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Abstract—We introduce a method for identifying short-
duration reusable motor behaviors, which we call early-life
options, that allow robots to perform well even in the very
early stages of their lives. This is important when agents need
to operate in environments where the use of poor-performing
policies (such as the random policies with which they are
typically initialized) may be catastrophic. Our method augments
the original action set of the agent with specially-constructed
behaviors that maximize performance over a possibly infinite
family of related motor tasks. These are akin to primitive reflexes
in infant mammals—agents born with our early-life options,
even if acting randomly, are capable of producing rudimentary
behaviors comparable to those acquired by agents that actively
optimize a policy for hundreds of thousands of steps. We also
introduce three metrics for identifying useful early-life options
and show that they result in behaviors that maximize both the
option’s expected return while minimizing the risk that executing
the option will result in extremely poor performance. We evaluate
our technique on three simulated robots tasked with learning to
walk under different battery consumption constraints and show
that even random policies over early-life options are already
sufficient to allow for the agent to perform similarly to agents
trained for hundreds of thousands of steps.

Index Terms—Machine Learning methods for robot develop-
ment; Development of skills in biological systems and robots

I. INTRODUCTION

Using Reinforcement Learning (RL) algorithms to solve
high-dimensional control problems may require a number of
samples that is prohibitively large. Solving Atari games, for in-
stance, often requires an agent to interact with its environment
for hundreds of millions of timesteps. This is in sharp contrast
with the level of performance achieved by humans and other
animals when interacting with new tasks. One of the reasons
why RL algorithms cannot yet achieve these performance
levels is that they solve each new problem fabula rasa, while
humans come in with a multitude of prior knowledge—either
innate or acquired throughout their lifetimes.

Developmental psychologists have studied the prior knowl-
edge that humans often use when interacting with their envi-
ronments, both in terms of visual biases [1] and in terms of
developmental processes for acquiring reusable motor skills
such as reaching or grasping [2]. From a computational per-
spective, previous works have investigated the different ways
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in which the performance of RL agents is hurt due to the lack
prior knowledge—e.g., lack of innate visual biases and biases
towards exploring objects [3], [4]. In the RL community, a
common way of equipping agents with motor priors for ac-
celerating learning is through the use of options, or temporally-
extended actions [5]. Options are reusable behaviors defined
in terms of primitive actions or other options. One of the
motivating principles underlying this idea is that subproblems
recur, so that options can be reused when solving a variety of
related tasks throughout an agent’s lifetime.

Most of the existing state-of-the-art methods for learning
options focus on identifying (during an agent’s lifetime) useful
recurring behaviors that help it to acquire optimal policies
more rapidly. Popular approaches include the creation of
options for reaching states deemed to be important, such
as subgoals [6], [7]. Other techniques directly optimize the
parameters of an option’s policy so that the agent can more
efficiently solve novel tasks [8], [9]. In this work, by con-
trast, we do not wish to identify options that help an agent
to perform well throughout its entire lifetime. We, instead,
want to identify options that allow robots to perform well
in the very early stages of their lives. This is important
whenever agents may need to operate in environments where
the use of poor-performing policies (such as the random
policies with which they are typically initialized) may be
catastrophic. We call these behaviors early-life options and
consider them to be similar to primitive reflexes—such as
the sucking reflex or the Moro reflex—in infant mammals.
The Moro reflex [10] is a particularly relevant example to
the setting we tackle: it is present at birth and causes an
infant’s legs and head to extend, while the arms jerk up,
whenever the infant experiences sudden shifts in its head
position. In human evolutionary history, this reflex may have
helped infants to hold on to their mothers while being carried
around. Importantly, this reflex is useful only in the very early
stages of an infant’s life and disappears after about six months.

We introduce a method for identifying short-duration
reusable early-life options that allow robots to perform well
in the very early stages of their lives. Our method augments
the original action set of the agent with specially-constructed
options akin to primitive reflexes in mammals, so that agents
equipped with them are capable of achieving high performance
on a possibly infinite family of related motor tasks—i.e.,
they are reusable across many tasks. We propose an offline



optimization process for generating, evaluating, and selecting
candidate options that maximize specially-constructed perfor-
mance metrics. We propose three metrics for evaluating the
usefulness of candidate options and show that they identify
behaviors that maximize both the expected return of an option
while also minimizing the risk that executing it will result
in extremely poor performance. We evaluate our technique
on three simulated robots tasked with learning to walk under
different battery consumption constraints and show that even
random policies over early-life options are already sufficient
to allow for the agent to perform similarly to agents that are
trained for hundreds of thousands of steps.

II. BACKGROUND

We consider a Reinforcement Learning (RL) agent interact-
ing with its environment and model this problem as a Markov
Decision Process (MDP). An MDP M is a tuple (S, A, r, p,7),
where S is a set of states, A is a set of actions, r : Sx A — R
is a function returning scalar rewards for executing action a
in state s, p is a transition function specifying the probability
p(s’|s, a) of transitioning to s’ after taking action « in state s,
and 7y € [0,1) is a discount factor. A policy 7 : S x A — [0, 1]
is a map specifying the probability Pr(a|s) of selecting action
a when in state s. The goal of an RL agent is to learn a
policy that accumulates as much reward as possible. Let the
reward received at time ¢ be the random variable R; and the
cumulative reward (or return) from time ¢ be the random
variable G; = ZiTzfol v*Ry4i, where T is a time horizon.
A value function v,(s) is defined as the expected returned
achieved when following policy m and starting in state s:
vr(8) = E[G¢|S; = s]. Solving an MDP M consists of finding
a policy 7* that maximizes the agent’s expected return.

We introduce a method for identifying reusable behaviors
that help a robot to perform well in the early stages of its
life. As previously discussed, a standard way of represent-
ing such behaviors is via the Options framework [5]. This
framework describes a set of formalisms for learning using
temporally-extended actions (or options), which are reusable
policies defined in terms of primitive actions or other options.
One of the motivating principles underlying this idea is that
subproblems recur, so that options can be reused in a variety of
tasks. An option o consists of three components: (/) a policy
7o(s,a) describing the probability of taking action a while
executing option o in state s; (2) an initiation set I, specifying
the states s € S in which the option can be initiated; and (3) a
termination condition (3,(s) specifying the probability of the
option terminating at a state s. To keep our formalism simple
we assume that options can be initiated from any state (i.e.,
I, = S) and that they last a short pre-defined number T of
timesteps so that its termination condition 3, = 1 iff the option
has been executed for 7' steps. This latter decision is justified
by the observation that while learning with longer options may
be more efficient, if an option set is not guaranteed to be ideal
for a task (e.g., it does not allow for optimal policies to be
represented exactly), then shorter options are more flexible and
may result in better solutions [11]. Due to these assumptions,

we henceforth refer to an option o simply by its policy 7, and
leave its other components implicit.

III. SETTING

We assume an RL agent that needs to solve not a single
problem (task), but that may be presented with a sequence of
tasks drawn from some task distribution. This is the setting
typically tackled by methods dealing with learning options
in multi-task problems [12]-[14]. Each task is modeled as
an MDP, and we assume that the MDPs have dynamics and
reward functions similar enough so that they can be considered
variations of the same task. In Section V we expand on
this point and introduce an infinite family of related MDPs
corresponding to motor problems where robots need to learn
to walk efficiently while operating under different power
consumption constraints. Let ¥ be the set of possible tasks
that an agent may need to solve. Each element of this space is
an MDP which we assume can be compactly described by a
vector 7 of parameters. Learning to grasp a particular object,
for instance, is a task that may be compactly characterized by
parameters specifying the object’s shape and weight. Assume,
furthermore, that problems in ¥ occur in an agent’s lifetime
with probabilities given by some distribution P.

Similarly to how we defined the value v,(s) of a state s,
let us define the value vg, p(7) of a policy m when evaluated
over a distribution P of tasks and by considering the possible
initial states from which it may be deployed—where initial
states are drawn from a distribution dg:

vy P () = / P(r) S do(s)va(s, r)dr, (1)

seS

where v, (s,7) is defined similarly to v,(s) but makes it
explicit that the policy is being evaluated in a particular task 7.
We omit the dependence on dy and P to simplify the notation
and refer to the performance of a policy over a distribution of
tasks and initial states simply as v(7). Importantly, note that
v(m) is an expected value. In this paper, however, we will be
concerned not only with optimizing the expected performance
(return) of a policy or option, but with optimizing more so-
phisticated properties of its distribution of its possible returns.
Let a context C' = (7,s9) be a random variable denoting a
tuple containing a task 7 drawn from P and an initial state sg
drawn from dj. Let V() be the random variable denoting the
possible returns obtained by executing 7 in a random context;
it should be clear, then, that v(w) = Ey, p[V(7)]. In the
next sections we will evaluate not only single options, but
sets of options. We abuse notation and extend the definition
of the value of an option, V(7,), to the value of a set of
options, V(7,,, ..., 7o, ). This is a random variable denoting
the average of the corresponding options’ returns:

1 K
V(Toys- s Tog) = ?ZV(M). 2)
=1



IV. METHOD

Our goal is to identify a set O* {Toys+sTor} OF
options that can be used to augment A, so that the resulting
agent has access to behaviors that are akin to primitive
reflexes in infant mammals. In particular, agents born with
such options, even when acting randomly in the early stages
of their lives, should be capable of producing rudimentary
behaviors with performance comparable to that of agents that
optimize a policy for hundreds of thousands of steps. We call
these early-life options since their goal is to guarantee good
performance in the early stages of an agent’s life where the
use of initial near-random policies may be catastrophic. One
way of characterizing this set is by identifying a set of options
whose expected return, when evaluated over a distribution of
possible tasks and initial states, is maximal:

O* = argmax e ZIE (70,)]- 3)
ToprTox i=1

This definition makes an important assumption: it evaluates
a set of candidate options based on their individual perfor-
mances. Usually, however, options are evaluated not by the
return that they provide individually, but by the benefits they
provide to an agent throughout its entire lifetime (e.g., [6],
[9]). This is not our objective, however. We, by contrast, wish
to identify options that help agents in the early stages of their
lives, possibly when they are still operating under near-random
initial policies. The criterion in Eq. 3 models this worst-case
scenario precisely: it represents the average return achieved
by an agent acting under a random policy over options. A set
of options with high expected return even in this a case—i.e.,
when the agent is not learning and acts under an initial random
policy—is considered to be a good set of early-life options.

A. Quantifying the Performance of Early-Life Options

Eq. 3 defines an optimal set of options by maximizing
their expected returns. We are also interested, however, in
defining more sophisticated option evaluation metrics that take
into account not only the distribution’s mean return but also
properties of its tails in order to minimize the probability that
an option may produce risky performances. We introduce three
metrics to evaluate a candidate early-life option 7, based on
more general properties of its return distribution:

1) the Maximum-Mean metric 1, (,). This is the simplest
way of evaluating an option, by directly measuring the
expected value of its return distribution. It does not take
into account return variance or the negative tails of its
distribution (i.e., the risks associated with the option);

2) the Negative Tail-Averse metric 1_(m,). This metric
takes into account not only the expected value of an
option’s return distribution, but also the area under the
curve of its negative tail. It favors options with both high
expected return and with a low probability of producing
significantly poor (possibly catastrophic) returns;

3) the Positively-Skewed metric 1 (m,). This metric takes
into account not only the expected value of an option’s

return distribution, but also the area under the curve to
the right of the distribution’s mean. It favors options with
a high expected return, and that maximize the probabil-
ity that they will produce behaviors of above-average
quality—even if at the risk of sometimes producing
behaviors with subpar performance.

We can now re-write Eq.3 in a more general form so that
the value of each option is evaluated w.r.t. a selected metric
1 and not necessarily w.r.t. its expected return. The set of
optimal options Ol’jj w.r.t. a given metric v is, then

Z W(V(mo,)) )

Note that Eq. 4 is equivalent to Eq. 3 if the Maximum-Mean
metric 1, is used. As previously discussed, this metric directly
measures the expected value of an option’s return distribution
and is thus defined as

bu(mo) = E[V(mo)]. (5)

Given this definition, it should be easy to see that O* is
simply a set of K options with highest expected return "Let
us denote the mean and standard deviation of this option set
as p* =E[V(0], )] and 0" = (Var[V(O:;)H)])%, respectively.
Note, again, that these statistics refer to the set of early-life
options selected solely to maximize their expected returns, but
without taking into account any risks associated with executing
the options. To account for this possibility, we introduce two
risk-aware metrics for evaluating the performance of candidate
early-life options, so as to quantify both how well they perform
over a wide range of possible contexts (tasks and initial
states) and the possible risks involved with executing them.
A common way of incorporating the notion of risk when
evaluating policies is via the Markowitz mean-variance model
[15]. According to this model, one should prefer policies 7 that
maximize E[V (7)] — SVar[V (7)], where 8 € R regulates the
penalty on return variability. This criterion imposes a trade-off
that penalizes expected return in favor of policies with lower
variance; it does not care, however, whether the variance is
equally caused by above-average and below-average returns,
or whether, e.g., most of the variance results from extremely
positive (above-average) returns. In this latter case, it should
be intuitively clear that return variance is desirable and should
not be penalized. To more carefully model the different ways
in which return variability may positively or negatively affect
the desirability of a candidate option, we introduce two novel
metrics for evaluating their performances:

(7o) = B[V (m,)] = kPr(V(m,) < (0" = ac™)),  (6)
which we call the Negative Tail-Averse metric; and
V(o) = E[V(mo)] + kPr(V (7o) > "), (7)

which we call the Positively-Skewed metric. The Negative Tail-
Averse metric ¥ (Eq. 6) takes into account both the mean
return of an option and the probability that its execution will
result in returns that are « standard deviations below the mean

O,, = argmax

ToysTop



of Ol*%. Intuitively, it first characterizes the negative tail of
the return distribution of the options set constructed greedily
solely based on options’ mean returns (via the 1), criterion).
Then, it trades-off between achieving high expected return
while minimizing the probability that the returns of the option
may fall in that tail. This metric favors early-life options that
are similar in nature to the ones identified by ), (in terms
of large expected returns) but that also are risk-aware—they
would only get selected by Eq. 4 if they are unlikely to produce
extremely poor performances. The Positively-Skewed metric
vy (Eq. 7), by contrast, favors early-life options that have
both a large expected return and whose returns tend (with high
probability) to be situated above the mean of O:;“. Intuitively,
it cares about the mean return of an option and also about
maximizing the probability that its execution will, most of the
time, produce better-than-expected returns—even if at the risk
of sometimes (with low probability) producing behaviors with
subpar performances. These are risk-seeking early-life options
since they favor behaviors that tend to generate extremely
positive returns while accepting the risk of a possibly longer
negative tail. This metric results in options with a return
distribution that is positively-skewed—thus its name. The
preference for actions with positively-skewed returns has been
extensively studied in Prospect Theory. Evidence exists, for
instance, that when losses are costlier than gains, investors
tend to favor stocks with positively-skewed returns [16].

B. Constructing Early-Life Option Sets

We approximate the solution to Eq. 4 using a three-step pro-
cedure: (a) generation of a set containing N candidate early-
life options; (b) approximation of each candidate option’s
return distributions by evaluating its return over Z different
random contexts; and (c) selecting the top K highest-ranking
options according to a given metric . The generation of
candidate options is done by sampling N possible random
contexts C; = (7, sg) in which the agent could have to perform
in the early stages of its life. We place the agent in such
a context and record a short trajectory of optimal actions
drawn from an optimal policy for 7. The action trajectory is
then used to construct a candidate option’s policy 7, capable
of (approximately) reproducing the behavior observed in the
trajectory. This can be achieved via imitation learning algo-
rithms or standard supervised learning techniques. The process
of approximating a candidate option’s return distribution is
simpler: for each candidate option m,, we generate a large
number Z of possible random contexts and execute the option
in each one. We then use the resulting Z return observations of
T, to construct an approximation of the return distribution of
the option; this can be achieved, e.g., by using kernel density
estimation techniques over the returns. Finally, the process
of selecting the top K best options according to a metric v
requires only that we use the estimated return distribution of
each option 7, to compute its corresponding metric (7).
The K highest-ranking candidate options w.r.t. ¢ can then be
used to define the set Oy),. For more details, see Algorithm 1.

Algorithm 1 Construction of Early-Life Option Sets

(a) Generate Candidate Options
1. Draw a small set W of tasks {71,...,7a} from P
2. Compute a near-optimal policy 77, for each task in W
for : from1..., N do
- Sample a random context C; = (7, So)
- (7 is uniformly drawn from W3 sg is drawn from do)
- Execute 7y for T steps, starting in s
- Record the resulting action trajectory h; = (a1, ...,ar)
- Define an option 7,, that reproduces the behavior in h;
end for
3. Return the set of candidate options {7, , ..., Moy }
(b) Estimate Return Distribution of Candidate Options
for each candidate option 7,, do
for j from 1...,Z do
- Sample a random context C; = (7, so)
- (7 drawn uniformly from W; s is drawn from dp)
- Execute m,, for T' steps, starting in so
- Record the return R; achieved by ,, in T steps
end for
- Let R(¢) = {R1,..., Rz} be the returns of m,,
- Use R(i) to approximate the return distribution of 7.,
end for
- Return the approximate return distribution of each option

(c) Select Top K Candidate Early-Life Options

1. Let 7 be the option evaluation metric of interest

2. Compute (o, ) for each candidate option 7o,

3. Return the set Oy, with the K highest-ranking options

V. EXPERIMENTS

In this section, we show that it is possible to identify K
reusable early-life options that generalize across many tasks,
and that allow for an agent to perform well in the early stages
of their lives, even when no learning is taking place. We
evaluate our method in three simulated robots selected due
to their sensitivity to poor-performing initial policies. Walker
is a planar biped robot consisting of two legs and a torso and
with 6 actuated joints. Half-Cheetah is a planar biped robot
composed of two legs, a torso, and 6 actuated joints. Finally,
Ant is a quadruped robot with 13 rigid links, including four
legs and a torso, along with 8 actuated joints. The state space
of all robots includes information such as its current pose; their
reward functions incentivize proper walking while consuming
as little energy as possible. We train all agents using the
Proximal Policy Optimization (PPO) algorithm [17]. In our
experiments, we define the family of tasks W that each robot
may face by defining an infinite number of MDP variations;
these were obtained by modifying the reward function of each
robot by varying the electricity costs of running each actuated
joint along the continuous range of [—2.4, —1.4]. Higher costs
keep the robot from moving efficiently and lower costs often
create unstable walking movements since the robot has no
incentive to pursue parsimonious movements. We define the
task distribution P to be uniform over the range of possible
electricity costs and the initial state distribution dy to be the
one that results from initializing the agent in a standard pose
and running a random policy over primitive actions for a



random amount ¢ of steps, where ¢ ~ U[0, 100]. In all experi-
ments, we generated N = 600 candidate early-life options and
estimated their return distributions by evaluating each option
in Z = 300 possible contexts. Option policies were open-
loop sequences lasting 1" = 200 steps and directly mimicking
each sampled action trajectory h;. Return distributions in our
analyses were obtained via kernel density estimation over the
set of Z returns collected for each option. All experiments
evaluate the setting where option sets are of size K = 5.

Policy after

Initial Policy 500k steps

Early-Life Options
(No Learning)

Probability

0.2 0.3 0.4 0.5
Normalized Return Over Task Distribution

Fig. 1. [Ant Robot] Return distribution achieved with early-life options vs.
two learning agents at different moments in their lifetimes.

Policy after
320k steps

Initial Policy

Early-Life Options
(No Learning)

Probability

—-0.75

-0.50 —-0.25  0.00 0.25 0.50 0.75
Normalized Return Over Task Distribution

Fig. 2. [Cheetah Robot] Return distribution achieved with early-life options
vs. two learning agents at different moments in their lifetimes.

Our first experiment aims at demonstrating that our method
is capable of learning behaviors akin to primitive reflexes in in-
fant mammals: our “infant agent”, born with early-life options,
is capable of directly producing rudimentary behaviors with
performances comparable to those acquired by learning agents
optimizing a policy for hundreds of thousands of steps. Figures
1 and 2 depict the distribution of returns achieved by different
agents when evaluated over Z = 300 random contexts,
where each context specifies a random task (a random setting
for the electricity costs) and a random initial state. Fig. 1
shows the performance achieved by our Ant agent, when
equipped with early-life options identified via the Maximum-
Mean metric v,, and evaluated during the hardest period of
its lifetime: immediately after it is initialized, when it has not
yet learned a policy and when its behavior is still essentially a
random policy over primitive actions and options. We compare
the distribution of returns achieved by our agent with the
distributions achieved by two other agents: a learning agent
operating under its initial random policy over primitive actions;
and a learning agent acting under a policy acquired after 500k

TABLE I
MEAN RETURN & NEGATIVE TAIL’S AUC UNDER %);, AND 1)_.
Return Return
under ), under ) _
Mean AUC Mean AUC AUC
Improvement
Ant 0.328 0.133 0.332 (k = 0.05) 0.097 27.0%
Cheetah 0.082 0.143 0.079 (k = 0.75) 0.127 11.1%
Walker 0.122 0.243 0.115 (k = 0.75) 0.192 20.9%

training steps. The mean performance of our agent (which is
not learning, but merely selecting early-options at random) is
comparable to that of an agent trained with PPO for around
200k steps. Fig. 2 presents a similar analysis but for the Half-
Cheetah robot. We again observe that our optimized early-life
options allow the agent—even when selecting uniformly at
random from the options set—to perform similarly to an agent
trained with PPO for around 190k steps. As expected, early-
life options did allow for the agents to perform well (even
before any learning has taken place) in the very early stages
of their lives. Our second experiment analyzes the properties of
different metrics for evaluating early-life options: the Negative
Tail-Averse metric ¢)_ and the Positively-Skewed metric 1.
Fig. 3 compares the return distribution achieved by the best
option w.r.t. ¢, and w.r.t. 1p_. It highlights, in particular, the
improvement (decrease) in the area under the curve (AUC)
of the distribution’s left tail that results from using _.
This confirms that ¢ _ is capable of identifying options with
both high mean return and with a smaller negative tail—
thereby producing behaviors that minimize the probability
of extremely poor performances. Detailed numerical results
regarding improvements to the negative tail’s AUC are in
Table I. Interestingly, the use of a metric that trades-off mean
return and negative tail minimization often resulted in options
with a higher mean return, compared to that achieved by
greedily constructing options based on v,,. Figure 4 presents a

=== Maximum-Mean Option Set / 7

Negative Tail-Averse Option Set e

AUC Improvement //
2| /
& /
) . . 4
] Negative Tail Threshold — //
© /
& /

%
/
_ g
,”"—
015 0.20 025 0.30

Normalized Return Over Task Distribution

Fig. 3. Negative tail’s AUC improvement due to the use of the 1)_ metric.

similar analysis but regarding the use of the Positively-Skewed
metric 4 for selecting options. As previously discussed, ¥+
cares not only about the mean return of an option, but also
about maximizing the probability that its execution will, most
of the time, produce better-than-expected returns. This figure
highlights the improvement (increase) in the area under the
curve (AUC) to the right of the distribution’s mean. It confirms
that the use of this metric is capable of identifying options with



TABLE II
MEAN RETURN & ABOVE-THE-MEAN AUC UNDER %, AND 9.
Return Return
under ), under v

Mean AUC Mean AUC AUC
Improvement

Ant 0.328 0.533 0.334 (k = 0.05) 0.597 12.0%

Cheetah 0.082 0.550 0.082 (k = 0.05) 0.550 0.0%

Walker 0.122 0.563 0.125 (k = 0.10) 0.595 5.7%

both high mean return and that favors behaviors that tend to
generate positive returns while accepting the risk of a possibly
longer negative tail. Detailed numerical results of the above-
the-mean AUC improvement resulting from 1) are in Table II.
Once again, the use of a risk-aware metric often resulted in
options with higher mean return, compared to that achieved
by greedily constructing options based on ,,.

/% -~<g —==Maximum-Mean Option Set
i \\ Positively-Skewed Option Set
§ 3 AUC Improvement
= .
£ 9
=0 9
Z| | 9
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|
H K
1 A,
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034 036 038 040 042 044 0.26—_

Normalized Return Over Task Distribution

Fig. 4. Above-the-mean AUC improvement due to the use of the 14 metric.

Finally, we study the distribution of values generated by
one of our metrics (¢4). Fig. 5 shows that very few of
the candidate options have large metric values: only 0.67%
of all options have performance within 10% of top option’s
performance. This is surprising since all option policies were
generated by sampling directly from optimal policies for a
given task (Algorithm 1). This observation implies that it is
unlikely that such options, if selected randomly from the set
of candidates, would directly generalize over a wide range
of contexts, and further reinforces the need for a careful
optimization process for identifying efficient early-life options.

AUC=0.67%

Metric Threshold —
(top 10% best options)

Probability

0.0 0.1 0.2 0.3 0.4 0.5 0.6

. . . 0.7
Option Metric Over Task Distribution

Fig. 5. Distribution of the 14 metric values over candidate options.

VI. CONCLUSION

We have introduced a method for identifying short-
duration reusable motor behaviors—early-life options—that
allow robots to perform well in the very early stages of
their lives. Most of the existing work in the area of option
generation focuses on identifying options that help an agent
throughout its entire lifetime [6]-[9]. We, by contrast, are
motivated by the observation that many infant mammals have
primitive reflexes that are essential to guarantee their safety
only in the early stages of their lives, but that disappear shortly.
We introduced a method capable of generating options of this
type by optimizing different performance metrics that take
into account both an option’s mean return and the potential
risks that its execution may cause. We evaluated our technique
on three simulated robots operating under different battery
consumption constraints and shown that random policies over
learned early-life options are already sufficient to produce
performances similar to those of policies trained for hundreds
of thousands of steps. As future work, we intend to study the
generation of close-loop early-life options, which may allow
for longer movements that better generalize across tasks.

REFERENCES
[1]
[2]

E. S. Spelke, “Principles of object perception,” Cognitive Science,
vol. 14, no. 1, 1990.

N. Berthier and R. Keen, “Development of reaching in infancy,” Exper-
imental Brain Research, vol. 169, pp. 507-518, 2006.

F. Doshi-Velez and Z. Ghahramani, “A comparison of human and agent
reinforcement learning in partially observable domains,” in Proceedings
of the 33th Annual Meeting of the Cognitive Science Society, 2011.

R. Dubey, P. Agrawal, D. Pathak, T. Griffiths, and A. Efros, “Investigat-
ing human priors for playing video games,” in Proceedings of the 35th
International Conference on Machine Learning, 2018, pp. 1349-1357.

R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, pp. 181-211, 1999.

M. C. Machado, M. G. Bellemare, and M. H. Bowling, “A laplacian
framework for option discovery in reinforcement learning,” in Proceed-
ings of the 34th International Conference on Machine Learning, 2017.
A. McGovern and A. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” in Proceedings of the
Eighteenth International Conference on Machine Learning, 2001.

J. Harb, P. Bacon, M. Klissarov, and D. Precup, “When waiting is not
an option: Learning options with a deliberation cost,” in Proceedings of
the 32nd AAAI Conference on Artificial Intelligence, 2018.

P. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.
L. Berk, Child Development, ser. Child Development. Allyn &
Bacon/Pearson, 2009.

A. Harutyunyan, P. Vrancx, P. Bacon, D. Precup, and A. Nowé,
“Learning with options that terminate off-policy,” CoRR, 2017.

J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning
to adjust parametrized motor primitives to new situations,” Autonomous
Robots, 2012.

B. da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” in Proceedings of the 29th International Conference on Machine
Learning, 2012.

F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in Proceedings
of the IEEE-RAS International Conference on Humanoid Robots, 2013.
H. M. Markowitz, “Portfolio selection: Efficient diversification of in-
vestment,” The Journal of Finance, vol. 15, 12 1959.

A. Kumar, M. Motahari, and R. Taffler, “Skewness preference and
market anomalies,” Social Science Research Network, Tech. Rep., 2018.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, 2017.

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

(17]



