kellner, M., Becker-Kornstaedt, U., Riddle, W., Tomal, J., Verlage, M.: Process
guides: Effective guidance for process participants. In: Proeceedings of the Inter-
national Conference on the Software Process. pp. 11–25 (1998)

14. Lee, J.D., See, K.A.: Trust in automation: Designing for appropriate reliance. Hu-
man Factors: The Journal of the Human Factors and Ergonomics Society 46, 50–80
(2004)

15. Osterweil, L.J., Clarke, L.A.: Supporting negotiation and dispute resolution with
computing and communication technologies. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. pp. 269–272. FoSER ’10,
ACM (2010), http://doi.acm.org/10.1145/1882362.1882418



16. Parasuraman, R., Riley, V.: Humans and Automation: Use, Misuse, Disuse, Abuse.
Human Factors: The Journal of the Human Factors and Ergonomics Society 39(2),
230–253 (June 1997), http://dx.doi.org/10.1518/001872097778543886

17. Phongpaibul, M., Koolmanojwong, S., Lam, A., Boehm, B.: Comparative expe-
riences with electronic process guide generator tools. In: Proceedings of the In-
ternational Conference on Software Process. pp. 61–72. ICSP’07, Springer-Verlag
(2007), http://portal.acm.org/citation.cfm?id=1763239.1763247

18. Raunak, M., Osterweil, L., Wise, A., Clarke, L., Henneman, P.: Simulating pa-
tient flow through an emergency department using process-driven discrete event
simulation. In: SEHC ’09: Proceedings of the 2009 ICSE Workshop on Software
Engineering in Health Care. pp. 73–83. IEEE Computer Society (2009)

19. Scott, L., Carvalho, L., Jeffery, R., Becker-Kornstaedt, U.: Understanding the use
of an electronic process guide. Information and Software Technology 44, 601–616
(2002)

20. Simidchieva, B.I., Marzilli, M.S., Clarke, L.A., Osterweil, L.J.: Specifying and veri-
fying requirements for election processes. In: Proceedings of the 2008 International
Conference on Digital Government Research. pp. 63–72. dg.o ’08, Digital Govern-
ment Society of North America (2008), http://portal.acm.org/citation.cfm?
id=1367832.1367846

21. Wang, D., Pan, J., Avrunin, G.S., Clarke, L.A., Chen, B.: An automatic failure
mode and effect analysis technique for processes defined in the little-jil process
definition language. In: Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE 2010). pp. 765–770 (2010)


