
Emmanuel Cecchet
University of Massachusetts Amherst

Performance Benchmarking
in Systems

L’évaluation de performance
en système

Laboratory for Advanced
Systems Software

& UMass Digital Data Forensics Research

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

2

WHY ARE WE BENCHMARKING?
 Because my advisor told me to do it?
 Because others are doing it?
 Because I can’t get my paper published without it?

 Why am I building a new system?
 What am I trying to improve?
 Does it need to be improved?
 How am I going to measure it?
 What do I expect to see?
 Am I really measuring the right thing?

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

3

PERFORMANCE

 Faster is better?
 Bigger is better?
 Scalable is better?
 What about manageability?

 Which is the right metric?
 Hardware counters
 Throughput
 Latency
 Watts
 $…

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

4

EXPERIMENTAL METHODOLOGY

 Limiting performance bias
 Producing Wrong Data Without Doing

Anything Obviously Wrong! – T. Mytkowicz, A.
Diwan, M. Hauswirth, P. Sweeney – Asplos 2009
 Performance sensitive to experimental setup
 Changing a UNIX environment variable can change

program performance from 33 to 300%
 Setup randomization

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

5

EXPERIMENTAL ENVIRONMENT

 Software used
 OS
 Libraries
 Middleware
 JVMs
 Application version
 Compiler / build options
 Logging/debug overhead
 Monitoring software

 Hardware used
 Cpu / mem / IO
 Network topology

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

6

SCI NETWORK PERFORMANCE AND
PROCESSOR STEPPING

0

10

20

30

40

50

60

70

80
8 56 22
4

41
6

70
4

10
88

14
72

18
56

22
40

26
24

30
08

33
92

37
76

46
08

76
80

10
75

2

13
82

4

16
89

6

19
96

8
23

04
0

26
11

2

29
18

4
32

25
6

53
24

8

77
82

4
10

24
00

12
69

76

15
15

52
17

61
28

20
07

04

22
52

80
24

98
56

45
87

52

85
19

68
12

45
18

4

16
38

40
0

20
31

61
6

Taille des paquets en octets

B
an

de
 p

as
sa

nt
e

en
 M

o/
s

2 noeuds 64-bit stepping 1

2 noeuds 64-bit stepping 2

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

7

OUTLINE

 How Relevant are Standard Systems
Benchmarks?

 BenchLab: Realistic Web Application
Benchmarking

 An Agenda for Systems Benchmarking
Research

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

8

SPEC BENCHMARKS

 http://www.spec.org
 Benchmark groups

 Open Systems Group
 CPU (int & fp)
 JAVA (client and server)
 MAIL (mail server)
 SFS (file server)
 WEB

 High Performance Group
 OMP (OpenMP)
 HPC
 MPI

 Graphics Performance Group
 APC (Graphics applications)
 OPC (OpenGL)

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

9

TYPICAL E-COMMERCE PLATFORM

 Virtualization
 Elasticity/Pay as you go in the Cloud

Internet
Frontend/
Load balancer

Databases

App.
Servers

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

10

TYPICAL E-COMMERCE BENCHMARK

 Setup for performance benchmarking
 Browser emulator
 Static load distribution
 LAN environment

Internet
Emulated
clients

Database

App.
Servers

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

11

OPEN VS CLOSED

 Open Versus Closed: A Cautionary Tale –
B. Schroeder, A. Wierman, M. Harchor-Balter – NSDI’06
 response time difference between open and close can be large
 scheduling more beneficial in open systems

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

12

TYPICAL DB VIEW OF E-COMMERCE BENCHMARKS

 Direct SQL injection

Internet

Database

SQLSQL SQL

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

13

TPC-W BENCHMARK

 Open source PHP and Java servlets implementations
with MySQL/PostgreSQL

 Browser Emulators have significant variance in replay

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

14

WHY IS TPC-W OBSOLETE?

 HTTP 1.0, no CSS, no JS…

 And seriously… did you recognize Amazon.com?

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

15

RUBIS BENCHMARK

 Auction site (a la eBay.com)
 Many open source implementations

 PHP
 Java: Servlet, JEE, Hibernate, JDO…

 Everybody complains about it
 Everybody uses it

 Why?
 It is available
 It is small enough to be able to mess with it
 Others are publishing papers with it!

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

16

WEB APPLICATIONS HAVE CHANGED

 Web 2.0 applications
o Rich client interactions (AJAX, JS…)
o Multimedia content
o Replication, caching…
o Large databases (few GB to multiple TB)
 Complex Web interactions
o HTML 1.1, CSS, images, flash, HTML 5…
o WAN latencies, caching, Content Delivery

Networks…

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

17

MORE REASONS WHY BENCHMARKS ARE OBSOLETE?

Benchmark HTML CSS JS Multimedia Total

RUBiS 1 0 0 1 2
eBay.com 1 3 3 31 38

TPC-W 1 0 0 5 6
amazon.com 6 13 33 91 141
CloudStone 1 2 4 21 28

facebook.com 6 13 22 135 176
wikibooks.org 1 19 23 35 78
wikipedia.org 1 5 10 20 36

Number of interactions to fetch the home page of various web sites and benchmarks

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

18

STATE SIZE MATTERS

 Does the entire DB of Amazon or eBay fit in the
memory of a cell phone?
 TPC-W DB size: 684MB
 RUBiS DB size: 1022MB

 Impact of CloudStone database size on
performance

Dataset
size

State size
(in GB)

Database
rows

Avg cpu load
with 25 users

25 users 3.2 173745 8%
100 users 12 655344 10%
200 users 22 1151590 16%
400 users 38 1703262 41%
500 users 44 1891242 45%

CloudStone Web application server load observed for various dataset sizes
using a workload trace of 25 users replayed with Apache HttpClient 3.

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

19

OUTLINE

 How Relevant are Standard Systems
Benchmarks?

 BenchLab: Realistic Web Application
Benchmarking

 An Agenda for Systems Benchmarking
Research

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

20

BENCHMARK DESIGN

Workload definition Application under TestWeb Emulator

HTTP trace
Application under Test

Real Web Browsers

+

http://...
http://...
http://...
http://...
http://...
http://...

http://...
http://...
http://...
http://...
http://...
http://...

BenchLab approach

Traditional approach (TPC-W, RUBiS…)

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

21

 Record traces of real Web sites
 HTTP Archive (HAR format)

Internet
Frontend/
Load balancer

Databases

App.
Servers

BENCHLAB: TRACE RECORDING

HA Proxy recorder

httpd recorder

SQL recorder?

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

22

BENCHLAB WEBAPP

Upload traces / VMs
Define and run

experiments
Compare results
Distribute

benchmarks, traces,
configs and results

http://...
http://...
http://...
http://...
http://...
http://...

http://...
http://...
http://...
http://...
http://...
http://...

Web Frontend

Experiment scheduler

Traces (HAR or access_log)
Results (HAR or latency)

Experiment Config
Benchmark VMs

Traces (HAR or access_log)
Results (HAR or latency)

Experiment Config
Benchmark VMs

E
xp

er
im

en
t

st
ar

t/s
to

p

Tr
ac

e
do

w
nl

oa
d

B
ro

w
se

r
re

gi
st

ra
tio

n

R
es

ul
ts

 u
pl

oa
d

 JEE WebApp with embedded database
 Repository of benchmarks and traces
 Schedule and control experiment execution
 Results repository
 Can be used to distribute / reproduce

experiments and compare results

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

23

BENCHLAB CLIENT RUNTIME (BCR)
 Replay traces in real Web browsers
 Small Java runtime based on Selenium/WebDriver
 Collect detailed response times in HAR format
 Can record HTML and page snapshots
 Upload results to BenchLab WebApp when done

BCRBCR

HAR resultsWeb page browsing
and rendering

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

24

WIKIMEDIA FOUNDATION WIKIS

 Wikimedia Wiki open source software stack
 Lots of extensions
 Very complex to setup/install
 Real database dumps (up to 6TB)

 3 months to create a dump
 3 years to restore with default tools

 Multimedia content
 Images, audio, video
 Generators (dynamic or static) to avoid copyright issues
 Real Web traces from Wikimedia
 Packaged as Virtual Appliances

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

25

WIKIPEDIA DEMO

 Wikimedia Wikis
 Real software
 Real dataset
 Real traces
 Packaged as Virtual Appliances

 Real Web Browsers
 Firefox
 Chrome
 Internet Explorer

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

26

HTTP VS BROWSER REPLAY

 Browsers are smart
 Parallelism on multiple

connections
 JavaScript execution can trigger

additional queries
 Rendering introduces delays in

resource access
 Caching and pre-fetching

 HTTP replay cannot
approximate real Web browser
access to resources

GET /wiki/page

Analyze page

generate
page

GET combined.min.css
GET jquery-ui.css
GET main-ltr.css
GET commonPrint.css
GET shared.css
GET flaggedrevs.css
GET Common.css
GET wikibits.js
GET jquery.min.js
GET ajax.js
GET mwsuggest.js
GET plugins...js
GET Print.css
GET Vector.css
GET raw&gen=css
GET ClickTracking.js
GET Vector...js
GET js&useskin
GET WikiTable.css
GET CommonsTicker.css
GET flaggedrevs.js
GET Infobox.css
GET Messagebox.css
GET Hoverbox.css
GET Autocount.css
GET toc.css
GET Multilingual.css
GET mediawiki_88x31.png

Rendering + JavaScript

GET ExtraTools.js
GET Navigation.js
GET NavigationTabs.js
GET Displaytitle.js
GET RandomBook.js
GET Edittools.js
GET EditToolbar.js
GET BookSearch.js
GET MediaWikiCommon.css

0.90s

0.06s

send
files

GET page-base.png
GET page-fade.png
GET border.png
GET 1.png
GET external-link.png
GET bullet-icon.png
GET user-icon.png
GET tab-break.png
GET tab-current.png
GET tab-normal-fade.png
GET search-fade.png
GET search-ltr.png
GET wiki.png
GET portal-break.png

0.97s

Rendering0.28s
GET arrow-down.png
GET portal-break.png
GET arrow-right.png

send
files

send
files

send
files

Rendering + JavaScript

0.67s

0.14s

0.70s

0.12s

0.25s

1.02s

1.19s

1.13s

0.27s

Replay

1

2

3

4

0.25s

3.86s + 2.21s total rendering time1.88s

Total network time

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

27

TYPING SPEED MATTERS

 Auto-completion in search fields is common
 Each keystroke can generate a query

GET /api.php?action=opensearch&search=W
GET /api.php?action=opensearch&search=Web
GET /api.php?action=opensearch&search=Web+
GET /api.php?action=opensearch&search=Web+2
GET /api.php?action=opensearch&search=Web+2.
GET /api.php?action=opensearch&search=Web+2.0

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

28

JAVASCRIPT EFFECTS ON WORKLOAD

 Browser side input validation
 Additional queries during form processing

Good
Input

Bad
Input

Real BrowserEmulated Browser

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

29

LAN VS WAN LOAD INJECTION

 Deployed BCR instances in Amazon EC2 data centers
 As little as $0.59/hour for 25 instances for Linux
 Windows from $0.84 to $3/hour

 Latency
 WAN latency >= 3 x LAN latency
 Latency standard deviation increases with distance

 CPU usage varies greatly on server for same workload
(LAN 38.3% vs WAN 54.4%)

US East US West Europe Asia

Average
latency 920ms 1573ms 1720ms 3425ms

Standard
deviation 526 776 906 1670

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

30

OUTLINE

 How Relevant are Standard Systems
Benchmarks?

 BenchLab: Realistic Web Application
Benchmarking

 An Agenda for Systems Benchmarking
Research

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

31

OPEN CHALLENGES - METRICS

 Manageability
 Online operations
 Autonomic aspects

 HA / Disaster recovery
 Fault loads
 RTO/RPO

 Elasticity
 Scalability

 Private cloud
 Internet scale

 Cacheability
 Replication
 CDNs

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

32

OPEN CHALLENGES - WORKLOADS

 Capture
 Quantifiable overhead
 Complex interactions
 Correlation of distributed traces

 Separating trace generation from replay
 Scaling traces
 Security

 Anonymization
 Content of updates

 Replay
 Complex interactions
 Parallelism vs Determinism
 Internet scale

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

33

OPEN CHALLENGES - EXPERIMENTS

 Experiment automation
 Capturing experimental environment
 Reproducing experiments
 Minimizing setup bias

 Experimental results
 Certifying results
 Results repository
 Mining/comparing results

 Realistic benchmarks
 Applications
 Workloads
 Injection

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

34

CONCLUSION

 Benchmarking is hard
 Applications are becoming more complex

 Realistic workloads/interactions
 Realistic applications

 BenchLab for Internet scale Benchmarking of real
applications

 A lot to explore…

C
FS

E
 –

ce
cc

he
t@

cs
.u

m
as

s.
ed

u

35

Q&A

http://lass.cs.umass.edu/projects/benchlab/

