
Abstract
Changing the way users interact with their data is the prin-
cipal objective of the Listen, Communicate, Show (LCS)
paradigm. LCS is a new paradigm being applied to Marine
Corps tactical logistics. Using a spoken language under-
standing system a Marine converses with the system to place
a supply or information request, which is passed to a mobile,
intelligent agent to execute at the proper database. Upon
successful return, the agent notifies the spoken language
system of its results, and the Marine is given a verbal and/or
visual response.

Introduction
Marines work in a dynamic, fluid environment where
requirements and priorities are constantly subject to
change. It currently takes 72 hours before a Marine in a
Combat Service Support Operations Center (CSSOC) can
confirm with a requesting unit that their order is in the
logistics system. This is unacceptable for most requests,
particularly if the request is for mission-critical supplies.
CSSOC personnel spend a great deal of their time placing
and then tracking requests, trying to keep the requesting
units appraised of the status of their supplies. When it takes
so long to place and check on a request, all involved
become frustrated and operational plans may have to be
altered to accommodate the slowness of the supply system.

The focus of the LCS - Marine project is to provide
Marines in the field with the logistical support that they
need, when they need it, where they need it. In an LCS sys-
tem, the computer listensfor information requests, commu-
nicates both with the user and networked information
resources to compute user-centered solutions, and shows
tailored visualizations to individual warfighters.

This is done by integrating a spoken language under-
standing system (SLS) (for assisting the user in placing a
request) with mobile, intelligent agents (for information
access). The SLS converses with the user to gather infor-
mation for placing a new request, or to check status, amend,
or cancel an existing request. Once sufficient information is
obtained from the user, the SLS launches an agent to
accomplish the requested task. The agent accesses a snap-

shot of the Marine databases by traveling over existing tac-
tical communications networks. Once the agent's itinerary
is complete, it returns to the SLS, which generates an
appropriate response to the user. This may be visual in
addition to verbal, depending on the available media. By
integrating these AI technologies, we hope to reduce the
72-hour response time to less than 7.2 minutes.

Through a quick conversation between the user and the
LCS system, many potential pitfalls can be reduced or
eliminated in the processing of a request. For example, the
system can observe that the user has requested an amount
that exceeds the capacity of the requesting unit and can
attempt to resolve this problem directly with the user.
Additionally, the user can establish monitor agents that will
track the request and send notification agents back to the
user to report either status updates or observations that the
request isn't being given the attention the user needs.

Achieving near real-time access to logistics databases
via spoken language and agents greatly increases the confi-
dence that the proper supplies will arrive and in a more
timely fashion. Thus, commanders are able to more accu-
rately generate operations plans that are less likely to be
subject to supply shortfalls.

We next describe the LCS - Marine task. Then we dis-
cuss the system and its components. Finally we give an
overview of the operational testing and results of using the
LCS - Marine system.

Task Description
To submit requests through the logistics system, units pass
their requests to the CSSOC, which prepares a Rapid
Request form. LCS - Marine supports both ordinance
(Class V) and subsistence (Class I) supply requests through
the use of the Rapid Request form. LCS – Marine users
provide their input to the CSSOC via radio and use radio
protocols when communicating. This requires the system to
understand call signs, military times, etc.

To support the flow of information using the Rapid
Request form, the initial set of LCS - Marine activities are
to submit a request, check on its status, change a request,
and cancel a request. Figure 1 shows a partially completed
Rapid Request form when placing a new request.

Integrating a Spoken Language System with Agents
for Operational Information Access

Jody Daniels

Lockheed Martin Advanced Technology Laboratories
1 Federal Street

Camden, NJ 08102 USA
jdaniels@atl.lmco.com

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Figure 1. Partially Completed Marine
Corps Rapid Request Form

Overview of the LCS – Marine System
The LCS - Marine system consists of four major compo-
nents: an SLS, a collection of agents for information
access, real-world operational databases, and communica-
tions networks to connect the user to the SLS and the
agents to the databases. Operationally, the Marine speaks
into a microphone attached to a hand-held device. The
recognition process begins on the hand-held and sends a
compressed version of the speech over a wireless commu-
nications link to the main portion of the SLS, which resides
a short distance away.

The other SLS components complete the recognition
process, parse the n-best possibilities, create a semantic
representation, add historical context from the on-going
human-machine interchange, and decide what step to take
next. Possible next steps include prompting the user for
additional information, requesting a clarification, or send-
ing an agent to an information source to process a complet-
ed user request.

When the dialogue is sufficiently progressed, the SLS
will send a mobile agent over another communications link
(either SINCGARS or Wavelan) to the remote database
management system (dbms). After processing the request at
the dbms, the agent returns to the SLS to confirm placing
the request (or the modification or deletion). The SLS then
generates a response for the user, which may be both ver-
bal and visual. The SLS transforms the verbal response
from a semantic frame into text, which is then synthesized
into speech on the hand-held device. Visual updates are
handled by agents, which manage a custom display server.
Figure 2 provides an overview of the current LCS – Marine
architecture.

We next describe each of the components of the system,
starting with the SLS, then the extendible mobile agent
architecture system, the dbms, and finally the communica-
tions system.

Figure 2. LCS - Marine Ar chitecture

Spoken Language Understanding System (SLS)
The SLS uses the MITGalaxy II architecture customized
with the domain application and specialized servers
(Seneff, Lau, and Polifroni 1999). The architecture is
designed to be “plug and play.”

Galaxy II is a DARPA-developed, GOTS, distributed,
component-based middleware product maintained by the
MITRE Corporation. Specialized servers handle specific
tasks, such as translating audio data to text. All Galaxy II-
compliant servers communicate with each other through a
central server known as the Hub. The Hub manages flow
control, handles traffic among distributed servers, and pro-
vides state maintenance.

Using the Hub architecture, information is passed in the
form of a frame. Specific frames are built throughout the
processing to handle and store such items as the input utter-
ance, prior context, and the response to the user.

In terms of overall processing, speech is moved from the
Playbox to the Recognizer. Speech is translated, prior con-
text added, and processed using the Natural Language (NL)
and Turn Manager servers to verify the new input's validi-
ty. The Turn Manager generates a response, NLconverts it
to text, and the Synthesis server generates the verbal
response. The Playbox then speaks the waveform file to the
user.

Audio. The Audio Input/Output server, known as the
Playbox, uses the COTS Microsoft SAPI Speech
Development Kit (Beta). Using SAPI audio objects enables
LCS - Marine to capture and play back speech. The server
captures speech and sends it as an audio waveform file to
the Recognizer.

To support low-bandwidth communications, such as tac-
tical and cellular, the initial steps of the Recognizer (spec-
tral compression) were added to the audio capture modules
to reduce the amount of bandwidth needed to move the
waveform file.

At the other end of a processing cycle (sometimes called
a turn) the Synthesis server converts text to speech, creat-
ing an audio waveform file. Synthesis also uses Microsoft
SAPI audio objects. This waveform file is then passed
directly to the Playbox for audio generation, completing the
user-machine dialogue loop.

Û Date: 000117

A. Requesting Unit:Û B. Call Sign: D4E

C. Requesting Precedence: Routine: PRI:Û Immediate: X

SUPPLY REQUEST:
Û D. TYPE SUPPLIES:Û E. QUANTITY
Û MREÛ 40
Û TRIP FLAREÛ 100

F. DELIVERY TIME: 400Û Û G. DELIVERY POINT (GRID):
Û Û Û13ABC1234567898ð
H. POC: sergeant yorkÛ ð
I. PART:Û J . NSN/PART #:Û K. ERO #:

File
Û Input String: Item delta flares one zero zero over
Û Reply String:ð

Rapid Request Form

SupplyÛ MaintÛ Transportation/Engineer

Lockheed Martin SUL Agent Monitor

Win NT/95/98 Linux

Stub

ProxyAgent
Dock

Synthesis

Playbox

GPS

Dbms

Display

.wav*

Text

Display
info

DB
request

Turn
Mgmt

Recognizer

*Locally processed
to reduce bandwidth

NL
Recognizer

UserÕs Phone/
Laptop/Handheld

SLS Server
Laptop/Handheld

LCS Apps
HUB

Agent
Dock

Recognizer. The Recognizer is the server responsible for
speaker-independent speech recognition. Audio waveform
data is analyzed for component sounds and examined with
respect to models of known combinations of sounds.
Candidate results are selected using an n-best algorithm.

The n-best algorithm produces a list of the n most likely
possible utterances produced that map to the waveforms
being examined. The list is merged into a single network, a
word graph. Three conceptual models are used in this
process. The acoustic model maps sounds to phones, the
base unit of pronunciation. The pronunciation model maps
groups of phones to words, and the language model groups
words into sequences.

The LCS - Marine acoustic model is derived from data
collected by the Spoken Language Systems Group at MIT
for another speech application (Glass and Hazen 1998).
The data is from narrow-band telephone speech and con-
tains 24,000 samples. LCS - Marine has adapted and
expanded upon this model as the vocabulary and the oper-
ational environment evolves.

The Recognizer combines the pronunciation and language
models into one process, a class bigram model. This com-
bined model is constructed and trained using a pronunciation
lexicon of vocabulary words, a collection of word classifica-
tions, and a training set of common sentences and phrases.

Classification rules assist the language model by identi-
fying groups of words that could appear in similar locations
within an utterance. These could be “numbers,” “city
names,” “colors” or any other group of related terms.

A large set of textual sentences, phrases, and other types
of user inputs exist to train the class bigram model. These
range in length from “Third platoon needs four thousand m
sixteen rounds at checkpoint bravo before sixteen hundred
hours zulu” to “no.” The text samples provide order infor-
mation to the Recognizer and are used to generate the rela-
tive probabilities found in the language model.

The Recognizer merges the n-best sequences into a sin-
gle directed word graph. The nodes in the graph correspond
to particular pinpoints in time. The edges connecting the
nodes are labeled with a word and score. NLwill use these
scores when matching against the parse rules.

Natural Language (NL). The NLcomponent handles text
parsing and generation. A semantic frame is built to repre-
sent knowledge and the user's meaning. This knowledge
representation is initially built by NLand is passed to the
other components. NLparses text, both syntactically and
semantically, to create a semantic representation (the
semantic frame) to pass to the Turn Manager. NL also takes
semantic frames representing replies from the system back
to the user and transforms the frame into text to be synthe-
sized into speech.

NL first syntactically parses the possible sequences in
the word graph provided by Recognizer. NL uses a gram-
mar specific to the application domain. The most likely
parsable word sequence from the word graph is converted
into a syntax tree for further manipulation.

A second domain-specific grammar maps the resulting
syntax tree into a semantic tree. The semantic tree is an

intermediate step in which meanings are mapped onto
salient parts of the syntax tree, ready to be rearranged into
a semantic frame.

Using another set of rules, NLconstructs a semantic
frame from the semantic tree. While both the semantic tree
and the semantic frame represent the meaning of an utter-
ance, the structure of the semantic tree reflects the form of
the utterance, while the semantic frame reflects the form of
the ideas expressed within that utterance.

Information from previously constructed frames (which
represent the history of the discourse) may be used to aug-
ment the current frame through a collection of rules. The
final semantic frame incorporates this historical context
and represents the current semantic state of the dialogue. It
is passed to the Turn Manager.

When the Turn Manager has completed its processing
and has created a reply to speak to the user, NL again takes
action. NL translates turn management output, also a
semantic frame, into natural language text. This is accom-
plished by selecting the appropriate text templates from a
catalog of templates and filling in the blanks with informa-
tion from fields within the semantic frame. The text gener-
ated by NLis then passed to the Synthesis server.

Turn Manager. The Turn Manager manages dialogue with
the user and interfaces with the agent system. The logic
contained in the Turn Manager governs the order of clari-
fying questions from the system back to the user and trig-
gers agent creation and tasking. This turn management
stage reflects the system's end of the dialogue with the user.

The Turn Manager examines the current semantic state
of the dialogue, represented by the semantic frame created
by NL. The Turn Manager checks the information con-
tained in the semantic frame to determine which data ele-
ments of a request are present, which are missing, and
whether the information is consistent with domain knowl-
edge. If the semantic frame contains insufficient or incon-
sistent information, a request for clarifying information is
generated and sent back to the NLserver in the form of a
semantic frame.

One of the Turn Manager's greatest strengths is its sup-
port of mixed-initiative dialogue. That is, while the Turn
Manager requests information in a predictable order, it is
able to accept information from the user that it has not yet
requested. For example, if the system asks the user, “Where
should the shipment be delivered?” and the user replies
“Deliver by noon to Checkpoint Charlie,” the Turn
Manager recognizes that both a location and a time have
been given. It will, therefore, not ask for a time, which
might otherwise have been requested later.

When the request by the user is sufficiently complete, the
second responsibility of the Turn Manager comes into play.
The Turn Manager distributes tasks to agents to gather
and/or disseminate information to and from data sources.
For example, this might mean making an SQLquery to a
database. When an agent returns information, the Turn
Manager accepts it and translates it into a semantic frame.
This semantic frame is passed back to the NLserver and
will be used to generate a response.

Extendible Mobile Agent Ar chitecture System
LCS - Marine’s information discovery and dissemination is
accomplished using the Extendible Mobile Agent
Architecture (EMAA) (Lentini, et. al. 1998) (Hofmann,
McGovern, and Whitebread 1998). This agent architecture
is used to integrate the LCS - Marine system with logistical
databases, whether Lotus Notes, Oracle, or another dbms.

The agent architecture is a framework on which to build
autonomous, intelligent, mobile agent systems. It defines
an object-oriented interface for programming agent sys-
tems. It follows the principles of component-oriented and
reusable object-oriented software. The agent architecture
provides a mobile agent platform that gives an application
the ability to dynamically create asynchronous mobile soft-
ware agents. These agents can migrate among computing
nodes in a network and can exploit resources at those
nodes.

Figure 3. Extendible Mobile Agent Ar chitecture

The agent architecture has three major components: the
agents, servers, and the dock. At the most basic level, the
agents perform the specialized, user-defined work (i.e.,
tasks). Agents travel through the system of computing
nodes via the docks. The dock serves as a daemon to send
and receive agents between docks at other nodes. Nodes
that offer specialized services to agents do so via servers
that provide packaged components. The relationship of the
agents, servers, and docks is shown in Figure 3.

Agents. Mobile agents carry and execute tasks at different
nodes. The goal of the agent is to complete all of its tasks.
Since the agent is mobile, one must consider both the task
and where that task is performed when creating the agent
itinerary. EMAA supports mapping tasks to nodes; the set
of these task/node pairs is defined as the itinerary of the
agent.

EMAA Agent itineraries are Finite State Machines.
Agents constructed using this model can exhibit complex
behavior while maintaining the ability to execute itinerary
subgoals.

Mobile agents can be tasked with database actions (i.e.,
query, submit, monitor, modify). They migrate to the dbms
machine and execute the database actions and return with
the results. The mobile agents gain access to the database
using the Java Database Connection Standard (JDBC). A

server component is run at the node that provides the func-
tionality to make the JDBC connection. The agent accesses
the server when it arrives at the node to obtain the func-
tionality to establish the database connection. Once a con-
nection is established, interaction to the database is done
using standard SQLcommands.

Servers. The agents rely on servers at each node to provide
the underlying mechanism to interface with resources; they
do not carry programs, merely well defined tasks. It is ben-
eficial to package the code needed to access resources into
separate components known as servers. Servers provide a
repository of common functionality and processes that an
agent may access at a given node. The agent architecture
provides the following features with its resource servers.
First, they are code repositories: migrating agents carry as
little code as possible, thus conserving bandwidth. Second,
the servers provide common APIs for the code or logic
needed to exploit the resources at a node that keeps the
agent machine-independent. Third, because of the compo-
nent design of servers, the implementation of node-specif-
ic resources is separate from the implementation of the
agent application.

Dock. The dock is the operating environment for agents
and servers. The dock consists of four components: com-
munication server, agent manager, server manager, and
event manager.

A communications server is the daemon process itself
and it handles all connections to any other computing
nodes. It manages the transmission of agents to and from
the local node.

An agent manager registers the agent and initializes it for
execution. It is used in agent collaboration and agent vali-
dation for security reasons.

A server manager handles the server components at a
node and provides a control mechanism to start and stop a
service.

An event manager “listens” for component events. An
event is an announcement that some component in the sys-
tem has reached an important state, which may be of inter-
est to other components. Often it is unknown if and when a
component will generate an event. For this reason, agents
and servers dependent on events must have an event man-
ager “listen” for an event.

How Agents Ar e Used in LCS - Marine. The LCS -
Marine system uses the agent architecture to interact with
the Marines' logistical dbms. Mobile agents make ordi-
nance (Class V) and subsistence (Class I) requests such as
for water, 5.56 rounds, or flares. When making a request,
agents are created with request criteria, (e.g., the amount of
a particular type of supply to order, delivery location, etc.).
If necessary, an agent will first make sure that the request
criteria satisfy all dynamic request constraints. Values for
these constraints are stored external to the agent system and
need to be accessed for validity checking.

When a unit places a request for the water, the agent
retrieves the allowable limit from the unit information and
checks to see if the requested amount is allowable. If so,

Network Node Network Node

Local Resource

Servers

Agents

Events

Servers

Agents

Agents

D
o
c
k

D
o
c
k

Local Resource Local Resource

Events

then the agent migrates to the logistical database, connects
with the database, and executes the request.

Logistical Database (dbms)
LCS - Marine's focus has been on simplifying the logistics
process by gathering and disseminating information in a
more effective and timely manner. If data can be inserted
into and obtained from a database quickly and efficiently, it
can effectively provide the information needed to make
knowledgeable decisions for appropriate actions.

LCS - Marine uses an Oracle-based logistical database
provided by the 1st Marine Expeditionary Force (MEF) for
research, development, testing, and prototyping potential
spoken user interactions with logistical data sources. The
database supports logging, processing, and monitoring
logistics requests. It incorporates a number of logistical
systems including the Rapid Request Tracking System,
Command Information System, and various administrative
tools. The front end to these systems is a web-based inter-
face using Cold Fusion to dynamically update the web
pages. These systems support both the tactical community
ordering supplies through the logistical database, and the
watch officers in the rear monitoring the incoming requests
and outgoing shipments of supplies.

By using a subset of the 1st MEF's database, which con-
tains “real” logistic data gathered during one of their train-
ing exercises (data is spread across 121 tables), LCS -
Marine can approximate the interaction that users have
with the system.

Communications System
To benefit Marines in the field, the LCS system has been
made more portable. The system's basic architecture was
reduced to lightweight equipment (PC laptops) without a
loss in functionality. Hand-held computing devices have
been added and the microphone replaced with an ear/
microphone headset. Increased mobility and accessibility
were added via wireless access.

Testing
To measure the effectiveness of the LCS paradigm under
operational conditions—real users placing real requests,
accessing a live dbms, and using existing communications
links—we slated four Integrated Feasibility Demonstra-
tions (IFDs) over a twelve-month period. The first was held
in September of 1999, the second in December, and the
third is projected for April 2000, with the final one to be in
July 2000. The IFDs range from scripted dialogue, repli-
cated databases, and testing in the lab with prior military
personnel, to active duty Marines using the system opera-
tionally over a series of days as their sole means of interac-
tion with the logistics system for rapid requests.

The first IFD used five former military personnel as test
subjects, although none were a Marine and none had used
the Rapid Request form. All were familiar with radio oper-
ations and the military alphabet. All were native English

speakers. Four were male and one was female. Each person
attempted to accomplish three tasks: input a simple request,
check on the status of the request, and make a modification
to an existing request.

The second IFD took place concurrent with the Marine
exercise Desert Knight. In this IFD, ten active-duty
Marines attempted five tasks: the prior three plus a more
complex request and canceling of an order. Nine of the sub-
jects had used radio communications before, but only one
had used the Rapid Request form before.

In a strenuous test of the speaker independence portion
of the system, the users represented a diverse set of demo-
graphics: three of the subjects came from the Western US,
two from the Southern US, one from the Mid-Atlantic
Coast, one from the Midwestern US, one from Algeria, one
from Mexico, and one from Burma. Seven subjects were
male; three were female.

The third IFD is to take place in April 2000 concurrent
with a Marine combined arms exercise and the fourth IFD
will follow in July. The third IFD will allow greater flexi-
bility in the dialogue and will integrate the LCS - Marine
system into the existing logistics system: agents will be
accessing the live dbms, rather than a replica. For the fourth
IFD the system will be operational for a longer period of
time and from a variety of locations.

At the conclusion of the IFDs we will review progress
and evaluate the system’s robustness. Depending on the
outcome, LCS - Marine could be either directly integrat-
ed into CSSOC operations or development could contin-
ue with further testing in preparation for a future integra-
tion.

Results
There are a variety of metrics that can be used to measure
an SLS. Among these are measures for task completion,
accuracy, and user satisfaction. For the IFDs we prepared
and revised a user satisfaction survey and instrumented the
system to collect a variety of pieces of data. We also made
manual annotations within the conversation log files to col-
lect additional metrics.

We reported task complexity, task completion rate, sys-
tem understanding, and user satisfaction across the set of
three or five tasks. We also attempted to pinpoint errors
down to a specific component(s) of the system, although
we do not discuss specific results here.

We computed task complexity as the number of infor-
mation items that the system needed to understand before it
could task an agent. For example, stating: “Item delta M R
E three hundred,” represents three information items, spec-
ifying the line in the form, the type of supply, and the quan-
tity. Table 1 gives a breakdown by task.

In IFD-1 an overall task completion rate for all tasks was
60%, which improved to 89% in IFD-2 for these same three
tasks. For the set of five tasks in IFD-2, the average task
completion rate was 82%. (The data from one subject was
not included in the final results because of the difficulty of
other humans in understanding this person.)

Task Items Turns Time Completion
(Min) Rate

Simple request 11 21.0 7.0 78%
Complex request 22 27.0 16.6 44%
Status check 4 6.0 2.8 100%
Change request 6 11.5 4.1 89%
Cancel request 4 8.0 3.3 100%

Table 1. IFD-2 results.

For system understanding, we measured the number of
“turns” to complete each task. We considered a turn to be a
complete cycle, including both a user input and a system
response.

For both completed IFDs, we measured user satisfaction
after the completion of the entire test session. In the future,
we may measure user satisfaction after the testing of each
task, rather than at the end of the session. Because there is
currently no standard for measuring user satisfaction of dia-
logue systems, we are still adapting our survey to attempt
to glean the most information. Unfortunately, in retrospect,
the changes we made to the survey between IFD-1 and
IFD-2 were likely to have hurt our results. (For example,
there were several questions where a negative response
would have been the best response, and, if these questions
were not closely read, the user could easily misinterpret the
question.) For IFD-1, overall user satisfaction was at 1.85
on a 1 to 5 scale where 1 was best. For IFD-2, overall user
satisfaction was at 6.4 on a 1 to 10 scale where 10 was best.

It is important to note that the amount of time spent train-
ing personnel to use the LCS - Marine system is generally
less than 10 minutes. After a short introduction, the user is
shown a sample dialogue for familiarization. The user is
also given information about meta-instructions, such as
how to start over or clear their previous statement, before
they begin the tasks.

Conclusion
We have built a system that integrates an SLS with a
mobile, intelligent agent system that allows users to place

and access data requests via a conversational interface. The
system is speaker independent and requires little training.
The time to accomplish a task is significantly lower than
the old, manual input method, but can still be improved.
Being able to rapidly access, insert, modify, and delete data
gives the users greater confidence in the supply system and
allows commanders to generate operations plans that are
less likely to be subject to supply shortfalls.

Acknowledgements
Thanks to members of the LCS - Marine team: Josh Brody,
Phil Crawford, Jerry Franke, Michael Frew, Steve Knott,
Lizz McCormick, Jose Rivera, and Kathy Stibler.

This research was supported by DARPA contract
N66001-98-D-8507 and Naval contract N47406-99-C-
7033.

References
Glass, J., and Hazen, T.J. 1998. Telephone-Based Conver-
sational Speech Recognition in the Jupiter Domain. In
Proceedings of ICSLP‘98. Sydney, Australia.

Hofmann, M.O., McGovern, A., and Whitebread, K.R.
1998. Mobile Agents on the Digital Battlefield, in
Proceedings of the 2nd International Conference on
Autonomous Agents (Agents '98). Minneapolis/St. Paul.

Lentini, R., Rao, G., Thies, J., and Kay, J. 1998. EMAA: An
Extendable Mobile Agent Architecture. In Proceedings for
the Software Tools for Developing Agents Workshop at the
15th National Conference on Artificial Intelligence (AAAI
‘98). Madison, Wisconsin.

Seneff, S., Lau, R., and Polifroni, J. 1999. Organization,
Communication, and Control in the GALAXY-II
Conversational System. In Proceedings for Eurospeech
‘98. Budapest, Hungary.

