
Rigorously Defining and Analyzing Medical Processes:
An Experience Report

Stefan Christov, Bin Chen, George S. Avrunin, Lori A. Clarke, Leon J. Osterweil

Laboratory for Advanced Software Engineering Research (LASER)
University of Massachusetts at Amherst, Amherst, MA 01003

{christov, chenbin, avrunin, clarke, ljo} @ cs.umass.edu

David Brown, Lucinda Cassells, Wilson Mertens

D’Amour Center for Cancer Care, 3350 Main Street, Springfield, MA 01199
{david.brown, lucy.cassells, wilson.mertens} @ bhs.org

Abstract. This paper describes our experiences in defining the processes asso-
ciated with preparing and administrating chemotherapy and then using those
process definitions as the basis for analyses aimed at finding and correcting de-
fects. The work is a collaboration between medical professionals from a major
regional cancer center and computer science researchers. The work uses the Lit-
tle-JIL language to create precise process definitions, the PROPEL system to
specify precise process requirements, and the FLAVERS system to verify that
the process definitions adhere to the requirement specifications. The paper de-
scribes how these technologies were applied to successfully identify defects in
the chemotherapy process. Although this work is still ongoing, early experi-
ences suggest that this approach can help reduce medical errors and improve
patient safety. The work has also helped us to learn about the desiderata for
process definition and analysis technologies, both of which are expected to be
broadly applicable to other domains.

1 Introduction: The Problem and Our Proposed Approach

Medical errors cause approximately 98,000 patient deaths each year [1] in the
United States. US Institute of Medicine (IOM) reports have suggested that the deliv-
ery of healthcare must fundamentally change to address medical errors (e.g., see [1]
[2]). In particular, these studies suggest that many serious medical errors result from
system rather than individual failures, leading the IOM to advocate the development
of healthcare systems that directly address patient safety. In particular, the IOM report
states, “what is most disturbing is the absence of real progress… in information tech-
nology to improve clinical processes [italics ours]” ([3], pg. 3). Thus, we have begun
to investigate the application of software engineering process definition and analysis
research to help reduce errors and improve safety in medical processes. In this paper,
we use the term “guideline” (or “process/care guideline”) to refer to an informal,
mostly natural language, description of a medical process. And, we use the term

“process definition” to refer to a precise description of a process that is created using
a formal language with rigorously-defined semantics.

Our preliminary research (e.g., [4]) showed that many current medical processes
are described only at a high-level of generality and are often not defined completely
and precisely. Because of this, healthcare providers can find themselves in situations
that are not directly addressed by the processes they learned, and thus they may be
unsure whether their actions conform to recommended care guidelines. In addition,
aspects of current process descriptions are frequently vague, ambiguous, or inconsis-
tent, allowing different providers to have different understandings of their specifics.
Such descriptions may lead workers to believe they are following recommended
guidelines when, in fact, their care has deviated, increasing the possibility of error.

In the work described here, software engineering researchers and medical experts
developed precise, rigorous definitions of medical processes that capture both the
standard and exceptional situations that can arise. The process definitions also capture
the inherent concurrency and multi-tasking undertaken by busy healthcare providers,
as well as details of the use of resources to perform the processes. Our investigations
have indicated that there are somewhat different goals for defining and analyzing
processes in different areas of medical practice, thus suggesting applying somewhat
different approaches. For example, blood transfusion is primarily concerned with
identification issues and emergency care is focused on improved patient flow.

In chemotherapy there seems to be an overriding concern for the identification and
removal of process defects that create hazards to patient health and safety. These
concerns suggest the value of at least two complementary engineering approaches,
namely fault tree analysis and finite-state verification, each applied to a precise defi-
nition of safety-critical processes. Analysis of fault trees promises to indicate serious
ramifications of incorrect performance of process steps [5, 6], while finite-state veri-
fication (e.g., [7, 8]) promises to identify sequences of tasks that, even if performed
perfectly, could lead to safety violations [9]. In this initial work, we focused on the
latter. This paper describes efforts to evaluate the effectiveness of defining medical
processes using a rigorously defined language, formally encoding the requirements
for that process, carrying out finite-state verification of the processes to detect de-
fects, and then improving the processes by defect removal. In the next section we
present the Little-JIL process definition language and provide examples of how it was
used to define a chemotherapy process. Section 3 describes our experiences, and Sec-
tion 4 overviews related work. Section 5 suggests some future research directions.

2 An Example: Chemotherapy Preparation and Administration

Chemotherapy is the use of chemical substances to treat disease. In its modern-day
use, it refers primarily to the administration of cytotoxic drugs to treat cancer. Che-
motherapy medications are typically highly toxic, and thus it is of overriding impor-
tance to be sure that the right patient receives the right medications in the right dos-
ages at the right times. To assure this, elaborate processes are carried out that inte-
grate the efforts of such diverse medical personnel as doctors, nurses, pharmacists,
and clerical workers. Chemotherapy processes aim to speed the flow of treatment,

Figure 1 – A Little-JIL step icon.

while assuring that errors do not occur. Checks are in place to guard against commit-
ting such errors. Preliminary examination of these processes suggested that they are
large and complex, and their growing complexity makes it increasingly difficult to be
sure they provide sufficient protection against the commission of errors.

Our work began by defining some example chemotherapy processes. Earlier work
in defining processes in such other domains as software development, scientific data
processing [10], and e-government [11] suggested that a powerful process definition
language would be needed. We chose to use the Little-JIL process definition lan-
guage because our previous experience suggested that semantic features of this lan-
guage were likely to be effective in defining processes in the chemotherapy domain.

2.1 Principal Features of Little-JIL

Little-JIL [12, 13] was originally developed to define software development proc-
esses. A Little-JIL process definition has three components, an artifact collection, a
resource repository, and a coordination specification. The artifact collection contains
the items that are the products of the process. The resource repository specifies the
agents and capabilities that support performing the activities. The coordination speci-
fication ties these together, specifying which agents and supplementary capabilities
perform which activities on which artifacts at which time(s).

A Little-JIL coordination specification has a visual representation, but is precisely
defined (using finite-state automata), which makes it amenable to definitive analyses.
Among the features of Little-JIL that distinguish it from most process languages are
its 1) use of abstraction to support scalability and clarity, 2) use of scoping to make
step parameterization clear, 3) facilities for specifying parallelism, 4) capabilities for
dealing with exceptional conditions, and 5) clarity in specifying iteration.

A Little-JIL coordination specification consists of hierarchically decomposed
steps, where a step represents a task to be done by an assigned agent. Figure 1 shows
the iconic representation of a single step with some of its features. Each step has a
name and a set of badges to represent control flow among its substeps, its interface
(specifying its input/output artifacts and the resources it requires), the exceptions it
handles, etc. A step with no substeps is a leaf step. It represents an activity performed
by an agent, without any process guidance. A full description of Little-JIL is pro-
vided in [13]. Below we present some Little-JIL features, focusing on those used in
the example presented in this paper.

Resources and Agents—Each Little-JIL step interface (iconically represented by
the filled circle above the step name) specifies the types of resources required to sup-
port execution of the step. Some examples of resources are infusion suites and
medical records. Each step has
one specially designated re-
source, called its agent, which
is assigned responsibility for the
performance of the step. Little-
JIL agents may be humans,
groups of humans or automated
devices.

Substep Decomposition—Little-JIL steps may be decomposed into two kinds of
substeps, ordinary substeps and exception handlers. Ordinary substeps define how
each step is executed and connected to its parent through edges annotated by specifi-
cations of the artifacts that flow between parent and substep. Exception handlers de-
fine how exceptions thrown by the step’s descendants are handled.

Step sequencing—A non-leaf step has a sequencing badge (an icon on the left of
the step bar; e.g., the right arrow in Figure 1) that defines the order of substep execu-
tion. Little-JIL has four step kinds. The example depicted in Figure 2 uses two, the
sequential step (right arrow), indicating that substeps execute from left to right and
the parallel step (equal sign), indicating that substeps execute in any (possibly inter-
leaved) order, although the order may be constrained by such factors as the lack of
needed resources.

Channels—Channels are named entities that act like buffers, directly connecting
specifically identified source step(s) with specifically identified destination step(s).
This construct helps define how streaming data is handled and can also be used to
synchronize concurrently executing steps.

Exception Handling—A Little-JIL step can throw an exception when some aspect
of step execution fails. This triggers execution of a matching exception handler de-
fined at an ancestor of the step throwing the exception. Figure 2 shows an exception
handler consider alternative treatment (connected to the X in the root step bar), which
is triggered when one of the children of the root step throws a matching exception.

2.2 An Example Using Little-JIL to Define a Chemotherapy Process

Figures 2 and 3 are diagrams that depict part of a Little-JIL definition of a
chemotherapy process. Figure 2 is the top-level diagram of the process and thus rep-
resents it at a high level of abstraction. The entire Little-JIL process definition has
more than 250 steps and thus cannot be shown in its entirety here. Elicitation of the

Figure 2: A coordination diagram of Little-JIL chemotherapy process

process required two semesters of weekly meetings between process developers and
medical professionals. Most of the time there were two graduate students (and at least
one faculty member) meeting with two or three medical professionals. The medical
professionals comprised different combinations of two physicians, one pharmacist,
three nurses, and a medical assistant. The part of the process definition that is depict-
ed here is concise but representative of many interesting issues that arise in defining
and analyzing the full process.

Note that the diagrams in this paper do not include all the information needed for a
complete Little-JIL process definition. A diagram is created using the Little-JIL visual
editor, which allows the developer to suppress visualization of process details for the
sake of clarity. Thus, Figures 2 and 3 do not display full details of the resources and
artifacts declarations in each step but just represent them by the circle icon located
above the step bar.

Figure 2 indicates that the process definition is decomposed into two substeps exe-
cuting in parallel (note the equal sign in the step bar). In the full process definition,
each substep is further decomposed down to the level of leaf steps for which the proc
ess definer is unable to provide, or uninterested in providing, process detail and guid-
ance.

Figure 2 also shows that the root step chemotherapy process has a substep consider
alternative treatment that acts as an exception handler (note the “X” sign on the che-
motherapy process step bar to which the step consider alternative treatment is con-
nected). In the step perform consultation and assessment in Figure 2, the doctor may
determine that the patient's pathology report does not indicate cancer. In this case, the
Pathology Report Does Not Indicate Cancer exception is thrown (the decomposition
of the perform consultation and assessment step is not shown due to space limita-
tions). The exception propagates up the step decomposition tree until it reaches a
matching handler. Thus, control is transferred to the exception handler step consider
alternative treatment and appropriate action is taken.

The first substep, prepare for and administer first cycle of chemotherapy, of the
root step chemotherapy process is decomposed into six substeps to be executed in

Figure 3: The task decomposition of transcribe and place consult note in patient’s record

sequence (note the arrow pointing to the right in the step bar). The six substeps of
prepare for and administer first cycle of chemotherapy are the major stages of the
chemotherapy process. Although the agent assignments are not given in this diagram,
perform consultation and assessment is done by a Medical Doctor (MD); perform
initial review of patient records by a Practice Registered Nurse (RN) and a Triage
Medical Assistant; perform pharmacy task by a Pharmacist; perform patient teaching
by a Nurse Practitioner; perform final tasks (day before chemo) by a Pharmacist and a
Clinic RN; and the first day of chemo is done again by a Pharmacist and a Clinic RN.

While step sequencing specifications provide strong control over the order of step
execution, Little-JIL also enables specification of flexibility in execution sequencing
through such constructs as a channel. In this example, a channel is used to specify that
an MD cannot dictate the consult note before evaluating the patient’s condition. But,
since the consult note is primarily used for billing and legal purposes and does not
directly affect the patient’s treatment, the doctor may choose to dictate the consult
note right after evaluating the patient or later, while the tasks in prepare for and ad-
minister first cycle of chemotherapy are already underway. This step sequencing
flexibility is captured precisely by the coordination diagram in Figure 2, which shows
that the dictate consult note step can potentially execute in parallel with the step pre-
pare for and administer first cycle of chemotherapy. At the same time, the “consulta-
tion channel” imposes the additional restriction that the MD cannot dictate the consult
note before evaluating the patient’s condition – the step dictate consult note takes a
parameter from the “consultation channel” (declared at the root step so that it is visi-
ble, hence usable, by all of its descendants) and thus cannot start until perform patient
consultation (not shown for lack of space), which is a substep of perform consultation
and assessment, completes and writes a parameter to the “consultation channel.

Figure 3 decomposes the substep transcribe and place consult note in patient’s re-
cord of the root step chemo process. Note that the process depicted by the diagram in
Figure 3 provides further details of the handling of the consult note. Figure 2 specifies
that transcribe and place consult note in patient’s record is the second substep of the
sequential step create and process consult note. This, means that transcribe and place
consult note in patient’s record cannot start until the step dictate consult note has
completed. This sequencing mechanism is a faithful representation of the real world
situation. In this process, the doctor dictates the consult note on the phone. The doc-
tor’s message is recorded and triggers the tasks of the transcriber, who is external to
the clinic. The transcriber listens to the message, transcribes the consult note, emails it
to the doctor’s secretary and so on.

Another interesting aspect of the diagram in Figure 3 is the diverse set of agents
that execute the steps – Transcriber, Secretary, Medical Doctor, and Medical Records
Clerk. Thus, the timely manner in which the step transcribe and place consult note in
patient’s record is performed depends on the availability of all those agents. In a later
section, we will see that the time of completion of the transcribe and place consult
note in patient’s record step relative to the time of completion of other steps in the
process is important for satisfying some of the properties of the process.

2.3 Using PROPEL and FLAVERS Analysis to Look for Process Defects

In this section, we present a short, simplified example of the application of finite-
state verification to the chemotherapy process definition. Finite-state verification
techniques algorithmically check all possible paths through a model of a system to
determine whether any execution of the system can violate a specified system prop-
erty. In the work described here, we have used the FLAVERS [8] finite-state verifier,
although other tools (e.g., [14]) could have been used. Our model of the system is an
annotated control flow graph derived from the Little-JIL process definition. For our
purposes, a property is a specification of the requirements for some aspect of the be-
havior of the system. Thus, the property is a specification against which a system is to
be verified. For example, a property might state that a certain event cannot occur until
after some other event occurs. Our work focuses on developing such properties with
the help of domain experts (chemotherapy medical professionals in this example),
eliciting a process definition from domain experts, and finally comparing the process
definition against the properties. If a property is violated, we change the process (as-
suming the property is correctly specified) and verify the modified process against the
property. We iterate the above procedure until the process satisfies the property and
thus the process is improved.

In our analysis, properties are encoded as finite-state automata (FSA) and represent
constraints on the sequences of events that could occur during executions of the proc-
ess. The FSA in Figure 4 represents the property “Before Chemotherapy Can Be Ad-
ministered to a Patient, that Patient's Consult Note Needs to Be Put in that Patient's
Record.” The events in this property are put consult note in patient's record and ad-
minister chemo. The event put consult note in patient's record is bound to the step file
consult note in patient's record in Figure 3. The event administer chemo is bound to
the step administer chemo drug which is a part of the subprocess decomposition of
the step first day of chemo in Figure 2.

At the start of execution of the process, the automaton in Figure 4 is assumed to be
in its start state q0 (indicated by the triangle to the left of state q0). Execution of put
consult note in patient's record causes the FSA to transition from state q0 to state q1.

Figure 4: An FSA corresponding to the chemotherapy property “Before Chemotherapy Can Be Admin-
istered to a Patient, that Patient’s Consult Note Needs to Be Put in that Patient’s Record.” A transition
labeled with ANY EVENT means that the transition is taken if any event from the alphabet of the FSA
occurs. The ERROR STATE is a trap state, i.e. it is a non-accepting state, such that once the automaton
enters that state, it remains in it regardless of what other events occur.

Then if administer chemo is encountered during execution of the process, the FSA
transitions from state q1 to state q2. The state q2 is an accepting state (indicated by a
doubled circle). Thus, put consult note in patient's record followed by administer
chemo is a valid sequence of events in the chemotherapy process. On the other hand,
if administer chemo occurs before put consult note in patient's record (the transition
from state q0 to state q3 in the FSA shown in Figure 4), the automaton ends up in an
ERROR state (q3) indicating that this causes the property to be violated. Also note
that if consult note is put in patient's record does not occur at all, then the automaton
will remain in its start state q0, which is also an accepting state thus indicating that
the property is satisfied.

In our project, automata such as the one in Figure 4, were generated by the PROPEL
(PROPerty ELucidator) system [15, 16]. PROPEL facilitates the elucidation of proper-
ties by providing three different representations of a property—a question tree view, a
disciplined English view, and a finite-state automaton view—and assuring that the
three views automatically remain synchronized with each other. The different views
aim to bridge the gap between the natural language in which the properties are elicited
from domain experts and the rigorous, but usually not trivial to specify correctly,
mathematical formalism of the finite-state automaton used by the verification tool
FLAVERS. Each view also explicitly indicates subtle choices that need to be made
and questions that need to be answered in order to specify a property, such as whether
certain events must always occur or whether other events can occur multiple times.
For the example chemotherapy process, there are dozens of important safety and legal
properties to be verified. Our experiments indicate that PROPEL is adept at supporting
the definition of such properties.

Having defined the process in Little-JIL and created the property automaton using
PROPEL, we then used the finite-state verifier FLAVERS to check whether the process
satisfies the property on all possible paths of execution. If it does not, i.e. if a process
execution can drive the property automaton to a non-accepting state, then FLAVERS
reports the violation and produces a trace of the process execution that leads to the
property violation. The verification example in this paper may appear relatively
straightforward, given the simple property, but we note that it entails considerable
challenges. The fact that the root step chemotherapy process is parallel requires that
FLAVERS explore all possible execution interleavings of the substeps, creating a
very large space of alternatives to be explored. The use of channels further compli-
cates the verification. The fact that the chemotherapy process is of a significant size
(more than 250 steps) makes the verification state space very large. FLAVERS em-
ploys optimization techniques and thus can usually cope with the verification of prop-
erties of processes whose size is similar to that of this chemotherapy process.

In fact, FLAVERS reported that this chemotherapy process example can violate the
property presented in Figure 4, and it produced a trace of a valid execution of the
process where administer chemo drug occurs before file consult note in patient's re-
cord completes. Although a channel imposes some synchronization between the par-
allel activities in the process, the verifier detected that concurrent execution can allow
at least one execution sequence that leads to a property violation. Thus, this result
identified a process defect, but it also raises an interesting question about whether
legal and privacy issues (such as the requirement that a consult note must be in the
patient's chart before administration of chemotherapy) may have received much less

attention than medical safety issues and thus may not be fully addressed by standard
medical processes.

3. Experience and Evaluation

Working with the chemotherapy process suggests that our approach can lead to
improvements in the processes. We were able to identify process defects and raise
issues resulting in defect elimination. The medical professionals involved in the pro-
ject have found benefit in this work. They are even considering using the formal
process definition as the basis for training documents and guidelines for medical staff.

The very task of eliciting details from the medical professionals about the chemo-
therapy process and capturing those details formally in Little-JIL lead to the discovery
of many of the problematic aspects in the process. One of the first observations after
interviewing several different medical professionals was that the terminology used for
the chemotherapy process guidelines contained some inconsistencies. For example,
words like “verify”, “confirm”, “check”, “match”, and “consistent” were used loosely.
The same word used at different times or in different contexts often had different
meanings, even when used by the same individual. Since many of the critical errors
that may occur in a process like chemotherapy may arise from neglecting small details
(e.g. not checking to see if the patient height or weight measurements on which the
chemotherapy dose is based are sufficiently up-to-date), we had to develop a precise
naming template that disambiguated the use of different terms. Thus, our experience
suggests that the effort of defining and analyzing complex medical processes can
benefit if some kind of ontological structure of the domain knowledge is present.

We also found that process guidelines usually contain adequate details when de-
scribing common, standard scenarios. However, process guidelines did not provide
enough details, or often any details, for handling many non-typical cases. For exam-
ple, there were places in the process where an agent confirms the correctness of some
information and, if the confirmation succeeds, the agent continues on with the rest of
the defined tasks. However, if the confirmation fails, then in many cases the process
lacked specific instructions detailing how the agent should proceed. In some cases, we
noted that different agents were handling the exception differently depending on per-
sonal style, level of experience, and the individual approach of other medical profes-
sionals involved in the recovery from the failure. While modeling the process with
Little-JIL, the rich exception handling semantics of the language forced us to think
about exceptional scenarios and ask specific questions about the exact process to be
executed following the throwing of an exception, the agents involved in resolving that
exception, and the place in the process to which control gets transferred once the ex-
ception has been handled. Questions like “What do you do when the check you make
fails?” and “Which task do you proceed with and which tasks do you need to redo
when you have resolved the problem?” typically triggered discussions among the
medical professionals that resulted in more complete and rigorous specification of
how to deal with these exceptional cases, thus improving the process overall.

The resource and artifact modeling capabilities of Little-JIL also led to interesting
questions during the interviewing stage that exposed some deficiencies in the process.

For example, the chemotherapy process relies heavily on a paper copy of a treatment
plan, which is an artifact created at the earlier stages of the process and then verified
independently and signed by medical professionals. However, doctors enter changes
to a treatment plan electronically, which sometimes leads to inconsistencies between
the current electronic version and the paper copy that circulates among the medical
professionals. The artifact model of Little-JIL and the need to precisely describe and
distinguish between paper and electronic records led to the discovery of such issues.

The expressive power of Little-JIL proved to be useful for the definition of the
process in the chemotherapy case study. The powerful exception handling mecha-
nisms in the language enabled the process definition to reflect the real world process
more accurately. The capabilities the language provides for modeling resources (both
agent and non-agent) and artifacts were an important part of the specification of the
process. The synchronization mechanism and channel support for specifying direct
communication between steps was also useful in this process definition. Hierarchy
and abstraction were beneficial in helping to keep down the size of the chemotherapy
process and the many different levels of abstraction at which it was defined.

The graphical notations in Little-JIL facilitated the communication of computer
science concepts to the medical professionals. We usually tried to present the process
to the medical professionals in textual, natural language form, but we were often
asked to show the Little-JIL diagrams as they provide clearer understandings. Al-
though we believe that it is most likely that the Little-JIL definitions will be written
by computer scientists or medical informatics specialists, our experiences suggest that
medical professionals, with a little training, can become comfortable reading Little-
JIL process definitions.

The task of interviewing domain experts and specifying precisely the high level
goals and requirements that the medical process needs to meet, proved to be benefi-
cial. We worked on identifying properties at a higher level of abstraction, a level at
which the property’s events are not tightly coupled to concrete steps in the process
definition, but rather are used to capture universal safety and legal goals that need to
be satisfied no matter how the process is implemented. This approach introduced a
different perspective and helped medical professionals view the process in a new
light. Instead of focusing only on “what is being done”, the process was approached
by asking questions like “Why is this done?” and “What goal is met by this sequence
of steps?” Such types of questions also helped expose deficiencies in the process and
triggered discussions about how to address them. While considering the motivation
behind parts of the process and the objectives that certain sequences of steps are try-
ing to achieve, the medical professionals often identified steps that were either mis-
placed or missing from the process guidelines. Thus, property elicitation itself played
an important role in enhancing the process.

PROPEL was of great value in facilitating the correct specification of properties.
Previous experience indicated that specifying a property in a mathematical formalism,
like a finite-state automaton or a temporal logic, is often not trivial and subtleties are
often not captured easily or correctly. For example, consider the requirement that if
patient height and weight data (used to determine correct dosage) are “stale” (i.e. the
measurements are not recent enough), then height and weight must be remeasured
before administration of chemotherapy. A correct formal specification of this must
address such issues as whether the data can become stale several times and, if so,

whether a single remeasurement is sufficient, whether the data always becomes stale,
whether remeasurement is necessary if chemotherapy is not administered for some
reason, etc. In addition to the finite-state automaton view of a property, PROPEL pro-
vides a natural language template, where users select phrases, and a question tree
view that explicitly asks questions, like the ones above. All three of these views are
equivalent and assist the user in capturing the subtleties of the property.

So far our efforts have focused on capturing the chemotherapy process in Little-JIL
and specifying properties using PROPEL. Our initial use of FLAVERS focused on
verifying relatively simple properties, and most of them were satisfied. In most of the
cases when the verifier detected a violation, it was due to an omission or error in the
process definition or property specification. However, the example in the previous
section shows that our verification approach could identify real violations and pin-
point weaknesses in the process. We expect that when we begin to analyze more
complicated properties over larger processes that hide potential concurrency, our ap-
proach will lead to the discovery of more defects in the process.

We note that as the size of the process under verification increases, so does the
state space that needs to be explored. Large processes, like the chemotherapy one,
with inherent parallelism and complex exception handling specifications, stress the
importance of utilizing verifiers that scale well. At this point, our work indicates that
the performance of the FLAVERS system seems to be capable of acceptable scaling.
For example, the verification of the property presented in Fig. 4 took less than ten
seconds of computing time running on a standard desktop computer.

4. Related Work

There has been some recent work using process definition and analysis to improve
medical processes. For example, the Protocure II project [17] has goals that are quite
similar to ours in that medical protocols are formally specified and verified. As part
of that project, a protocol for jaundice and its properties were modeled in the Asbru
language [18]. The protocol that was analyzed consists of 40 plans (where the plans
seem to be similar to Little-JIL steps), whereas the chemotherapy process that we
analyzed consists of over 250 steps. The Little-JIL process definition supports more
detailed representation of the process, including support for exceptions and complex
agent interactions. The Protocure researchers also encountered ambiguous use of
medical terms, incomplete information, and inconsistencies that may support different
conclusions. In another study that was also part of the Protocure II project [19], the
Asbru model of the jaundice protocol and its properties were verified using the SMV
model checker.

Noumeir has also pursued similar goals, but using a notation like UML to define
processes [20]. Others (e.g., [21]), view medical processes as workflows and use a
workflow-like language to define processes and drive their execution. But, we note
that these projects seem to place less emphasis on analysis.

There have been other approaches to improving medical safety as well, but much
of the emphasis of this work has been targeted towards quality control measures [22],
error reporting systems [23], and process automation in laboratory settings [24], such

as those where blood products are prepared for administration. In other work, Baye-
sian belief networks have been used as the basis for discrete event simulations of
medical scenarios and to guide treatment planning (e.g., [25]).

Many languages and diagrammatic notations have been used to define processes.
Some incorporated use of a procedural language [26]. Others used rules [27] and
modified Petri Nets [28] to define processes. More recently, the workflow [29] and
electronic commerce [30] communities are pursuing similar research. None of these
approaches, however, seem able to support process definitions that are both clear and
precise enough. Main failings of these approaches include inadequate specification of
exception handling, weak facilities for controlling concurrency, lack of resource man-
agement, and inadequate specification of artifact flows.

There has also been considerable work on the analysis of code and models of sys-
tems. Finite-state verification, or model checking (e.g., [7], [8], [14]), approaches
construct a finite model that represents all possible executions of the system and then
analyze that model algorithmically to detect executions that violate a particular prop-
erty specified by the analyst. A major concern of these techniques is controlling the
size of the state-space model, while maintaining analytic precision. Our team has ana-
lyzed and evaluated various finite-state verification approaches [31], and developed
verifiers such as FLAVERS [8] and INCA [32]. Our work seems to be among the
first that has applied FSV approaches to process definitions [9].

5. Conclusion

The finite-state verification approach presented in this paper supports checking
whether or not a process satisfies certain properties, but it assumes that all agents in-
volved in the process perform their tasks without errors. However, human errors do
occur in medical processes and thus complementary forms of analysis are also useful.
Thus, for example, we have used a blood transfusion process definition as the basis
for the automatic generation of a fault tree representation of this process and have
used the fault tree to identify single points of failure in the process, thereby reducing
its vulnerability to failure [6]. Similarly, our studies of delays in a hospital Emergency
Department (ED) have underscored the potential for resource management to improve
efficiency in the ED’s processes [33]. In response, we are developing technologies to
create discrete event simulations from process definitions in order to support reason-
ing about how to improve efficiency through better resource management.
In conclusion, we observe that this work has shown considerable promise and has
suggested extensions in several directions. We propose to pursue further research in
this domain. We expect that this research will provide further insights into how proc-
ess definition and analysis technology can help improve the safety and efficiency of
the processes in this critical domain.

Acknowledgments

This research was funded by the US National Science Foundation under Award No.
CCF-0427071 and by the U. S. Department of Defense/Army Research Office under

Awards No. DAAD19-03-1-0133 and DAAD19-01-1-0564. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the U.S.
NSF, U. S. DOD/Army Research Office, or the U.S. Government.

The authors gratefully acknowledge the work of Sandy Wise, Barbara Lerner, and
Aaron Cass, who made major contributions to the development of Little-JIL, to Ra-
chel Cobleigh and Irene Ros, who helped elicit the chemotherapy process and proper-
ties, and to many members of the staff of the D’Amour Center for Cancer Care, who
graciously donated their time and expertise.

References

1. Kohn, L.T., Corrigan, J.M., Donaldson, M.S. (eds.): To Err is Human: Building a Safer
Health System. National Academies Press, Washington, DC (1999)
2. Reid, P.P., Compton, W.D., Grossman, J.H., Fanjiang, G. (eds.): Building a Better Deliv-
ery System: A New Engineering/Healthcare Partnership. National Academies Press, Washing-
ton. DC (2005)
3. Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st
Century. National Academies Press, Washington D.C. (2001)
4. Henneman, E.H., Cobleigh, R.L., Frederick, K., Katz-Bassett, E., Avrunin, G.A., Clarke,
L.A., Osterweil, L.J., Andrzejewski, C., Merrigan, K., Henneman, P.L.: Increasing Patient
Safety and Efficiency in Transfusion Therapy Using Formal Process Definitions. Transfusion
Medicine Reviews 21 (2007) 49-57
5. Burgmeier, J.: Failure Mode and Effect Analysis: An Application in Reducing Risk in
Blood Transfusion. Quality Improvement 28 (2002) 331-339
6. Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Automatic Fault Tree Derivation
from Little-JIL Process Definitions. SPW/PROSIM 2006. LNCS Vol. 3966, Springer, Heidel-
berg (2006) 150-158
7. E.M. Clarke, J., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
8. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow Analysis for Verifying
Properties of Concurrent Software Systems. ACM Trans. on Software Engineering and Meth-
odology 13(4) (2004) 359-430
9. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: Verifying Properties of Process Definitions.
ACM SIGSOFT Intl. Symp. on Software Testing & Analysis. ACM Press, Portland, OR (2000)
96-101
10. Boose, E.R., Ellison, A.M., Osterweil, L.J., Clarke, L., Podorozhny, R., Hadley, J.L.,
Wise, A., Foster, D.R.: Ensuring Reliable Datasets for Environmental Models and Forecasts.
Ecological Informatics, ECONINF84 2(3), Elsevier (2007) 237-247
11. Schweik, C.M., Osterweil, L.J., Sondheimer, N., Thomas, C.: Analyzing Processes for E-
Government Development: The Emergence of Process Modeling Languages. Journal of E-
Government 1(4) (2004) 63-89
12. Cass, A.G., Lerner, B.S., McCall, E.K., et al: Little-JIL/Juliette: A Process Definition
Language and Interpreter. ACM/IEEE 20th Intl Conf. on Software Engineering, Limerick, Ire-
land (2000) 754-758
13. Wise, A.: Little-JIL 1.5 Language Report. Lab. for Advanced Software Engineering Re-
search (LASER), Dept. of Comp. Sci, UMass, Amherst (2006)
14. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2004)

15. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An Approach To
Supporting Property Elucidation. ACM/IEEE 24th Intl. Conf. on Software Engineering, Or-
lando, FL (2002) 11-21
16. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User Guidance for Creating Precise and Ac-
cessible Property Specifications. 14th ACM SIGSOFT Symp. on the Foundations of Software
Engineering, Portland, OR (2006) 208-218
17. Protocure II, http://www.protocure.org. (2006)
18. ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van Harmelen, F.,
Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving Medical Protocols by
Formal Methods. Artificial Intelligence in Medicine 36(3) (2006) 193-209
19. Baumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of Medical Guide-
lines by Model Checking – A Case Study. 13th Intl. SPIN Workshop (2006). LNCS Vol. 3925,
Springer, Heidelberg (2006) 219-233
20. Noumeir, R.: Radiology Interpretation Process Modeling. Journal of Biomedical Informat-
ics 39(2) (2006) 103-114
21. Ruffolo, M., Curio, R., Gallucci, L.: Process Management in Health Care: A System for
Preventing Risks and Medical Errors. Business Process Mgmt (2005) 334-343
22. Voak, D., Chapman, J.F., Phillips, P.: Quality of Transfusion Practice Beyond the Blood
Transfusion Laboratory is Essential to Prevent ABO-incompatible Death. Transfusion Medi-
cine 10 (2000) 95-96
23. Battles, J.B., Kaplan, H.S., van der Schaaf, T.W., Shea, C.E.: The Attributes of Medical
Event Reporting Systems for Transfusion Medicine. Arch Pathology Laboratory Medicine 122
(1998) 231-238
24. Galel, S.A., Richards, C.A.: Practical Approaches to Improve Laboratory Performance and
Transfusion Safety. Am. J. Clinical Pathology 107 (Suppl 1) (1997) S43-S49
25. van der Gaag, L.C., Renooji, S., Witteman, C.L.M., Aleman, B.M.P., Taal, B.G.: Prob-
abilities for a Probabilistic Network: A Case-Study in Oesophageal Cancer. Artificial Intelli-
gence in Medicine 25(2) (2002) 123-148
26. Sutton, S.M.J., Heimbigner, D.M., Osterweil, L.J.: APPL/A: A Language for Software-
Process Programming. ACM Trans. on Software Engineering and Methodology 4(3) (1995)
221-286
27. Ben-Shaul, I.Z., Kaiser, G.: A Paradigm for Decentralized Process Modeling and its Reali-
zation in the Oz Environment. ACM/IEEE 16th Intl. Conf. on Software Engineering (1994)
179-188
28. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Process Model Evolution in the SPADE Environ-
ment. ACM/IEEE 15th Trans. on Software Engineering 19(12) (1993)
29. Paul, S., Park, E., Chaar, J.: RainMan: A Workflow System for the Internet. Usenix Sym-
posium on Internet Technologies and Systems (1997)
30. Grosof, B., Labrou, Y., Chan, H.Y.: A Declarative Approach to Business Rules in Con-
tracts: Courteous Logic Programs in XML. ACM Conf. on Electronic Commerce, Denver, CO
(1999) 68-77
31. Avrunin, G.S., Corbett, J.C., Dwyer, M.B.: Benchmarking Finite-State Verifiers. Software
Tools for Technology Transfer 2 (2000) 317-320
32. Corbett, J.C., Avrunin, G.S.: Using Integer Programming to Verify General Safety and
Liveness Properties. Formal Methods in System Design 6 (1995) 97-123
33. Raunak, M.S., Osterweil, L.J.: Effective Resource Allocation for Process Simulation: A
Position Paper. 6th Intl. Workshop on Software Process Simulation and Modeling, St. Louis,
MO (2005)

