A Spoken Language Interface for Tasking Agents

Jody J. Daniels

Lockheed Martin

Advanced Technology Laboratories

1 Federal Street

Camden, NJ 08102 USA

jdaniels@atl.lmco.com
Susan McGrath
Lockheed Martin

Advanced Technology Laboratories

1 Federal Street

Camden, NJ 08102 USA

smcgrath@atl.lmco.com

Abstract

The Listen Communicate Show (LCS) - Marine system enables Marines to issue and monitor verbal logistics domain requests using a computer and a microphone headset or cellular phone. The LCS - Marine server accepts the verbal supply request and, if necessary, automatically enters into a dialogue with the user to elicit sufficient information to place a valid logistics domain request. Once a valid request is obtained, the request is given to a mobile agent to be satisfied. The agent is launched to access authorized data sources to check information and/or execute the request by entering it into a logistics database. The results obtained by the mobile agent are provided to the user, either through a visual display or audio output.

1. Introduction
Providing Marines in the field with the logistical support they need, when they need it, is the current focus of the LCS - Marine project. In an LCS system, the computer listens for information requests, communicates with the user and networked information resources to compute user-centered solutions, and shows tailored visualizations to individual warfighters.

Marines work in a dynamic, fast-paced environment where requirements and priorities are constantly subject to change. Access to logistics data and rapid response to requests are critical to mission execution. In the current fielded system, a Marine must enter a request via key-board, and it can take up to 72 hours before a Combat Service Support Operations Center (CSSOC) can confirm with a requesting unit that their order has been successfully placed in the logistics system. This delay is primarily due to the manual method of validating and entering requests into the logistics system. This response time is unaccept-able for most requests, as it prevents Marines from receiv-ing supplies when needed, threatening mission success.

[image: image4.png][image: image5.png]Lockheed Martin Advanced Technology Laboratories (ATL) is investigating ways to optimize request process-ing. Our goal is to reduce this 72-hour response time ten-
fold, so that requesting units receive request confirmation in less than 7.2 minutes.

The system constructed to meet this goal integrates a spoken language understanding system (SLS) (for communicating with the users) with mobile intelligent agents for information access. The agents access the Marine databases by traveling over existing tactical communications networks. The result is a "conversational" relationship between the Marine and the intelligent agent. A brief and efficient conversation between the user and the SLS reduces or eliminates many potential pitfalls in processing a request. For example, the system can observe that the user has requested a supply quantity that exceeds the permitted capacity of the requesting unit and can attempt to directly resolve the problem with the user.

The spoken language interface can also assist the user in modifying, deleting, or checking on a request. The user can also establish monitor agents that will track the request and will send notification agents back to the user to report either status updates or observations that the request isn't being given the attention the user needs.

2. Overview of the LCS - Marine System

The LCS - Marine system consists of four major components: the SLS, agents for information access, operational databases, and communications networks to connect the user to the SLS and the agents to the databases. Figure 1 shows this configuration. Operation-ally, the Marine speaks into a microphone attached to a hand-held device. The recognition process begins on the hand-held device and a compressed version of the speech is sent over a wireless communications link (either Aironet or Wavelan) to the main portion of the SLS, which resides a short distance away. The other SLS components com-plete the recognition process, parse the n-best possibilities, create a semantic representation, add historical context from the ongoing human-machine interchange, and decide what step to take next. The next step may be a prompt for the user to provide additional information, a request for clarification, or the launch of an agent to an information source to process a completed user request (over a

[image: image6.png][image: image1.wmf]DB

CSSOC

V

I

Intermediate Station

Aironet

SINCGARS

(agents)

(compressed

speech)

(SLS)

Figure 1. LCS-Marine Communications System Architecture

SINCGARS data link). After processing the request at the database, the agent returns to the SLS and confirms placing the request (the request may also be a modification or deletion). The SLS then generates a response for the user, which may be both auditory and visual in nature. The SLS transforms the response from a semantic frame into natural language text, which is then synthesized into speech on the hand-held device.

In the following sections we describe the individual system components: SLS, agent system, and databases.

3. Spoken Language Understanding System (SLS)

The SLS uses the MIT Galaxy II architecture customized by ATL with the domain application and specialized servers [1]. The Galaxy II architecture was selected because of its speaker independent and mixed-initiative capabilities. Both are important features for applications like LCS - Marine where many users may need to interact with the fielded system. Galaxy II is a distributed, component-based architecture. Specialized servers handle specific tasks, such as translating audio data to text. All Galaxy II-compliant servers communicate with each other through a central server known as the Hub. The Hub manages flow control, handles traffic among distributed servers, and provides state maintenance.

Figure 2 shows the various components of the SLS. Speech is moved from the Audio I/O component to the Recognizer component of the SLS via the Hub. Speech is translated and processed using the Natural Language (NL) and Turn Manager servers for validation. NL consists of three servers: frame construction, context tracking, and language generation. Mobile agents provide information access. Responses are generated as text and sent back to the Synthesis server. Synthesis generates the verbal response for the Audio I/O component to speak to the user.

3.1 Audio I/O
The Audio I/O component consists of the Audio Server (Playbox) and Synthesis servers. The Playbox uses SAPI audio objects and enables LCS - Marine to capture and

[image: image2.wmf]Audio

Server

Audio

Server

Speech

Recognition

Speech

Recognition

Frame

Construction

Frame

Construction

Context

Tracking

Context

Tracking

Application

Back-End

Application

Back-End

Turn

Management

Turn

Management

Language

Generation

Language

Generation

Synthesis

Synthesis

HUB

Figure 2. Spoken Language System Architecture

play back speech. The Playbox captures speech at 16 kHz and sends it as an audio waveform file to the Recognizer.

The initial steps of the Recognizer (spectral compression) were added to the audio capture modules to reduce the amount of bandwidth needed to move the waveform file, allowing support of low-bandwidth communications such as tactical and cellular.

The Audio I/O component also creates voice-synthesized replies to the user. The Synthesis component converts text passed from the NL server into an audio waveform file. This waveform file is then passed directly to the Playbox for audio generation. This Response speech completes the user-machine dialogue loop.

3.2 Recognizer

The Recognizer is the server responsible for speech recognition. Audio waveform data is analyzed for com-ponent sounds and examined with respect to models of known combinations of sounds. Candidate results are selected using an n-best algorithm.

The n-best algorithm produces a list of the n most likely possible utterances produced that map to the waveforms being examined. Three conceptual models are used in this process. The acoustic model maps sounds to phones—the base unit of pronunciation. The pronunciation model maps groups of phones to words, while the language model groups words into sequences.

The LCS - Marine acoustic model is derived from data collected by the Spoken Language Systems Group at MIT for a different speech application [2]. The data comes from narrowband telephone speech and contains 24,000 sam-ples. LCS - Marine has adapted and expanded upon this data as the vocabulary and the operational environment continues to evolve.

The LCS - Marine Recognizer combines the pronunciation and language models into one process—a class bigram model. This model is constructed and trained using a pro-nunciation lexicon of vocabulary words, a collection of word classifications, and a training set of common senten-ces and phrases. Classification rules assist the language model by identifying groups of words that could appear in similar locations within an utterance. A large set of textual sentences, phrases, and other types of responses provide order information to the Recognizer and are used to gener-ate the relative probabilities found in the language model.

3.3 Natural Language (NL)

The NL server handles text parsing and generation. LCS - Marine uses a semantic frame to represent knowledge and the user's meaning. This knowledge representation is initially built by NL. NL parses text, both syntactically and semantically, to create a semantic representation (the semantic frame) to pass to the Turn Manager.

NL also takes semantic frames representing replies from the system back to the user and transforms the frame into text to pass on to the speech-generation facilities of the Audio I/O component.

NL first syntactically parses the possible sequences in the word graph provided by the Recognizer. It uses a grammar specific to the application domain. The most likely pars-able word sequence from the Recognizer is converted into a syntax tree for further manipulation.

Another domain-specific grammar maps the resulting syntax tree into a semantic tree. The semantic tree is an intermediate step in which meanings are mapped onto salient parts of the syntax tree, which is then ready to be rearranged into a semantic frame.

Using a third set of rules, NL constructs a semantic frame from the semantic tree. While both the semantic tree and the semantic frame represent the meaning of an utterance, the structure of the semantic tree reflects the form of the utterance, while the semantic frame reflects the form of the ideas expressed within that utterance.

Information from previously constructed frames, which represents the history of the discourse, may be used to augment the current frame through a collection of rules. The final semantic frame incorporates this historical context and represents the current semantic state of the dialogue. The frame is then passed to the Turn Manager.

Once the Turn Manager has completed its processing and has created a reply to speak to the user, NL again takes action. NL translates turn management output, also a semantic frame, into NL text. This is accomplished by selecting the appropriate text templates from a catalog of templates and filling in the blanks with information from fields within the semantic frame. The text generated by NL is then passed through the Hub to the Synthesis component.

3.4 Turn Manager

The Turn Manager manages dialogue with the user and interfaces with the agent system. The logic contained in the Turn Manager governs the order of clarifying questions from the system back to the user and triggers agent creation and tasking. This turn management stage reflects the system's end of the dialogue with the user.

The Turn Manager determines the current semantic state of the dialogue. It checks the information contained in the semantic frame to determine which data elements of a request are present, which are missing, and whether the information is consistent with domain knowledge. If the semantic frame contains insufficient or inconsistent infor-mation, a request for clarifying information is generated. The request is sent back to the NL server in the form of a semantic frame.

One of the Turn Manager's greatest strengths is its support of mixed-initiative dialogue. That is, while the Turn Manager requests information in a predictable order, it is able to accept information from the user that it has not yet requested. For example, if the system asks the user, “Where should the shipment be delivered?” and the user replies “Deliver by noon to Checkpoint Charlie,” the Turn Manager recognizes that both a location and a time have been given. Therefore, it will not ask for a time, which might otherwise have been requested later.

If the user request is sufficiently complete, the second responsibility of the Turn Manager comes into play. The Turn Manager distributes tasks to agents to gather and/or disseminate information to and from data sources. For example, this might mean making a Structured Query Language (SQL) query to a database. When an agent returns information, the Turn Manager accepts it and translates it into a semantic frame. This semantic frame is passed back to the NL server.

4. Mobile Agent Architecture

Information discovery and dissemination in LCS - Marine is enabled by the ATL-developed Extendible Mobile Agent Architecture (EMAA) [3, 4]. This agent architecture is used to integrate the LCS - Marine system with the logistical database, whether Lotus Notes, Oracle, or another database management system (DBMS).

The agent architecture is a framework for development of autonomous, intelligent, mobile agent systems. EMAA features an object-oriented interface for programming agent systems. The agent architecture provides a mobile-agent platform that gives an application the ability to dynamically create asynchronous mobile software agents. These agents can migrate among computing nodes in a network and can exploit resources at those nodes.

The EMAA agent architecture has three major components: agents, servers, and docks. At the most basic level, the agents perform the specialized, user-defined work (i.e., tasks). Agents travel through the system of computing nodes via the docks. The dock serves as a daemon process to send and receive agents among docks at other nodes. Nodes that offer specialized local resources to agents must do so via servers that provide packaged components. Events related to agent activity and application control are also mobile objects capable of migrating from node to node. Figure 3 shows the relationship of the agents, servers, and docks.

[image: image3.wmf]Network Node

Network Node

Local Resource

Local Resource

Servers

Agents

Events

Servers

Agents

Events

Agents

Local Resource

Figure 3. ATL’s Extendible Mobile Agent Architecture

4.1 Agents

Mobile agents carry data and execute tasks at different nodes. The goal of the agent is to complete all of the tasks in its itinerary. Because the agent is mobile, one must consider both the task and the location where the task is performed when creating the agent itinerary. The EMAA agent architecture supports mapping of a task to a node. Some EMAA agent itineraries borrow ideas from a fundamental computing model called the Finite State Machine [5]. Agents constructed using this model can exhibit complex behavior while maintaining the ability to execute itinerary subgoals. By splitting the agent’s overall goal into subgoals, parallel execution, reconfigurability, and code reuse are promoted.

Mobile agents can be tasked with database actions (i.e., query, submit, monitor, modify) in the LCS – Marine system. They migrate to the database machine and execute the database actions and return with the results.

4.2 Servers

EMAA agents rely on servers at each node to provide the underlying mechanism to interface with resources. It is beneficial to package the code needed to access resources into separate components known as servers. Servers provide a repository of common functionality and processes that an agent may access at a given node. Servers provide three main benefits. First, they are code repositories: migrating agents carry as little code as possible, thus conserving bandwidth. Second, the servers provide common Application Program Interfaces for the code or logic needed to exploit the resources at a node that keeps the agent machine-independent. Third, because of the component design of servers, the implementation of node-specific resources is separate from the implementa-tion of the agent application.

4.3 Dock

The dock is the operating environment for agents and servers. The EMAA dock consists of four components: communication server, agent manager, server manager, and event manager.

A communications server is the daemon process that handles all connections to other computing nodes. It manages the transmission of agents to and from the local node. The communication server's component design provides a controlled mechanism for sending and receiving agents and allows for optimization of network use in the presence of autonomous components.

An agent manager registers the agent and initializes it for execution. It is used in agent collaboration and agent validation for security reasons.

A server manager handles the server components at a node, and provides a control mechanism to start and stop a service. The server manager is a good place to incorporate an advanced control mechanism as an economic model.

An event manager “listens” for component events. An event is an announcement that some component in the system has reached an important state, which may be of interest to other components.

4.4 How Agents Are Used in LCS – Marine

The LCS - Marine system uses the agent architecture to interact with the Marines' logistical DBMS. Mobile agents make ammunition (Class V) and subsistence (Class I) requests such as water, 5.56 rounds, or flares. When making a request, agents are created with request criteria, (e.g., the amount of a particular type of supply to order, delivery location, etc.). If necessary, an agent will first ensure that the request criteria satisfies all dynamic request constraints. Dynamic request constraints are those that can change without affecting the agent's task (e.g., the maximum number of gallons of water a unit may order will not affect the agent's itinerary, but may increase or decrease based on the equipment assigned for holding water). Values for these constraints are stored external to the agent system and need to be accessed for validity checking.

When the unit places a request for the water, the agent will retrieve the allowable limit from the unit information and check to see if the requested amount is allowable. If so, then the agent migrates to the logistical database, connects with the database, and executes the request.

The various LCS - Marine request activities are to submit, obtain information, monitor, modify, delete, and inspect. An example of a submit request is “third platoon needs four tows.'' If the request is specifically for information, the agent system will query the database and return that information, such as “How much M-16 ammo is left?'' A request to monitor the status of a particular element or the status of a particular request is done using comparison criteria, and the agent returns a notification to the user. Examples are notification when there is a change in the status of a particular request, or when a request reaches a certain status (i.e., completed). “Change third platoon's M-16 request from pending to approved” is a sample modify request and “Delete my smoke order” a sample delete request. A request to “Get me all open ammo requests for second platoon” is an example of an inspect request.

5. Logistical Database

LCS - Marine's focus has been on simplifying the logistics process by gathering and disseminating information in a more effective and timely manner. If data can be inserted into and obtained from a database quickly and efficiently, it can effectively provide the information needed to make knowledgeable decisions for appropriate actions.

LCS - Marine uses an Oracle-based logistical database provided by the 1st Marine Expeditionary Force (MEF) for research, development, testing, and prototyping potential spoken user interactions with logistical data sources. The database supports logging, processing, and monitoring logistics requests. It incorporates a number of logistical systems including the Rapid Request Tracking System, Command Information System, and various administrative tools. The front end to these systems is a web-based interface that uses Cold Fusion to dynamically update the web pages. These systems support both the tactical community ordering supplies through the logistical database and the watch officers in the rear monitoring the incoming requests and outgoing shipments of supplies.

6. Performance

The LCS – Marine system is being tested through a series of experiments and user studies in laboratory and field settings. The system has been tested in conjunction with

the Desert Knight exercise in December 1999 and Combined Arms Exercise (CAX) 6 in April/May 2000. Thus far, the users have responded favorably to interacting with the system. The average time for submitting a new request was approximately seven minutes, with more complex requests taking closer to seventeen minutes. The system is projected to be tested once again during Millennium Dragon in September 2000 and again during Desert Knight in December 2000 where we hope to further decrease the conversation times.

Summary

The Listen, Communication, Show methodology intro-duces a new paradigm to Marine Corps logistics operations and facilitates the user’s ability to interact with relevant data. Being able to rapidly access, insert, modify, and delete data gives the Marines newfound visibility into their logistics process. Rather than waiting 72 hours for request confirmation, the user can now have that knowledge within minutes. Additionally, rather than having to rely on a limited number of personnel with access to information via a keyboard, the Marines gain the ability to track their requests by conducting a natural conversation and have mobile agents perform the necessary research on their behalf.

Bibliography

[1] S. Seneff, R. Lau and J. Polifroni, "Organization, Communication, and Control in the GALAXY-II Conver-sational System," proceedings of Eurospeech 98, Budapest, Hungary, September 1999.

[2] J. Glass and T.J. Hazen, "Telephone-Based Conversa-tional Speech Recognition in the Jupiter Domain,” proceedings of ICSLP 98, Sydney, Australia, November 1998.

[3] R. Lentini, G. Rao, J. Thies, J. Kay, “EMAA, An Extendable Mobile Agent Architecture,” proceedings of Software Tools For Developing Agents Workshop at the 15th National Conference on Artificial Intelligence (AAAI 98), Madison, Wisconsin, Technical Report WS-98-10.

[4] M.O. Hofmann, A. McGovern, K.R. Whitebread, "Mobile Agents on the Digital Battlefield,” proceedings of the Second International Conference on Autonomous Agents (Agents '98), Minneapolis, St. Paul, May 9-13, 1998, pp. 219-225.

[5] R. Lentini., G. Rao, J. Thies, “Agent Itineraries: An Alternative Data Structure For Agent Systems,” Dr. Dobbs Journal, 24(5). (1999) 60-70.

*This research was supported by DARPA contracts N66001-98-D-8507 and N68786-98-C-29345.

� EMBED Word.Picture.8 ���

PAGE

_1021361622.doc
[image: image1.png]

