

Performance Benchmarking in Systems

L'évaluation de performance en système

Emmanuel Cecchet

University of Massachusetts Amherst

LASS

Laboratory for Advanced
Systems Software

& UMass Digital Data Forensics Research

WHY ARE WE BENCHMARKING?

- Because my advisor told me to do it?
- Because others are doing it?
- Because I can't get my paper published without it?

PERFORMANCE

EXPERIMENTAL METHODOLOGY

- Limiting performance bias
- *Producing Wrong Data Without Doing Anything Obviously Wrong!* – T. Mytkowicz, A. Diwan, M. Hauswirth, P. Sweeney – Asplos 2009

EXPERIMENTAL ENVIRONMENT

- Software used

- OS
- Libraries
- Middleware
- JVMs
- Application version
- Compiler / build options
- Logging/debug overhead
- Monitoring software

- Hardware used

- Cpu / mem / IO
- Network topology

SCI NETWORK PERFORMANCE AND PROCESSOR STEPPING

OUTLINE

- How Relevant are Standard Systems Benchmarks?
- BenchLab: Realistic Web Application Benchmarking
- An Agenda for Systems Benchmarking Research

SPEC BENCHMARKS

- <http://www.spec.org>
- Benchmark groups
 - Open Systems Group
 - CPU (int & fp)
 - JAVA (client and server)
 - MAIL (mail server)
 - SFS (file server)
 - WEB
 - High Performance Group
 - OMP (OpenMP)
 - HPC
 - MPI
 - Graphics Performance Group
 - APC (Graphics applications)
 - OPC (OpenGL)

TYPICAL E-COMMERCE PLATFORM

- Virtualization
- Elasticity/Pay as you go in the Cloud

TYPICAL E-COMMERCE BENCHMARK

- Setup for performance benchmarking
 - Browser emulator
 - Static load distribution
 - LAN environment

OPEN VS CLOSED

- ***Open Versus Closed: A Cautionary Tale –***

B. Schroeder, A. Wierman, M. Harchor-Balter – NSDI'06

- response time difference between open and close can be large
- scheduling more beneficial in open systems

(a) Closed system

(b) Open system

(c) Partly-open system

TYPICAL DB VIEW OF E-COMMERCE BENCHMARKS

- Direct SQL injection

TPC-W BENCHMARK

- Open source PHP and Java servlets implementations with MySQL/PostgreSQL
- Browser Emulators have significant variance in replay

WHY IS TPC-W OBSOLETE?

- HTTP 1.0, no CSS, no JS...
- And seriously... did you recognize Amazon.com?

RUBiS BENCHMARK

- Auction site (a la eBay.com)
- Many open source implementations
 - PHP
 - Java: Servlet, JEE, Hibernate, JDO...
- Everybody complains about it
- Everybody uses it

- Why?
 - It is available
 - It is small enough to be able to mess with it
 - Others are publishing papers with it!

WEB APPLICATIONS HAVE CHANGED

- Web 2.0 applications
 - Rich client interactions (AJAX, JS...)
 - Multimedia content
 - Replication, caching...
 - Large databases (few GB to multiple TB)
- Complex Web interactions
 - HTML 1.1, CSS, images, flash, HTML 5...
 - WAN latencies, caching, Content Delivery Networks...

MORE REASONS WHY BENCHMARKS ARE OBSOLETE?

Benchmark	HTML	CSS	JS	Multimedia	Total
RUBiS	1	0	0	1	2
eBay.com	1	3	3	31	38
TPC-W	1	0	0	5	6
amazon.com	6	13	33	91	141
CloudStone	1	2	4	21	28
facebook.com	6	13	22	135	176
wikibooks.org	1	19	23	35	78
wikipedia.org	1	5	10	20	36

Number of interactions to fetch the home page of various web sites and benchmarks

STATE SIZE MATTERS

- Does the entire DB of Amazon or eBay fit in the memory of a cell phone?
 - TPC-W DB size: 684MB
 - RUBiS DB size: 1022MB
- Impact of CloudStone database size on performance

Dataset size	State size (in GB)	Database rows	Avg cpu load with 25 users
25 users	3.2	173745	8%
100 users	12	655344	10%
200 users	22	1151590	16%
400 users	38	1703262	41%
500 users	44	1891242	45%

CloudStone Web application server load observed for various dataset sizes using a workload trace of 25 users replayed with Apache HttpClient 3.

OUTLINE

- How Relevant are Standard Systems Benchmarks?
- BenchLab: Realistic Web Application Benchmarking
- An Agenda for Systems Benchmarking Research

BENCHMARK DESIGN

Traditional approach (TPC-W, RUBiS...)

BenchLab approach

HTTP trace

```
http://...  
http://...  
http://...  
http://...  
http://...  
http://...
```

Real Web Browsers

Application under Test

BENCHLAB: TRACE RECORDING

- Record traces of real Web sites
- HTTP Archive (HAR format)

BENCHLAB WEBAPP

- JEE WebApp with embedded database
- Repository of benchmarks and traces
- Schedule and control experiment execution
- Results repository
- *Can be used to distribute / reproduce experiments and compare results*

BENCHLAB CLIENT RUNTIME (BCR)

- Replay traces in real Web browsers
- Small Java runtime based on Selenium/WebDriver
- Collect detailed response times in HAR format
- Can record HTML and page snapshots
- Upload results to BenchLab WebApp when done

Web page browsing
and rendering

HAR results

WIKIMEDIA FOUNDATION WIKIS

- Wikimedia Wiki open source software stack
 - Lots of extensions
 - Very complex to setup/install
- Real database dumps (up to 6TB)
 - 3 months to create a dump
 - 3 years to restore with default tools
- Multimedia content
 - Images, audio, video
 - Generators (dynamic or static) to avoid copyright issues
- Real Web traces from Wikimedia
- Packaged as Virtual Appliances

WIKIPEDIA DEMO

- Wikimedia Wikis

- Real software
- Real dataset
- Real traces
- Packaged as Virtual Appliances

- Real Web Browsers

- Firefox
- Chrome
- Internet Explorer

Name	Method	Status	Type	Size	Time	Timeline	7.82s	11.72s	15.63s
site-wide-5674991483.css._V183552863...	GET	200	text/css	30.15KB	141ms				
websiteGridCSS-websiteGridCSS-358...	GET	200	text/css	21.36KB	148ms				
navPackedSprites-US-22._V183711641_...	GET	200	image/png	7.11KB	200ms				
transparent-pixel._V192234675_.gif	GET	(from cache)	image/gif	(from cache)	86ms				
site-wide-13640146130.js._V183531323...	GET	200	application/x-javascript	133.61KB	403ms				
www.amazon.com	GET	Pending	Pending	0B	10s				
51skuPkUrxL._SL500_Plstb-sticker-ar...	GET	200	image/jpeg	7.10KB	170ms				
s9-widget-combined-min._V183012506...	GET	200	text/css	8.65KB	127ms				

HTTP VS BROWSER REPLAY

- Browsers are smart

- Parallelism on multiple connections
- JavaScript execution can trigger additional queries
- Rendering introduces delays in resource access
- Caching and pre-fetching

- HTTP replay cannot approximate real Web browser access to resources

TYPING SPEED MATTERS

- Auto-completion in search fields is common
- Each keystroke can generate a query

```
GET /api.php?action=opensearch&search=W
GET /api.php?action=opensearch&search=Web
GET /api.php?action=opensearch&search=Web+
GET /api.php?action=opensearch&search=Web+2
GET /api.php?action=opensearch&search=Web+2.
GET /api.php?action=opensearch&search=Web+2.0
```

JAVASCRIPT EFFECTS ON WORKLOAD

- Browser side input validation
- Additional queries during form processing

LAN VS WAN LOAD INJECTION

- Deployed BCR instances in Amazon EC2 data centers
 - As little as \$0.59/hour for 25 instances for Linux
 - Windows from \$0.84 to \$3/hour
- Latency
 - WAN latency $\geq 3 \times$ LAN latency
 - Latency standard deviation increases with distance
- CPU usage varies greatly on server for same workload (LAN 38.3% vs WAN 54.4%)

	US East	US West	Europe	Asia
Average latency	920ms	1573ms	1720ms	3425ms
Standard deviation	526	776	906	1670

OUTLINE

- How Relevant are Standard Systems Benchmarks?
- BenchLab: Realistic Web Application Benchmarking
- An Agenda for Systems Benchmarking Research

OPEN CHALLENGES - METRICS

- Manageability
 - Online operations
 - Autonomic aspects
- HA / Disaster recovery
 - Fault loads
 - RTO/RPO
- Elasticity
- Scalability
 - Private cloud
 - Internet scale
- Cacheability
 - Replication
 - CDNs

OPEN CHALLENGES - WORKLOADS

- Capture
 - Quantifiable overhead
 - Complex interactions
 - Correlation of distributed traces
- Separating trace generation from replay
- Scaling traces
- Security
 - Anonymization
 - Content of updates
- Replay
 - Complex interactions
 - Parallelism vs Determinism
 - Internet scale

OPEN CHALLENGES - EXPERIMENTS

- Experiment automation
 - Capturing experimental environment
 - Reproducing experiments
 - Minimizing setup bias
- Experimental results
 - Certifying results
 - Results repository
 - Mining/comparing results
- Realistic benchmarks
 - Applications
 - Workloads
 - Injection

CONCLUSION

- Benchmarking is hard
- Applications are becoming more complex
 - Realistic workloads/interactions
 - Realistic applications
- BenchLab for Internet scale Benchmarking of real applications
- A lot to explore...

Q&A

<http://lass.cs.umass.edu/projects/benchlab/>

DILBERT™ by Scott Adams

