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Abstract. Objectives: To demonstrate a technology-based approach to continu-
ously improving the safety of medical processes. 

Methods: The paper describes the Little-JIL process definition language, origi-
nally developed to support software engineering, and shows how it can be used 
to model medical processes. A Little-JIL model of a chemotherapy process dem-
onstrates how this model, and some process analysis technologies that are also 
briefly described, can identify process defects that pose safety risks. 
 
Results: Rigorously modeling medical processes with Little-JIL and applying 
automated analysis techniques to those models helped identify process defects 
and vulnerabilities and led to improved processes that were reanalyzed to show 
that the original defects were no longer present. 
 
Conclusions: Creating detailed and precisely defined models of medical proc-
esses that are then used as the basis for rigorous analyses can lead to improve-
ments in the safety of these processes. 
 
Keywords: medical safety, continuous process improvement, process modeling 

1 Introduction: Technologies for Medical Process Improvement 

Continuous process improvement has been employed to improve quality in such di-
verse areas as manufacturing, software development, and business administration. 
The work described in this paper outlines how this approach might be applied to ad-
dress quality improvement in the medical domain. The need for quality improvement 
in medical care has become increasingly clear in recent years. Much of the attention 
to this problem was catalyzed by the IOM report, “To Err Is Human” (1), which esti-
mated that in the United States approximately 98,000 deaths per year were attribut-
able to avoidable errors. That report and a subsequent related IOM report (2) suggest 
that computer technologies should be employed to address the underlying problems 
and reduce the incidence of errors that cause needless cost and suffering. There are 



2 

many candidate technologies for doing this. We suggest that technologies originally 
developed to support continuous process improvement for software systems seem to 
be particularly applicable. 

Continuous process improvement was espoused by W. Edwards Deming (3), 
whose work was applied successfully by the Japanese auto manufacturing industry. 
That early success led to the adoption of the principles of continuous process im-
provement in wider domains and more countries.  The core of the idea is the so-called 
PDCA (Plan-Do-Check-Act) paradigm, often referred to as the “Deming Cycle” (al-
though Deming himself refers to it as the “Shewhart Cycle”, in honor of Walter She-
whart, who had articulated the ideas previously (4)). Fundamentally, this cycle posits 
that there is a process that is the central focus of improvement. In the Plan phase of 
the PDCA cycle, improvements to the process are formulated and considered. In the 
Do phase, the improvements are installed. In the Check Phase, the proposed im-
provements are analyzed and evaluated to see that they are indeed likely to effect im-
provements. In the Act phase, the modified process is actually deployed. The net ef-
fect of this full cycle should be demonstrable improvement.  The resulting outcome of 
the cycle is then the subject of the Plan phase of the next cycle.   

Our efforts to apply the PDCA cycle to improving quality of medical care have fo-
cused on defining medical processes and then applying analyses to them. In particu-
lar, we used a process definition language, Little-JIL, to define medical processes 
clearly, precisely, and in detail. In this paper, we concentrate mainly on this aspect of 
our approach – the creation of a precise process definition. We have also used a prop-
erty specification system, PROPEL (5), to define event sequence properties and then 
have demonstrated that analyzers, such as FLAVERS (6) and SPIN (7), can be used to 
determine whether the Little-JIL-defined processes conform to the PROPEL-specified 
properties. We have undertaken several case studies to evaluate this approach and 
have found that the technologies mentioned above are indeed useful in supporting 
medical process improvement of the sort advocated by Shewhart and Deming. 

In the next section, we present the Little-JIL process definition language and pro-
vide examples of how it is used to define a chemotherapy process. Section 3 de-
scribes our experiences, and Section 4 overviews related work. Section 5 suggests 
some future research directions. 

2 An Example:  Chemotherapy Preparation and Administration 

Chemotherapy medications are typically highly toxic, and thus it is of overriding im-
portance that the right patient receives the right medications in the right dosages at the 
right times. To assure this, elaborate processes are carried out that integrate the efforts 
of such diverse medical personnel as doctors, nurses, pharmacists, and clerical work-
ers. Chemotherapy processes aim to speed the flow of treatment, while assuring that 
errors do not occur. Preliminary examination of these processes suggested that they 
are large and complex, and their growing complexity makes it increasingly difficult to 
be sure they provide sufficient protection against the commission of errors.   

We began by defining some example chemotherapy processes. Earlier work in de-
fining processes in such other domains as software development, scientific data proc-
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essing (8), and e-government (9) suggested that a powerful process definition lan-
guage would be needed. We chose to use the Little-JIL process definition language 
because our previous experience suggested that semantic features of this language 
were likely to be effective in defining processes in the chemotherapy domain. 

2.1 Principal Features of Little-JIL 

Little-JIL (10, 11) was originally developed to define software development proc-
esses. A Little-JIL process definition has three components, an artifact collection, a 
resource repository, and a coordination specification. The artifact collection contains 
the items that are the products of the process. The resource repository specifies the 
agents and capabilities that support performing the activities. The coordination speci-
fication ties these together, specifying which agents and supplementary capabilities 
perform which activities on which artifacts at which time(s).   

A Little-JIL coordination specification has a visual representation, but is precisely 
defined (using finite-state automata), which makes it amenable to definitive analyses. 
Among the features of Little-JIL that distinguish it from most process languages are 
its 1) use of abstraction to support scalability and clarity, 2) use of scoping to restrict 
data and control flow, 3) facilities for specifying concurrency, 4) capabilities for deal-
ing with exceptional conditions, 5) capabilities for specifying the utilization of re-
sources, and 6) clarity in specifying iteration.  

A Little-JIL coordination specification consists of hierarchically decomposed 
steps, where a step represents a task to be done by an assigned agent. Each black bar 
in Figure 1 is an iconic representation of a step with some of its features. Each step 
has a name and a set of badges to represent control flow among its substeps, its inter-
face (specifying its input/output artifacts and the resources it requires), the exceptions 
it handles, etc. A step with no substeps is a leaf step.  It represents an activity per-
formed by an agent, without any process guidance. Below we present some Little-JIL 
features. 

Resources and Agents—A Little-JIL step interface (represented by a filled circle 
above the step name) specifies the types of resources required to support execution of 
the step. Some examples of resources are infusion suites and medical records. Each 
step has one special resource, called its agent, which has responsibility for performing 
the step. Little-JIL agents may be humans, groups of humans, or automated devices. 

Substep Decomposition—Little-JIL steps may be decomposed into two kinds of 
substeps, ordinary substeps and exception handlers. Ordinary substeps define how 
each step is executed and are connected to their parent by edges annotated by specifi-
cations of the artifacts that flow between parent and substep. Exception handlers de-
fine how exceptions thrown by the step’s descendants are handled.   

Step Sequencing—A non-leaf step has a sequencing badge (an icon on the left in 
the step bar; e.g., the equal sign on the step chemotherapy process in Figure 1) that 
defines the order of substep execution. Little-JIL has four step kinds. The example 
depicted in Figure 1 uses two, the sequential step (right arrow), indicating that sub-
steps execute from left to right and the parallel step (equal sign), indicating that sub-
steps execute in any (possibly interleaved) order, although the order may be con-
strained by such factors as the lack of needed resources.  
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Channels—Channels are named entities that act like buffers, directly connecting 
specifically identified source step(s) with specifically identified destination step(s). 
This construct supports non-parameterized data flow and helps synchronize concur-
rently executing steps.   

Exception Handling—A Little-JIL step can throw an exception when some aspect 
of its execution fails. This triggers execution of a matching exception handler defined 
at an ancestor step of the step throwing the exception. Figure 1 shows an exception 
handler consider alternative treatment (connected to the X in the root step bar), which 
is triggered when one of the children of the root step throws a matching exception. 

2.2 An Example Using Little-JIL to Define a Chemotherapy Process 

Figures 1, 2, and 3 depict part of a Little-JIL definition of a chemotherapy process. 
Figure 1 is the top-level diagram of the process and thus represents it at a high level 
of abstraction. The entire Little-JIL process definition has more than 250 steps. The 
part of the process definition that is depicted here is concise but representative of 
many interesting issues that arise in defining the full process. 

A diagram is created using the Little-JIL visual editor, which allows the developer 
to suppress visualization of process details for the sake of clarity. Thus, Figures 1, 2 
and 3 do not display full details of the resources and artifacts declarations in each step 
but represent them iconically by the step’s interface circle. 

Figure 1 indicates that the process definition is decomposed into two substeps that 
can be executed in parallel (note the equal sign in the step bar). In the full process 
definition, each substep is further decomposed down to the level of leaf steps for 
which the process definer is unable to provide, or uninterested in providing, process 
detail. As noted above, Figure 1 also shows that the root step chemotherapy process 
has a substep consider alternative treatment that is as an exception handler (note the  

 

 
 

Figure 1: A coordination diagram of Little-JIL chemotherapy process 
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“X” sign on the chemotherapy process step bar to which the step consider alternative 
treatment is connected). 
The first substep, prepare for and administer first cycle of chemotherapy, of the root 
step chemotherapy process is decomposed into six substeps to be executed in se-
quence (note the right arrow in the step bar). The six substeps of prepare for and ad-
minister first cycle of chemotherapy are the major stages of the chemotherapy process. 
Although the agent assignments are not shown in this diagram, perform consultation 
and assessment is done by a Medical Doctor (MD); perform initial review of patient 
records by a Practice Registered Nurse (RN) and a Triage Medical Assistant; perform 
pharmacy task by a Pharmacist; perform patient teaching by a Nurse Practitioner; 
perform final tasks (day before chemo) by a Pharmacist and a Clinic RN; and the first 
day of chemo is done again by a Pharmacist and a Clinic RN. 

In this example, a channel is used to specify that an MD cannot dictate the consult 
note before evaluating the patient’s condition. But, since the consult note is primarily 
used for billing and does not directly affect the patient’s treatment, the doctor may 
choose to dictate the consult note right after evaluating the patient or later, while the 
tasks in prepare for and administer first cycle of chemotherapy are underway. This 
step sequencing flexibility is captured by the diagram in Figure 1, which shows that 
the dictate consult note step can potentially execute in parallel with the step prepare 
for and administer first cycle of chemotherapy. At the same time, the “consultation 
channel” imposes the additional restriction that the MD cannot dictate the consult 
note before evaluating the patient’s condition – the step dictate consult note takes a 
parameter from the “consultation channel” (declared at the root step so that it is visi-
ble, hence usable, by all of its descendants) and thus cannot start until perform patient 
consultation (shown in Figure 2), which is a substep of perform consultation and as-
sessment, completes and writes a parameter to the “consultation channel. 

Figure 2 shows the decomposition of the step perform consultation and assessment 
from Figure 1. Since perform consultation and assessment is a sequential step (right 
arrow in the step bar), its substeps need to execute in the order specified in the dia-
gram. Thus, first the patient has to fill out medical history forms, then a medical assis-
tant (MA) has to measure height and weight, record them, and check the vital signs of 
the patient. After that, the medical doctor (MD) has to examine the patient, perform  

 

 
Figure 2: The task decomposition of perform consultation and assessment 
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reviews, consult the patient, create a treatment plan, and enter orders in the system. 
Figure 2 illustrates the ability of Little-JIL to capture information about the agents 
(represented as annotations in this figure) who execute the tasks in a process. Figure 2 
also demonstrates the use of exceptions to model non-standard scenarios in a medical 
processes – if the MD discovers that the pathology report does not indicate cancer, the 
step review pathology report, scans and results throws an exception and control is 
transferred to the matching exception handler consider alternative treatment, which 
was discussed in the context of Figure 1. Finally, Figure 2 shows the use of channels 
to provide synchronization among steps in a Little-JIL process definition. The step 
perform patient consultation writes a parameter to the “consultation channel” and thus 
it needs to execute before the step dictate consult note (in Figure 1), which reads from 
the “consultation channel”, can start execution. 

Figure 3 decomposes the substep transcribe and place consult note in patient’s 
record of the root step chemo process. Note that the process shown in this diagram 
provides further details of the handling of the consult note. Figure 1 specifies that 
transcribe and place consult note in patient’s record is the second substep of the se-
quential step create and process consult note. This, means that transcribe and place 
consult note in patient’s record cannot start until the step dictate consult note has 
completed. This sequencing mechanism is a faithful representation of the real world 
situation. In this process, the doctor dictates the consult note on the phone. The doc-
tor’s message is recorded and triggers the tasks of the transcriber, who is external to 
the clinic. The transcriber listens to the message, transcribes the consult note, emails it 
to the doctor’s secretary, and so on. Except for needing to wait for the availability of 
the consult note, this can happen in parallel with the tasks in prepare for and adminis-
ter first cycle of chemotherapy.  

 

 
 

Figure 3: The task decomposition of transcribe and place consult note in patient’s record 
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3. Experience 

The very task of eliciting details from the medical professionals about the chemother-
apy process and capturing those details formally in Little-JIL led to the discovery of 
several defects in the process. Applying analysis techniques also helped us detect de-
fects. Finite-state verification, for example, was used to determine if specified goals, 
or properties, are always satisfied on all possible execution paths through the process 
definition. One of the properties required to hold in the chemotherapy process stated 
“Before Chemotherapy Can Be Administered to a Patient, that Patient's Consult Note 
Needs to Be Put in that Patient's Record.” This means that the step administer chemo 
drug (which is part of the step first day of chemo in Figure 1) cannot be performed 
until the step file consult note in patient’s record (shown in Figure 3) has been com-
pleted. We modeled this property as a finite-state automaton using the PROPEL sys-
tem (5) and then used the FLAVERS finite-state verifier (6) to check whether the 
process satisfies this property. Although a channel imposes some synchronization 
between the parallel activities in the chemotherapy process, FLAVERS detected that 
concurrent execution can allow at least one execution sequence that leads to a prop-
erty violation, i.e. administer chemo drug occurs before file consult note in patient's 
record completes. Detailed discussion about analyzing Little-JIL definitions of medi-
cal processes is beyond the scope of this paper, but a more comprehensive treatment 
of the subject is presented in (12). 

The discovery of defects led to changes in the chemotherapy process definition to 
eliminate those defects. For example, we found that some traces through the process 
definition could bypass a check to see if the patient's height or weight, on which the 
chemotherapy dose is based, are sufficiently up-to-date. After careful scrutiny it was 
determined that this defect was not merely a process definition error, but an actual 
error in the process. The medical professionals then proposed changes in the process 
definition. The modified process definition was then reanalyzed with respect to all the 
properties, not just the one that caused this defect. The process and its process defini-
tion were subsequently improved so this check always occurred on all possible traces 
before chemotherapy could be administered. The medical professionals involved in 
the project found benefit in this process improvement cycle.  

One of the observations that became apparent during the early interviews with the 
medical professionals was that the terminology used to describe the chemotherapy 
process was sometimes inconsistent. For example, words like “verify”, “confirm”, 
and “check” were used loosely.  The same word used at different times or in different 
contexts often had different meanings, even when used by the same individual. Since 
many of the critical errors that may occur in a medical process may arise from ne-
glecting small details, we developed a glossary that disambiguated the use of different 
terms. Thus, our experience suggests that the effort of defining and analyzing com-
plex medical processes can benefit if such a glossary is employed. 

We also found that process guidelines usually contain adequate details when de-
scribing common, standard scenarios, but do not provide enough details, or often any 
details, for handling many exceptional cases. For example, there were places in the 
guidelines where an agent is to confirm the correctness of some information and, if 
the confirmation succeeds, the agent is to continue with the rest of the defined tasks. 
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If the confirmation fails, then the guidelines often lack specific instructions detailing 
how the agent should proceed. In some cases, we observed that different agents were 
handling the exceptional cases differently. While modeling the process with Little-
JIL, the rich exception handling semantics of the language encouraged us to think 
about exceptional scenarios and to ask specific questions about the process to be exe-
cuted following the occurrence of an exception, the agents involved in resolving that 
exception, and the place in the process where control is transferred once the exception 
has been handled. Questions like “What do you do when the check fails?” and 
“Which task do you proceed with and which tasks do you need to redo when you have 
resolved the problem?” typically triggered discussions among the medical profession-
als that resulted in more complete and rigorous specification of how to deal with these 
exceptional cases, thus improving the process. 

The resource and artifact modeling capabilities of Little-JIL also led to interesting 
questions during the interviewing stage that exposed some deficiencies in the process. 
For example, the chemotherapy process relies heavily on a paper copy of a treatment 
plan, which is an artifact created at the earlier stages of the process and then verified 
independently and signed by medical professionals. Doctors, however, enter changes 
to a treatment plan electronically, which sometimes leads to inconsistencies between 
the current electronic version and the paper copy that circulates among the medical 
professionals. The artifact model of Little-JIL and the need to precisely distinguish 
between paper and electronic records led to the discovery of such issues. 

Overall, we found that the rich semantics of Little-JIL proved useful for defining 
the chemotherapy process. The exception handling mechanisms enabled the process 
definition to reflect the real world process more accurately. Modeling resources (both 
agent and non-agent) and artifacts were an important part of the specification of the 
process. The channel synchronization mechanism for specifying direct communica-
tion and synchronization among steps was also useful. Hierarchy and abstraction were 
beneficial in helping to reduce the size of the process definition and in allowing the 
process to be defined at different levels of abstraction. 

Elicitation of the process required almost two semesters of weekly meetings be-
tween process developers and medical professionals. In these meetings usually there 
were two graduate students and at least one faculty member along with two or three 
medical professionals. The medical professionals comprised different combinations of 
physicians, pharmacists, nurses, and medical assistants. The graphical notations, as 
well as the language’s constructs supporting abstraction and exception handling, fa-
cilitated the communication of computer science concepts to the medical profession-
als. We usually presented the process to the medical professionals in textual, natural 
language form, but we were often asked to show the Little-JIL diagrams. Although 
we believe that it is most likely that the Little-JIL definitions will be written by com-
puter scientists or medical informatics specialists, our experiences suggest that medi-
cal professionals, with a little training, can become comfortable reading Little-JIL 
process definitions.  
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4. Related Work 

The medical informatics community has developed several languages for specifying 
medical processes (e.g. Asbru (13), EON (14), Glare (15), GLIF (16), PROforma 
(17)). Similarly to Little-JIL, these languages model medical processes as a collection 
of tasks and provide support for hierarchical decomposition, decisions, goals, 
concurrency, and exception handling. Some languages, however, support certain fea-
tures better than others. For example, Little-JIL separates normal flow from excep-
tional flow, provides a means to pass information about the exception and its context 
to exception handlers, and provides various continuation options after an exception 
has been handled. We found that these language features, intended for specific and 
articulate support of exception handling, are extremely important when modeling 
medical processes, since exceptions frequently arise, and their representation in a 
process definition should be made particularly clear and accessible to medical profes-
sionals who are counted upon to validate definitions of their processes.  Similarly, 
Little-JIL also supports abstraction well by supporting parameterized procedure invo-
cation.  This language feature likewise adds to the clarity of Little-JIL process defini-
tions, facilitating their comprehensibility. The other languages mentioned above do 
not seem to provide equivalent semantic richness to facilitate process definition com-
prehensibility. 

Little-JIL and PROforma are general-purpose process modeling languages, 
whereas, EON and GLIF are designed specifically to model processes from the medi-
cal domain. These domain specific languages also provide support for drawing upon 
domain ontologies. This would be an interesting feature to consider adding to Little-
JIL to encourage the consistent use of terminology. In addition, Little-JIL’s support 
for timing is not as strong as that provided by the above languages.  

Some of these languages have also been used as the basis for formal analysis. For 
example, as part of the Protocure II project (18), Asbru (19, 20) has been used with 
the KIV theorem prover (21) and with the SMV model checker (22) . Glare has been 
used with SPIN (7). The rigorous semantics of Little-JIL allow for fully automated 
translation of Little-JIL process definitions to input languages of formal verifiers. We 
have built tools that automatically translate Little-JIL process definitions to the input 
representations of FLAVERS (6) and SPIN. These tools have helped us avoid manual 
translation, which is time-consuming and error-prone. There also is automated sup-
port for translating Asbru into the internal representation used by SMV and KIV. We 
have also developed and used PROPEL (5),  which provides natural language support 
for specifying mathematical properties. Using PROPEL, FLAVERS, and SPIN, we 
have verified Little-JIL process definitions and discovered errors in real medical 
processes (12). 

Much of the related work in the medical informatics domain has focused on mod-
eling medical guidelines that describe the treatment of a single patient with a particu-
lar diagnosis.  Risks to patient safety, however, arise not only from errors in such 
guidelines, but from problems in the processes through which health-care providers 
actually deliver these treatments by interacting with each other, the patient, and the 
resources required for care (1). Our work has largely been concerned with modeling 
and analyzing these organizational, or system, processes, and Little-JIL’s support for 
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abstraction and facilities for specifying agent types, resources, and exceptional behav-
ior have been correspondingly important. 

Noumeir has also pursued similar goals using a UML-like notation to define proc-
esses (23).  Others (e.g., (24)), have viewed medical processes as workflows and have 
used workflow-like languages to define processes and drive their execution. The 
models created by these projects seem to be less amenable to formal analysis. 

Other approaches to improving medical safety have targeted quality control meas-
ures (25), error reporting systems (26), and process automation in laboratory settings 
(27).  In other work, Bayesian belief networks have been used as the basis for discrete 
event simulations and to guide treatment planning (e.g., (28)). 

5. Conclusion 

This paper presents some of the benefits that arise from the use of a process definition 
language to describe medical processes. The Little-JIL process definition language 
provides a rich set of semantic features. We overviewed some of those features and 
demonstrated how they could be used in an example chemotherapy administration 
process. While developing the process definition, a number of serious potential de-
fects in the actual process were detected. This resulted in the process definition being 
modified and, after careful scrutiny, the corresponding process updated to remove 
those defects.  

Since the process definitions can become quite large and complex, manually re-
viewing these definitions is not sufficient. Instead, we advocate the use of automated 
analysis techniques that can help detect defects. We briefly indicated how finite-state 
verification helped detect process defects in the process definition and in the actual 
processes. 

Finite-state verification supports checking whether a process satisfies certain 
properties, but it assumes that all agents involved in the process perform their tasks 
without errors. Other types of analysis, such as fault tree analysis (29), consider what 
happens if tasks are not done correctly. We have explored automatically generating a 
fault tree from a Little-JIL process definition and then using the fault tree to identify 
single points of failure and other vulnerabilities (30). Our studies of delays in a hospi-
tal Emergency Department have underscored the potential for resource management 
and discrete event simulation to improve efficiency in medical processes (31).  

This work has shown considerable promise and has suggested extensions in sev-
eral directions.  Further research should provide insights into how process definition 
and analysis technology can be used to improve medical processes.  
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