
CMPSCI 687: Reinforcement Learning

Fall 2021 Class Syllabus and Notes

Professor Bruno C. da Silva
University of Massachusetts Amherst

bsilva@cs.umass.edu

This document extends the notes initially prepared by
Professor Philip S. Thomas

University of Massachusetts Amherst
pthomas@cs.umass.edu

Table of Contents

1 Syllabus 4
1.1 Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Teaching Assistants . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Office Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 SAT/Fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Late Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Disability Services . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Cheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.11 COVID-19 and Face Covering Policy . . . . . . . . . . . . . . . . 8

2 Introduction 9
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 What is Reinforcement Learning (RL)? . . . . . . . . . . . . . . 10
2.3 687-Gridworld: A Simple Environment . . . . . . . . . . . . . . . 12
2.4 Describing the Agent and Environment Mathematically . . . . . 13
2.5 Creating MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Planning and RL . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Additional Terminology, Notation, and Assumptions . . . . . . . 22

1



3 Black-Box Optimization for RL 28
3.1 Hello Environment! . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Black-Box Optimization (BBO) for Policy Search . . . . . . . . . 28
3.3 Evaluating RL Algorithms . . . . . . . . . . . . . . . . . . . . . . 34

4 Value Functions 34
4.1 State-Value Function . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Action-Value Function . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 The Bellman Equation for vπ . . . . . . . . . . . . . . . . . . . . 37
4.4 The Bellman Equation for qπ . . . . . . . . . . . . . . . . . . . . 40
4.5 Optimal Value Functions . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Bellman Optimality Equation for v∗ . . . . . . . . . . . . . . . . 43

5 Policy Iteration and Value Iteration 46
5.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Policy Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 The Bellman Operator and Convergence of Value Iteration . . . 55

6 Monte Carlo Methods 59
6.1 Monte Carlo Policy Evaluation . . . . . . . . . . . . . . . . . . . 60
6.2 A Gradient-Based Monte Carlo Algorithm . . . . . . . . . . . . . 65

7 Temporal Differenence (TD) Learning 67
7.1 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Maximum Likelihood Model of an MDP versus Temporal Differ-

ence Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Sarsa: Using TD for Control 73

9 Q-Learning: Off-Policy TD-Control 76

10 High-Confidence Policy Improvement 79
10.1 Off-Policy Policy Evaluation . . . . . . . . . . . . . . . . . . . . . 81
10.2 High-Confidence Off-Policy Evaluation (HCOPE) . . . . . . . . . 84
10.3 High-Confidence Policy Improvement . . . . . . . . . . . . . . . . 85

11 TD(λ) 88
11.1 λ-Return Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 93

12 Backwards View of TD(λ) 93
12.1 True Online Temporal Difference Learning . . . . . . . . . . . . . 97
12.2 Sarsa(λ) and Q(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.3 Policy Gradient Algorithms . . . . . . . . . . . . . . . . . . . . . 99
12.4 Policy Gradient Theorem . . . . . . . . . . . . . . . . . . . . . . 100
12.5 Proof of the Policy Gradient Theorem . . . . . . . . . . . . . . . 101
12.6 REINFORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2



13 Natural Gradient 111

14 Other Topics 113
14.1 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . 113
14.2 Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14.3 Multi-Agent Reinforcement Learning . . . . . . . . . . . . . . . . 114
14.4 Reinforcement Learning Theory . . . . . . . . . . . . . . . . . . . 114
14.5 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 115

3



1 Syllabus

This course will provide an introduction to, and comprehensive overview of,
reinforcement learning. Reinforcement learning algorithms repeatedly answer the
question “What should be done next?”, and they can learn via trial-and-error to
answer these questions even when there is no supervisor telling the algorithm
what the correct answer would have been.

Applications of reinforcement learning span across medicine (How much
insulin should be injected next? What drug should be given next? ), marketing
(What ad should be shown next? ), robotics (How much power should be given to
the motor? ), game playing (What move should be made next? ), environmental
applications (Which countermeasure for an invasive species should be deployed
next? ), and dialogue systems (What type of sentence should be spoken next? ),
among many others.

Broad topics covered in this course will include: Markov decision processes, re-
inforcement learning algorithms (model-free, batch/online, value function-based,
actor-critics, policy gradient methods, etc.), and representations for reinforce-
ment learning. Special topics may include ensuring the safety of reinforcement
learning algorithms, hierarchical reinforcement learning, theoretical reinforce-
ment learning, multi-agent reinforcement learning, and connections to animal
learning.

In this course, each voice in the classroom has something of value to con-
tribute. Please take care to respect the different experiences, beliefs and values
expressed by students and staff involved in this course. My colleagues and I
support UMass’ commitment to diversity, and welcome individuals regardless
of age, background, citizenship, disability, sex, gender, gender identity, sexual
orientation, education, ethnicity, family status, geographical origin, language,
military experience, political views, race, religion, socioeconomic status, and work
experience.

1.1 Website

This course’s notes and syllabus will be hosted here. You will find homework
assignments and other material on Moodle. Lectures will be recorded and the
recordings (along with .pdf slides) will also be posted on Moodle.

1.2 Class

Classes will be held on Tuesdays and Thursdays from 4:00pm–5:15pm in Has-
brouck Lab Add, Room 124.
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1.3 Book

Parts of the course will be roughly based on the second edition of Sutton and
Barto’s book, Reinforcement Learning: An Introduction. It can be found on
Amazon here. It is also available for free online here. Although the book is a
fantastic introduction to the topic (and I encourage purchasing a copy if you
plan to study reinforcement learning), owning the book is not a requirement.

1.4 Teaching Assistants

The teaching assistants (TAs) this semester will be Blossom Metevier (bmete-
vier@umass.edu) and Scott Jordan (sjordan@cs.umass.edu).

1.5 Office Hours

Office hours will be held according to the following schedule (starting on 09/06),
except when noted otherwise. You will find a list of exceptions immediately after
the table below.

Monday Tuesday Wednesday Thursday Friday
9am–1pm Scott Blossom Scott

8:30am–12:30pm Blossom
9am–10:30am Bruno

Exceptions:

• No office hours will be held on holidays.

• Monday and Thursday office hours will be held remotely until Sept30, and
in person afterwards.

• On the week of Sept20 (i.e., from 09/20 until 09/23), all office hours will
be held remotely.

Office Hours – Locations:

• To attend remote office hours, please use the following Zoom link:
https://umass-amherst.zoom.us/j/91204679155.

• Monday office hours: LGRT T220.

• Tuesday office hours: LGRT T220.

• Wednesday office hours: LGRT T220.

• Thursday office hours: LGRT T223/T225.

• Friday office hours: Prof. da Silva’s office hours will be held in his
office, room 278 of the Computer Science building. Office hours will follow
the academic calendar: they will be offered on all days that are a Friday
schedule.
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1.6 Grading

Your grade will have three components:

1. Homework Assignments (50%): There will be frequent homework
assignments, both written and programming. All assignments will have an
equal weight.

2. Midterm exam (30%).

3. Project (20%): As reinforcement learning transitions from an academic
curiosity to practical tools that you may use in your professional lives, it
is critical that we study how to implement, fine-tune, and deploy these
algorithms in practice. Further details will be available when the project
is assigned, after the most relevant course material has been covered.

A cumulative grade in [90% − 100%] will be an A- or A, [75%, 90%) will
be a B-, B, or B+, [65%, 75%) will be a C-, C, or C+, and [55% − 65%) will
be a D or D+. Course grades will be curved only in students’ favor (that is,
these thresholds may be lowered, but a grade of 90% will not be lower than
an A-). Some extra credit opportunities may be given. Your grade
may be reduced by any amount at the instructor’s discretion due to
inappropriate behavior, such as academic dishonesty.

1.7 SAT/Fail

At some time near the end of the semester (likely around the last day of class),
you will be given the option to take the class SAT/Fail rather than for a letter
grade. If you plan to take the course SAT/Fail, keep an eye out for an email (or
a message on Moodle) from me around the end of the semester with instructions
for requesting SAT/Fail. If you elect SAT/Fail, you will earn a SAT grade if
your letter grade would have been a C or higher, and you will receive an F if
your letter grade would have been a lower.

1.8 Late Policy

• Deadlines in this course are strict. A submission one minute after the
deadline will receive zero credit. You are strongly encouraged to submit
hours before any deadline. Having said that, each student will be granted
one “free” 3-day extension that they can choose to use when submitting a
homework.

• All exams must be taken at the scheduled time unless (1) there is a
documented conflict and arrangements have been made with the instructor
before the exam; or (2) you have a medical emergency and you bring
proof of such to the instructor before final grades for the given exam are
computed. In any other case (unless those covered by the University’s
Academic Regulations), missing an exam will result in a grade of “F” for
that exam.
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1.9 Disability Services

The University of Massachusetts is committed to providing an equal educational
opportunity for all students. If you have a documented physical, psychological,
or learning disability on file with Disability Services, you may be eligible for
academic accommodations to help you succeed in this course. If you would
like to register with Disability Services, please visit their website or their office
(161 Whitmore Administration Building; phone (413) 545–0892). Finally, if you
have a documented disability that requires an accommodation, please notify
me within the first two weeks of the semester so that we can make appropriate
arrangements.

1.10 Cheating

• Cheating will not be tolerated. Assignments may include instructions
about what forms of collaboration are allowed, if/when relevant.

• Copying answers or code from online sources or from solutions to assign-
ments from previous years is always considered cheating.

• The College of Information and Computer Sciences explicitly forbids any
redistribution (including publicly available posting on an internet site) of
any CICS course materials (including student solutions to course assign-
ments, projects, exams, etc.) without the express written consent of the
instructor of the course from which the materials come. Violations of this
policy will be deemed instances of “facilitating dishonesty” (since a student
making use of such materials would be guilty of plagiarism) and therefore
may result in charges under the Academic Honesty Policy.

• Since students are expected to be familiar with this policy and the com-
monly accepted standards of academic integrity, ignorance of such standards
is not normally sufficient evidence of lack of intent.

• All instances of cheating will be reported to the university’s Academic
Honesty Board, and will result in an F for the course.
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1.11 COVID-19 and Face Covering Policy

Students and course staff in COMPSCI 687 are expected to do their part to slow
the spread of COVID-19 and minimize risk of illness for all community members.
It is important to remember that community members may be vulnerable or live
with vulnerable individuals.

Students and course staff in COMPSCI 687 must comply with all university
policies regarding COVID-19, including self-isolating (don’t come to class) if you
test positive, have COVID-19 symptoms, or are in contact with someone who
tests positive and meet the criteria for self-isolation (see FAQs). If you are in
any doubt, please do not come to class—you can request an excused absence
from any course meeting by sending the instructor an email; you will not be
penalized for any missed quizzes, discussion exercises, etc.

As of the start of the Fall 2021 semester, everyone must wear a mask to all
indoor course meetings, including lectures, discussion sections, exams, and office
hours. For more details, see the face covering FAQ for the start of the Fall 2021
semester. The only exceptions to the face-covering policy are:

• Employees who receive a medical exemption through the Accessible Work-
place Office (see face-covering FAQ).

• Students who receive a medical exemption through the Disability Services
Office (see face-covering FAQ). If you have a valid medical exemption, you
must notify the instructors and present documentation prior to attending
a meeting without a face covering.

• A vaccinated instructor can choose to go unmasked while teaching if they
can maintain at least six feet of distance from where students are sitting
in the classroom (see Provost’s memo from 8/20/2021).

If a student in COMPSCI 687 does not comply with public health protocols
(e.g. does not wear a mask), the course staff will first remind them of the
protocols and their importance, and ask them to comply. If a student refuses
to comply after being reminded by course staff, they will be asked to leave
the course meeting; if they refuse, the course staff may elect to end the course
meeting to allow other students and staff to leave, and then resume the course
meeting on Zoom after a short delay (if logistics permit).

If a student demonstrates repeated violations of public health protocols
after reminders, course staff will submit a referral to the Student Conduct and
Community Standards Office (SCCS) in the Dean of Students Office.
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2 Introduction

This document contains notes related to what we cover in class. This is intended
as a replacement for posting student notes each time the course is offered. This
is not meant to be a standalone document like a textbook.

2.1 Notation

When possible, sets will be denoted by calligraphic capital letters (e.g., X ),
elements of sets by lowercase letters (e.g., x ∈ X ), random variables by capital
letters (e.g., X), and functions by lowercase letters (e.g., f). This will not always
be possible, so keep an eye out for exceptions.

We write f : X → Y to denote that f is a function with domain X and
range Y. That is, it takes as input an element of the set X and produces as
output an element of Y . We write |X | to denote the cardinality of the set X—the
number of elements in X , and |x| to denote the absolute value of x (thus the
meaning of | · | depends on context).

We typically use capital letters for matrices (e.g., A) and lowercase letters
for vectors (e.g., b). We write Aᵀ to denote the transpose of A. Vectors are
assumed to be column vectors. Unless otherwise specified, ‖b‖ denotes the
l2-norm (Euclidean norm) of the vector v.

We write N>0 to denote the natural numbers not including zero, and N≥0

to denote the natural numbers including zero.

We write := to denote is defined to be. In lecture we may write , rather
than := since the triangle is easier to see when reading my (sometimes sloppy)
handwriting.

If f : X × Y → Z for any sets X , Y, and Z, then we write f(·, y) to de-
note a function, g : X → Z, such that g(x) = f(x, y) for all x ∈ X .

We denote sets using brackets, e.g., {1, 2, 3}, and sequences and tuples us-
ing parentheses, e.g., (x1, x2, . . . ).

The notation that we use is not the same as that of the book or other sources
(papers and books often use different notations, and there is no agreed-upon
standard). Our notation is a mix between the notations of the first and second
editions of Sutton and Barto’s book.
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2.2 What is Reinforcement Learning (RL)?

Reinforcement learning is an area of machine learning, inspired by
behaviorist psychology, concerned with how an agent can learn from
interactions with an environment.

–Wikipedia, Sutton and Barto (1998), Phil

Agent

Environment

state actionreward

Figure 1: Agent-environment diagram. Examples of agents include a child,
dog, robot, program, etc. Examples of environments include the world, lab,
software environment, etc.

Evaluative Feedback: Rewards convey how “good” an agent’s actions are,
not what the best actions would have been. If the agent was given instructive
feedback (what action it should have taken) this would be a supervised learning
problem, not a reinforcement learning problem.

Sequential: The entire sequence of actions must be optimized to maximize the
“total” reward the agent obtains. This might require forgoing immediate rewards
to obtain larger rewards later. Also, the way that the agent makes decisions
(selects actions) changes the distribution of states that it sees. This means that
RL problems aren’t provided as fixed data sets like in supervised learning, but
instead as code or descriptions of the entire environment.

Question 1. If the agent-environment diagram describes a child learning
to walk, what exactly is the “Agent” block? Is it the child’s brain, and its
body is part of the environment? Is the agent the entire physical child? If
the diagram describes a robot, are its sensors part of the environment or
the agent?

Neuroscience and psychology ask how animals learn. They are the study of some
examples of learning and intelligence. RL asks how we can make an agent that
learns. It is the study of learning and intelligence in general (animal, computer,
match-boxes, purely theoretical, etc.). In this course we may discuss the re-
lationship between RL and computational neuroscience in one lecture, but in
general will not concern ourselves with how animals learn (other than, perhaps,
for intuition and motivation).
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There are many other fields that are similar and related to RL. Separate re-
search fields often do not communicate much, resulting in different language
and approaches. Other notable fields related to RL include operations research
and control (classical, adaptive, etc.). Although these fields are similar to RL,
there are often subtle but impactful differences between the problems studied
in these other fields and in RL. Examples include whether the dynamics of the
environment are known to the agent a priori (they are not in RL), and whether
the dynamics of the environment will be estimated by the agent (many, but
not all, RL agents do not directly estimate the dynamics of the environment).
There are also many less-impactful differences, like differences in notation (in
control, the environment is called the plant, the agent the controller, the reward
the (negative) cost, the state the feedback, etc.).

A common misconception is that RL is an alternative to supervised learning—
that one might take a supervised learning problem and convert it into an RL
problem in order to apply sophisticated RL methods. For example, one might
treat the state as the input to a classifier, the action as a label, and the reward
as −1 if the label is correct and 1 otherwise. Although this is technically possible
and a valid use of RL, it should not be done. In a sense, RL should be a last
resort—the tool that you use when supervised learning algorithms cannot solve
the problem you are interested in. If you have labels for your data, do not
discard them and convert the feedback from instructive feedback (telling the
agent what label it should have given) to evaluative feedback (telling the agent
if it was right or wrong). The RL methods will likely be far worse than standard
supervised learning algorithms. However, if you have a sequential problem or a
problem where only evaluative feedback is available (or both!), then you cannot
apply supervised learning methods and you should use RL.

Question 2. [Puzzle] There are 100 pirates. They have 10,000 gold pieces.
These pirates are ranked from most fearsome (1) to least fearsome (100).
To divide the gold, the most fearsome pirate comes up with a method (e.g.,
split it evenly, or I get half and the second most fearsome gets the other
half). The pirates then vote on this plan. If 50% or more vote in favor of
the plan, then that is how the gold is divided. If > 50% vote against the
plan, the most fearsome pirate is thrown off the boat and the next most
fearsome comes up with a plan, etc. The pirates are perfectly rational. You
are the most fearsome pirate. How much of the gold can you get? How?

Answer2.Youshouldbeabletokeep9,951piecesofgold.

If you solved the above puzzle, you very likely did so by first solving easier
versions. What if there were only two pirates? What if there were three? This is
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what we will do in this course. We will study and understand an easier version
of the problem and then will build up to more complex and interesting cases
over the semester.

2.3 687-Gridworld: A Simple Environment

Figure 2: 687-Gridworld, a simple example environment we will reference often.

State: Position of robot. The robot does not have a direction that it is facing.

Actions: Attempt Up, Attempt Down, Attempt Left, Attempt Right.
We abbreviate these as: AU, AD, AL, AR.

Environment Dynamics: With probability 0.8 the robot moves in the speci-
fied direction. With probability 0.05 it gets confused and veers to the right from
the intended direction—moves +90◦ from where it attempted to move (that
is, AU results in the robot moving right, AL results in the robot moving up,
etc.). With probability 0.05 it gets confused and veers to the left—moves −90◦

from where it attempted to move (that is, AU results in the robot moving left,
AL results in the robot moving down, etc.). With probability 0.1 the robot
temporarily breaks and does not move at all. If the movement defined by these
dynamics would cause the agent to exit the grid (e.g., move up from state 2) or
hit an obstacle (e.g., move right from state 12), then the agent does not move.
The robot starts in state 1, and the process ends when the robot reaches state 23.
The robot does not have a direction that it is facing, only a position indicated
by the state number.

Rewards: The agent receives a reward of −10 for entering the state with
the water and a reward of +10 for entering the goal state. Entering any other
state results in a reward of zero. If the agent is in the state with the water (state
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21) and stays in state 21 for any reason (hitting a wall, temporarily breaking), it
counts as “entering” the water state again and results in an additional reward of
−10. We use a reward discount parameter (the purpose of which is described
later) of γ = 0.9.

Number of States: Later we will describe a special state, s∞, which is included
in 687-Gridworld. As a result, 687-Gridworld actually has 24 states, not 23.
That is, |S| = 24. We discuss this near the end of Section 2.4.

2.4 Describing the Agent and Environment Mathemati-
cally

In order to reason about learning, we will describe the environment (and soon
the agent) using math. Of the many different mathematical models that can be
used to describe the environment (POMDPs, DEC-POMDPs, SMDPs, etc.), we
will initially focus on Markov decision processes (MDPs). Despite their apparent
simplicity, we will see that they capture a wide range of real and interesting
problems, including problems that might at first appear to be outside their scope
(e.g., problems where the agent makes observations about the state using sensors
that might be incomplete and noisy descriptions of the state). Also, a common
misconception is that RL is only about MDPs. This is not the case: MDPs are
just one way of formalizing the environment of an RL problem.

• An MDP is a mathematical specification of both the environment and
what we want the agent to learn.

• Let t ∈ N≥0 be the time step (iteration of the agent-environment loop).

• Let St be the state of the environment at time t.

• Let At be the action taken by the agent at time t.

• Let Rt ∈ R be the reward received by the agent at time t. That is, when
the state of the environment is St, the agent takes action At, and the
environment transitions to state St+1, the agent receives the reward Rt.
This differs from some other sources wherein this reward is called Rt+1.

There are many definitions of MDPs used in the literature, which share
common terms. In each case an MDP is a tuple. Four examples are:

1. (S,A, p, R)

2. (S,A, p, R, γ)

3. (S,A, p, R, d0, γ)

4. (S,A, p, dR, d0, γ).
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We will discuss the differences between these definitions in a moment, but first
let’s define each of the terms. Notice that the unique terms in these definitions
are: S,A, p, dR, R, d0, and γ. We define each of these below:

• S is the set of all possible states of the environment. The state at time t,
St, always takes values in S. For now we will assume that |S| <∞—that
the set of states is finite. We call S the “state set”.

• A is the set of all possible actions the agent can take. The action at time
t, At, always takes values in A. For now we will assume that |A| <∞.

• p is called the transition function, and it describes how the state of the
environment changes.

p : S ×A× S → [0, 1]. (1)

For all s ∈ S, a ∈ A, s′ ∈ S, and t ∈ N≥0:

p(s, a, s′) := Pr(St+1 = s′|St = s,At = a). (2)

Hereafter we suppress the sets when writing quantifiers (like ∃ and ∀)—
these should be clear from context. We say that the transition function is
deterministic if p(s, a, s′) ∈ {0, 1} for all s, a, and s′.

• dR describes how rewards are generated. Intuitively, it is a conditional
distribution over Rt given St, At, and St+1. That is, Rt ∼ dr(St, At, St+1).
For now we assume that the rewards are bounded—that |Rt| ≤ Rmax

always, for all t ∈ N≥0 and some constant Rmax ∈ R.1

• R is a function called the reward function, which is implicitly defined by dR.
Other sources often define an MDP to contain R rather than dR. Formally

R : S ×A → R, (3)

and

R(s, a) := E [Rt|St = s,At = a] , (4)

for all s, a, and t. Although the reward function, R, does not precisely
define how the rewards, Rt, are generated (and thus a definition of an
MDP with R in place of dR would in a way be incomplete), it is often
all that is necessary to reason about how an agent should act. Notice
that R is a function despite being a capital letter. This is also due to a
long history of this notation, and also because we will use r to denote a
particular reward, e.g., when writing (s, a, r, s′, a′) later.

• d0 is the initial state distribution:

d0 : S → [0, 1], (5)

and for all s:
d0(s) = Pr(S0 = s). (6)

1In the remainder of the course, we will very rarely use dR—typically we will work with R.
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• γ ∈ [0, 1] is a parameter called the reward discount parameter, and which
we discuss later.

Recall now our earlier list of four common ways of defining an MDP. These
different definitions vary in how precisely they define the environment. The
definition (S,A, p, R, γ) contains all of the terms necessary for us to reason about
optimal behavior of an agent. The definition (S,A, p, R) still actually includes γ,
it just makes it implicit. That is, this definition assumes that γ is still present,
but doesn’t write it as one of the terms in the MDP definition. On the other
extreme, the definition (S,A, p, dR, d0, γ) fully specifies how the environment
behaves.

This distinction is most clear when considering the inclusion of dR rather
than R. As we will see later, the expected rewards described by R are all that is
needed to reason about what behavior is optimal. However, to fully characterize
how rewards are generated in an environment, we must specify dR.

Just as we have defined the environment mathematically, we now define the
agent mathematically. A policy is a decision rule—a way that the agent can
select actions. Formally, a policy, π, is a function:

π : S ×A → [0, 1], (7)

and for all s ∈ S, a ∈ A, and t ∈ N≥0,

π(s, a) := Pr(At = a|St = s). (8)

Thus, a policy is the conditional distribution over actions given the state. That is,
π is not a distribution, but a collection of distributions over the action set—one
per state. There are an infinite number of possible policies, but a finite number
of deterministic policies (policies for which π(s, a) ∈ {0, 1} for all s and a). We
denote the set of all policies by Π. Figure 3 presents an example of a policy for
687-Gridworld.

AU AD AL AR

1 0 0.1 0.3 0.6
2 0.8 0 0 0.2
3 0.1 0.1 0.5 0.3

4 0.25 0.25 0.25 0.25
5 0.25 0.25 0.5 0
6 0.2 0.3 0.5 0
… … … … …

Figure 3: Example of a tabular policy. Each cell denotes the probability of the
action (specified by the column) in each state (specified by the row). In this
format, Π is the set of all |S| × |A| matrices with non-negative entries and rows
that all sum to one.

To summarize so far, the interaction between the agent and environment
proceeds as follows (where Rt ∼ dR(St, At, St+1) denotes that Rt is sampled
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according to dR):

S0 ∼d0 (9)

A0 ∼π(S0, ·) (10)

S1 ∼p(S0, A0, ·) (11)

R0 ∼dR(S0, A0, S1) (12)

A1 ∼π(S1, ·) (13)

S2 ∼p(S1, A1, ·) (14)

. . . (15)

In pseudocode:

Algorithm 1: General flow of agent-environment interaction.

1 S0 ∼ d0;
2 for t = 0 to ∞ do
3 At ∼ π(St, ·);
4 St+1 ∼ p(St, At, ·);
5 Rt ∼ dR(St, At, St+1);

The running of an MDP is also presented as a Bayesian network in Figure 4.

𝑆𝑆𝑡𝑡−1

𝐴𝐴𝑡𝑡−1

𝑆𝑆𝑡𝑡

𝑅𝑅𝑡𝑡−1

𝐴𝐴𝑡𝑡

𝑆𝑆𝑡𝑡+1

𝑅𝑅𝑡𝑡

𝐴𝐴𝑡𝑡+1

𝑅𝑅𝑡𝑡+1

Figure 4: Bayesian network depicted the running of an MDP.

Notice that we have defined rewards so that R0 is the first reward, while
Sutton and Barto (1998) define rewards such that R1 is the first reward. We
do this because S0, A0, and t = 0 are the first state, action, and time, and so
having R1 be the first reward would be inconsistent. Furthermore, this causes
indices to align better later on. However, when comparing notes from the course
to the book, be sure to account for this notational discrepancy.

Agent’s goal: Find a policy, π?, called an optimal policy. Intuitively, an
optimal policy maximizes the expected total amount of reward that the agent
will obtain.

Objective function: J : Π→ R, where for all π ∈ Π,

J(π) := E

[ ∞∑
t=0

Rt

∣∣∣∣∣π
]
. (16)
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Note: Later we will revise this definition—if you are skimming looking for the
correct definition of J , it is in (18).

Note: Expectations and probabilities can be conditioned on events. A policy,
π, is not an event. Conditioning on π, e.g., when we wrote |π in the definition
of J above, denotes that all actions (the distributions or values of which are
not otherwise explicitly specified) are sampled according to π. That is, for all
t ∈ N≥0, At ∼ π(St, ·).

Optimal Policy: An optimal policy, π?, is any policy that satisfies:

π? ∈ arg max
π∈Π

J(π). (17)

Note: Much later we will define an optimal policy in a different and more strict
way.

Question 3. Is the optimal policy always unique when it exists?

Answer3.No.Forexample,in687-Gridworld(ifactionsalwayssuc-
ceeded),thenADandARwouldbothbeequally“good”instate1,andso
anyoptimalpolicycouldbemodifiedmyshiftingprobabilityfromADtoAR
(orviceversa)instate1andtheresultingpolicywouldalsobeoptimal.

Reward Discounting: If you could have one cookie today or two cookies on
the last day of class, which would you pick? Many people pick one cookie today
when actually presented with these options. This suggests that rewards that are
obtained in the distant future are worth less to us than rewards in the near future.
The reward discount parameter, γ, allows us to encode, within the objective
function, this discounting of rewards based on how distant in the future they
occur.

Recall that γ ∈ [0, 1]. We redefine the objective function, J , as:

J(π) := E

[ ∞∑
t=0

γtRt

∣∣∣∣∣π
]
, (18)

for all π ∈ Π. So, γ < 1 means that rewards that occur later are worth less to the
agent—the utility of a reward, r, t time steps in the future is γtr. Including γ also
ensures that J(π) is bounded, and later we will see that smaller values of γ make
the MDP easier to solve (solving an MDP refers to finding or approximating an
optimal policy).

To summarize, the agent’s goal is to find (or approximate) an optimal policy,
π?, as defined in (17), using the definition of J that includes reward discounting—
(18).
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Question 4. What is an optimal policy for 687-Gridworld? Is it unique?
How does the optimal action in state 20 change if we were to change the
value of γ?

Property 1 (Existence of an optimal policy). If |S| <∞, |A| <∞, Rmax <∞,
and γ < 1, then an optimal policy exists.2

We will prove Property 1 later.

Question 5. What is an optimal policy for 687-Gridworld? Is it unique?
How does the optimal action in state 20 change if we were to change the
value of γ?

Question 6. Consider two MDPs that are identical, except for their initial
state distributions, d0. Let π∗ and µ∗ be optimal policies for the first
and second MDP, respectively. Let s? ∈ S be a state that has a non-zero
probability of occurring when using π∗ on the first MDP and a non-zero
probability of occurring when using µ∗ on the second MDP. Consider a new
policy, π′ such that π′(s, a) = π?(s, a) for all s ∈ S \ {s?} and a ∈ A and
π′(s?, a) = µ∗(s?, a) for all a ∈ A. Is π′ an optimal policy for the first
MDP?

Answer6.Yes!Laterwewillhavethemathematicaltoolstodiscussthis
moreformally.Fornow,noticethathowtheagententeredstates

?
does

notimpactwhatactionitshouldtakeinstates
?

togetasmuchrewardas
possibleinthefuture.Inthisway,optimalbehaviorinastateisindependent
ofhowtheagentgottothestate,andthusindependentoftheinitialstate
distribution,d0,ifeverystateisreachableundereverypolicy.Laterwe
willpresentadifferentdefinitionofanoptimalpolicythatiscompletely
independentofd0withoutthisreachabilitycondition.

Question 7. How many deterministic policies are there for an MDP with
finite state and action sets?

2We will actually prove a stronger result—we will define optimality in a different, and
stronger way, and will prove that an optimal policy exists with respect to this (strictly) stronger
definition of optimality. Furthermore, we will show that an optimal deterministic policy exists.
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Answer7.|A||S|.Ineachstate,thereare|A|actionsavailable.Inthe
firststate,thereare|A|possibleactionstotake.Inthesecond,thereare
|A|aswell.Inthesetwostatesalone,thereare|A|×|A|totalpossibleways
theagentcoulddeterministicallyselectactions.Extendingthistoallofthe
states,weseethatthereare|A||S|possibledeterministicpolicies.

Question 8. Consider an MDP with one state, S = {1} and A = R. Let

Rt =

{
At if At < 1

0 otherwise.
(19)

Let γ < 1. In this case, what is the optimal policy?

Answer8.Thereisnooptimalpolicy.Letusconsideronlydeterministic
policies,whichshouldgiveintuitionforwhytherearenooptimalpolicies
(includingstochastic).Leta∗betheactionchosenbyanoptimalpolicy
π∗instate1.Ifa∗≥1,thentherewardisalwayszero.Wecando
betterwithaction0.5,whichgivesarewardof0.5,andsoanya∗cannot
beoptimalifa∗≥1.Nowconsiderthecasewherea∗<1.Inthiscase,
theactiona∗+(1−a∗)/2islargerthana∗andalsolessthanone,andso
itproducesalargerreward.Hencethisnewactionisbetter,andsoany
a∗<1cannotbeoptimaleither.So,nooptimalpolicyexists.Thisexample
showshowremovingsomeoftheassumptionsfromProperty1canresultin
thenon-existenceofoptimalpolicies.
When we introduced 687-Gridworld, we said that the agent-environment

interactions terminate when the agent reaches state 23, which we called the
goal. This notion of a terminal state can be encoded using our definition of an
MDP above. Specifically, we define a terminal state to be any state that may
transition to a special state, s∞, called the terminal absorbing state. Once in s∞,
the agent can never leave (s∞ is absorbing)—the agent will forever continue to
transition from s∞ back into s∞. Transitioning from s∞ to s∞ always results in
a reward of zero. Effectively, when the agent enters a terminal state the process
ends. There are no more decisions to make (since all actions have the same
outcome) or rewards to collect. Thus, an episode terminates when the agent
enters s∞. Notice that terminal states are optional—MDPs need not have any
terminal states. Also, there may be states that only sometimes transition to
s∞, and we do not call these terminal states. Notice also that s∞ is an element
of S. Given how we have defined MDPs, this means that the agent does select
actions in s∞. Lastly, although terminal states are defined, goal states are not
defined—the notion of a goal in 687-Gridworld is simply for our own intuition.3

3To make it clear that terminal states and s∞ should not be thought of as “goal” states,
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When the agent reaches s∞, the current trial, called an episode ends and a
new one begins. This means that t is reset to zero, the initial state, S0, is sampled
from d0, and the next episode begins (the agent selects A0, gets reward R0,
and transitions to state S1). The agent is notified that this has occurred, since
this reset may change its behavior (e.g., it might clear some sort of short-term
memory).

For 687-Gridworld, we assume that s∞ ∈ S and state 23 always transitions
to s∞ with a reward of zero. Hence, 687-Gridworld has 24 states.

2.5 Creating MDPs

You might be wondering: who defines Rt? The answer to this differs depending
on how you are trying to use RL. If you are using RL to solve a specific real-world
problem, then it is up to you to define Rt to cause the agent to produce the
behavior you want. It is well known that we as humans are bad at defining
rewards that cause optimal behavior to be what we want. Often, you may find
that you define rewards to produce the behavior you want, train an agent, think
the agent is failing, and then realize that the agent has in a way outsmarted you
by finding an unanticipated way to maximize the expected discounted return
via behavior that you do not want.

Consider an example, where you want to give an RL agent (represented by
the dog) rewards to get it to walk along the sidewalk to a door (which ends the
episode) while avoiding a flowerbed: How would you assign rewards to states in
order to get the dog to go to the door? Humans frequently assign rewards in a
way that causes undesirable behavior for this example. One mistake is to give
positive rewards for walking on the sidewalk—in that case the agent will learn
to walk back and forth on the sidewalk gathering more and more rewards, rather
than going to the door where the episode ends. In this case, optimal behavior is
produced by putting negative rewards on the flowerbed, and a positive reward
at the door.

This provides a general rule of thumb when designing rewards: give rewards
for what you want the agent to achieve, not for how you think the agent should
achieve it. Rewards that are given to help the agent quickly identify what
behavior is optimal are related to something called shaping rewards, which we
will discuss later. When done properly, shaping rewards can be designed such
that they will not change the optimal policy. However, when we simply make up
shaping rewards (like putting a positive constant on the sidewalk states in the
above example), they often will change optimal behavior in an undesirable way.

Back to the earlier question: who defines Rt? So far we have discussed how
you can choose Rt when applying RL to a problem. Sometimes, people study RL
to obtain insight into animal behavior. In this case, the rewards were produced by
evolution. We will likely have a guest lecture by Andy Barto on this topic later in

picture an MDP with positive rewards everywhere and a terminal state. In this case, the
terminal state is something that the agent should avoid, like a cliff. If the agent enters the
terminal state, it cannot collect any more positive rewards, as it becomes stuck in s∞—in a
sense it dies. In this case, s∞ and terminal states are certainly not “goals”.
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Figure 5: Agent-environment diagram. Examples of agents include a child,
dog, robot, program, etc. Examples of environments include the world, lab,
software environment, etc.

the semester. For now, a brief overview: In this animal/psychology/neuroscience
setting rewards refer to something given to an agent that is rewarding, like food.
This is translated in the animal’s brain into a reward signal. This reward signal
could, for example, correspond to the firing of specific neurons or the release of
a specific neurotransmitter. Using this terminology, our Rt corresponds to the
reward signal in the animal’s brain rather than the reward (say, a cookie). Some
function defines how reward signals are generated within the brain when an agent
receives a reward, and this function was chosen (learned, if you’d like to call
it that) by evolution. If you are familiar with the neurotransmitter dopamine,
from this discussion it may sound like dopamine corresponds to Rt—later we will
argue that dopamine does not correspond to Rt, but to errors when predicting
statistics of the sum of rewards.

2.6 Planning and RL

Consider again the definition of RL. Notice the segment “learn from interactions
with the environment.” If p and R (or dR) are known, then the agent does not
need to interact with the environment. E.g., an agent solving 687-Gridworld can
plan in its head, work out an optimal policy and execute this optimal policy
from this start. This is not reinforcement learning—this is planning. More
concretely, in planning problems p and R are known, while in reinforcement
learning problems at least p (and usually R) is not known by the agent. Instead,
the agent must learn by interacting with the environment—taking different
actions and seeing what happens. Most reinforcement learning algorithms will
not estimate p. The environment is often too complex to model well, and small
errors in an estimate of p compound over multiple time steps making plans built
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from estimates of p unreliable. We will discuss this more later.

2.7 Additional Terminology, Notation, and Assumptions

• A history, Ht, is a recording of what has happened up to time t in an
episode:

Ht := (S0, A0, R0, S1, At, R1, S2, . . . , St, At, Rt). (20)

• A trajectory is the history of an entire episode: H∞.

• The return or discounted return of a trajectory is the discounted sum of
rewards: G :=

∑∞
t=0 γ

tRt. So, the objective, J , is the expected return or
expected discounted return, and can be written as J(π) := E[G|π].

• The return from time t or discounted return from time t, Gt, is the dis-
counted sum of rewards starting from time t:

Gt :=

∞∑
k=0

γkRt+k.

2.7.1 Example Domain: Mountain Car

Environments studied in RL are often called domains. One of the most common
domains is mountain car, wherein the agent is driving a crude approximation
of a car. The car is stuck in a valley, and the agent wants to get to the top of
the hill in front of the car. However, the car does not have enough power to
drive straight up the hill in front, and so it must learn to reverse up the hill
behind it before accelerating forwards to climb the hill in front. A diagram of
the mountain car environment is depicted in Figure 6.

Figure 6: Diagram of the mountain car domain.

• State: s = (x, v), where x ∈ R is the position of the car and v ∈ R is the
velocity.
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• Actions: a ∈ {reverse,neutral,forward}. These actions are mapped
to numerical values as follows: : a ∈ {−1, 0, 1}.

• Dynamics: The dynamics are deterministic—taking action a in state s
always produces the same state, s′. Thus, p(s, a, s′) ∈ {0, 1}. The dynamics
are characterized by:

vt+1 = vt + 0.001at − 0.0025 cos(3xt) (21)

xt+1 = xt + vt+1. (22)

After the next state, s′ = [xt+1, vt+1] has been computed, the value of
xt+1 is clipped so that it stays in the closed interval [−1.2, 0.5]. Similarly,
the value vt+1 is clipped so that it stays in the closed interval [−0.7, 0.7].
If xt+1 reaches the left bound (i.e., the car is at xt+1 = −1.2), or if xt+1

reaches the right bound (i.e., the car is at xt+1 = 0.5), then the car’s
velocity is reset to zero: vt+1 = 0. This simulates inelastic collisions with
walls at −1.2 and 0.5.

• Terminal States: If xt = 0.5, then the state is terminal (it always
transitions to s∞).

• Rewards: Rt = −1 always, except when transitioning to s∞ (from s∞ or
from a terminal state), in which case Rt = 0.

• Discount: γ = 1.0.

• Initial State: S0 = (X0, 0), where X0 is an initial position drawn uni-
formly at random from the interval [−0.6,−0.4].

Question 9. For this problem, what is an English description of the meaning
behind a return? What is an episode? What is an optimal policy? How long
can an episode be? What is the English meaning of J(π)?

Answer9.Thereturnisnegativethenumberoftimestepsforthecarto
reachthegoal.Anepisodecorrespondstothecarstartingnearthebottom
ofthevalleyandtheagentdrivingituntilitreachesthetopofthehillin
frontofthecar.Anoptimalpolicyreversesupthehillbehindthecaruntil
somespecificpointisreached,atwhichpointthecaracceleratesforward
untilitreachesthegoal.Thereisnolimitonhowlonganepisodecanbe.
J(π)istheexpectednumberoftimestepsfortheagenttoreachthegoal
whenitusespolicyπ.
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2.7.2 Markov Property

A seemingly more general non-Markovian formulation for the transition function
might be:

p(h, s, a, s′) := Pr(St+1 = s′|Ht−1 = h, St = s,At = a). (23)

The Markov assumption is the assumption that St+1 is conditionally independent
of Ht−1 given St. That is, for all h, s, a, s′, t:4

Pr(St+1 = s′|Ht−1 = h, St = s,At = a) = Pr(St+1 = s′|St = s,At = a) (24)

Since we make this Markov assumption, p as defined earlier completely captures
the transition dynamics of the environment, and there is no need for the alternate
definition in (23). The Markov assumption is sometimes referred to as the Markov
property (for example one would usually say that a domain has the Markov
property, not that the domain satisfies the Markov assumption). It can also be
stated colloquially as: the future is independent of the past given the present.

We also assume that the rewards are Markovian—Rt is conditionally inde-
pendent of Ht−1 given St (since At depends only on St, this is equivalent to
assuming that Rt is conditionally independent of Ht−1 given both St and At).
While the previous Markov assumptions apply to the environment (and are
inherent assumptions in the MDP formulation of the environment), we make an
additional Markov assumption about the agent: the agent’s policy is Markovian.
That is, At is conditionally independent of Ht−1 given St.

Question 10. Can you give examples of Markovian and non-Markovian
environments?

Question 11. Is the Markov property a property of the problem being
formulated as an MDP or a property of the state representation used when
formulating the problem?

To answer this second question, consider whether state transitions are Marko-
vian in mountain car. It should be clear that they are as the domain has been
described. What about if the state was s = (x) rather than s = (x, v)? You
could deduce vt from the previous state, xt−1 and current state, xt, but that
would require part of the history before st. Thus, using s = (x) mountain car
is not Markovian. So, the Markov property is really a property of the state
representation, not the problem being formulated as an MDP.

Notice that one can always define a Markovian state representation. Let St
be a non-Markovian state representation. Then (St, Ht−1) is a Markovian state
representation. That is, we can include the history within the states in order

4For brevity, hereafter we omit the sets that elements are in when it should be clear from
context, e.g., we say “for all s” rather than “for all s ∈ S”.
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to enforce the Markov property. This is typically undesirable because the size
of the state set grows exponentially with the maximum episode length (a term
discussed more later). This trick of adding information into the state is called
state augmentation.

There is often confusion about terminology surrounding states, state repre-
sentations, and the Markov property. The state of an MDP (and every other
similar formulation, like POMDPs, DEC-POMDPs, SMDPs, etc.) should always
be defined so that the Markov property is satisfied. Later we will reason about
state representations that are not Markovian, in order to model situations where
the agent might only be able to make partial or noisy observations about the
state of the environment.

2.7.3 Stationary vs. Nonstationary

We assume that the dynamics of the environment are stationary. This means
that the dynamics of the environment do not change between episodes, and also
that the transition function does not change within episodes. That is, Pr(S0 = s)
is the same for all episodes, and also for all s, a, t, and i:

Pr(St+1 = s′|St = s,At = a) = Pr(Si+1 = s′|Si = s,Ai = a). (25)

Importantly, here t and i can be time steps from different episodes.
This is one of the assumptions that is most often not true for real problems.

For example, when using RL to control a car, we might not account for how ware
on the parts (e.g., tires) causes the dynamics of the car to change across drives.
When using RL to optimize the selection of advertisements, the day of the week,
time of day, and even season can have a large impact on how advertisements
are received by people. Depending on how the problem is modeled as an RL
problem, this may manifest as nonstationarity.

Although this assumption is almost always made, and is almost always false,
we usually justify it by saying that some assumption of this sort is necessary.
This assumption is what allows us to use data from the past to inform how we
make decisions about the future. Without some assumption saying that the
future resembles the past, we would be unable to leverage data to improve future
decision making. Still, there exist weaker assumptions than requiring stationarity
(e.g., a small amount of work focuses on how to handle a small finite number of
jumps in system dynamics or slow and continuous shifts in dynamics).

We also assume that the rewards are stationary (that the distribution over
rewards that result from taking action a in state s and transitioning to state
s′ does not depend on the time step or episode number). However, usually we
assume that π is nonstationary. This is because learning corresponds to changing
(ideally, improving) the policy both within an episode and across episodes. A
stationary policy is sometimes called a fixed policy.

A common thought is that nonstationarity that be “fixed” by putting addi-
tional information into the state. While this does fix the issue for the transition
function, p, it is simply pushing the problem into the initial state distribution, d0.
As an example, consider the mountain car domain, but where the car’s power
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Figure 7: Cart-Pole Domain.

decays over time due to wear and tear (e.g., the tread on the tires wearing off).
We could put the current wear of the tires into the state. While this would make
the transition function stationary, the initial state distribution is now necessarily
non-stationary, since the initial wear on the tires must increase over episodes.

2.7.4 Cart-Pole Balancing

Also called pole balancing, cart-pole, and inverted pendulum.
This domain models a pole balancing on a cart, as depicted in Figure 7. The

agent must learn to move the cart forwards and backwards to keep the pole from
falling.

• State: s = (x, v, θ, θ̇), where x is the horizontal position of the cart, θ is
the angle of the pole, and θ̇ is the angular velocity of the pole.

• Actions: A = {left, right}.

• Rt = 1 always.

• γ = 1.

• S0 = (0, 0, 0, 0) always.

• Dynamics = physics of the system. See the work of Florian (2007) for the
derivation of the correct dynamics. The domain was originally presented
by Barto et al. (1983). However, this original work presents the dynamics
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with gravity reversed—pulling the pole up rather than down. Andy says
that they did use the correct direction for gravity in their code though.

• Episodes terminate after 20 seconds, or when the pole falls down (the
absolute value of the angle is greater than or equal to π/15 radians. Time
is simulated with time steps of ∆t = 0.02 seconds.

Question 12. Is the optimal policy for cart-pole unique?

Answer12.No.Anactionmightcausethepoletomoveawayfrom
vertical,butaslongasitdoesnotfallthisisnotpenalizedbythereward
function.

Question 13. Is the state representation Markovian?

Answer13.No.Inorderforthetransitionfunctiontocauseatransition
tos∞aftertwentyseconds,thestatemustencodethecurrenttimestep.

2.7.5 Finite-Horizon MDPs

The horizon, L, of an MDP is the smallest integer such that

∀t ≥ L, Pr(St = s∞) = 1. (26)

If L <∞ for all policies, then we say that the MDP is finite horizon. If L =∞
then the domain may be indefinite horizon or infinite horizon. An MDP with
indefinite horizon is one for which L = ∞, but where the agent will always
enter s∞. One example of an indefinite horizon MDP is one where the agent
transitions to s∞ with probability 0.5 from every state. An infinite horizon
MDP is an MDP where the agent may never enter s∞.

For the cart-pole domain, how can we implement within p that a transition
to s∞ must occur after 20 seconds? We achieve this by augmenting the state
to include the current time. That is, the state is (s, t), where s is what we
previously defined to be the state for cart-pole and t is the current time step.
The transition function, p, increments t at each time step and causes transitions
to S∞ when t is incremented to 20/∆t = 1000. So, the state for cart-pole is really
s = (x, v, θ, θ̇, t). Often the dependence on t is implicit—we write s = (x, v, θ, θ̇)
and say that the domain is finite horizon.

2.7.6 Partial Observability

For many problems of interest, the agent does not know the state—it only
makes observations about the state. These observations may be noisy and/or
incomplete. We will discuss this later in the course.

27



3 Black-Box Optimization for RL

3.1 Hello Environment!

In this lecture we will describe how you can create your first RL agent. Agents
can be viewed as objects in an object-oriented programming language that have
functions for getting an action from the agent, telling an agent about what states
and rewards it obtains, and for telling the agent when a new episode has occurs.
High level pseudocode for an agent interacting with an environment may look like:

Algorithm 2: Pseudocode for an agent interacting with an environment.

1 for episode = 0, 1, 2, . . . do
2 s ∼ d0;
3 for t = 0 to ∞ do
4 a = agent.getAction(s);
5 s′ ∼ p(s, a, ·);
6 r ∼ dR(s, a, s′);
7 agent.train(s, a, r, s′);
8 if s′ == s∞ then
9 break; // Exit out of loop over time, t

10 s = s′;

11 agent.newEpisode();

Here the agent has three functions. The first, getAction, which samples
an action, a, given the current state s, and using the agent’s current policy. The
second function, train, alerts the agent to the transition that just occurred,
from s to s′, due to action a, resulting in reward r. This function might update
the agent’s current policy. The third function, newEpisode, alerts the agent
that the episode has ended and it should prepare for the next episode. Notice
that the agent object might have memory. This allows it to, for example, store
the states, actions, and rewards from an entire episode during calls to train,
and then update its policy when newEpisode is called using all of the data
from the episode (or from multiple episodes).

Question 14. How might you create this agent object so that it improves
its policy? This might be your last chance to think about this problem in your
own creative way, before we corrupt your mind with the standard solutions
used by the RL community.

3.2 Black-Box Optimization (BBO) for Policy Search

Black-box optimization (BBO) algorithms are generic optimization algorithms
(i.e., not specific to RL) that solve problems of the form:

arg max
x∈Rn

f(x), (27)
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where f : Rn → R. Different BBO algorithms make different assumptions about
f , like that it is smooth or bounded. Furthermore, different BBO algorithms
make different assumptions about what information is known about f . Some
algorithm might assume that the optimization algorithm can compute f(x) for
any x ∈ Rn, while others assume that the agent can compute the gradient,
∇f(x), at any point x. BBO algorithms are called black-box because they
treat f as a black-box—they do not look “inside” of f to leverage knowledge
about its structure (or knowledge of an analytic form) in order to speed up the
optimization process. For RL, this means that BBO algorithms will not leverage
the knowledge that the environment can be modeled as an MDP.

Here, we will consider BBO algorithms that assume the estimates of f(x)
can be produced for any x ∈ Rn, but that the precise value of f(x) is not known,
and the gradient, ∇f(x), is also not known. Examples of BBO algorithms that
can be used for problems of this sort include (first-choice) hill-climbing search,
simulated annealing, and genetic algorithms (Russell et al., 2003). To apply
these algorithms to RL, we will use them to optimize the objective function.
That is, we will use them to solve the problem:

arg max
π∈Π

J(π). (28)

In order to apply these algorithms to the above problem, we must determine
how we can estimate J(π), and also how we can represent each policy, π, as a
vector in Rn.

3.2.1 How to estimate the objective function?

We can estimate J(π) by running the policy π for N episodes and then averaging
the observed returns. That is, we can use the following estimator, Ĵ , of J :

Ĵ(π) :=
1

N

N∑
i=1

Gi (29)

=
1

n

N∑
i=1

∞∑
t=0

γtRit, (30)

where Gi denotes the return of the ith episode and Rit denotes the reward at time
t during episode i. Hereafter, we will use superscripts on random variables to
denote the episode during which they occurred (but will omit these superscripts
when the relevant episode should be clear from context).

3.2.2 Parameterized Policies

Recall from Figure 3 that we can represent policies as |S| × |A| matrices with
non-negative entries and rows that sum to one. When numbers are used to
define a policy, such that using different numbers results in different policies,
we refer to the numbers as policy parameters. Unlike other areas of machine
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learning, often we will discuss different functions and/or distributions that can
be parameterized in this way, and so it is important to refer to these parameters
as policy parameters and not just parameters (unless it is exceedingly obvious
which parameters we are referring to). We refer to the representation described
in Figure 3 as a tabular policy, since the policy is stored in a table, with one
entry per state-action pair. Notice that we can view this table as a vector by
appending the rows or columns into a vector in R|S||A|.

Although this parameterization of the policy is simple, it requires constraints
on the solution vectors that standard BBO algorithms are not designed to
handle—they require the rows in the tabular policy to sum to one and the entries
to always be positive. Although BBO algorithms might be adapted to work
with this policy representation, it is usually easier to change how we represent
the policy. That is, we want to store π as a |S| × |A| matrix, θ, that has no
constraints on its entries. Furthermore, increasing θ(s, a) (the entry in the s’th
row and a’th column) should increase π(s, a). Notice that, using this notation,
θ(s, a) is a policy parameter for each (s, a) pair.

One common way to achieve this is to use softmax action selection. Softmax
action selection defines the policy in terms of θ(s, a) as:

π(s, a) :=
eσθ(s,a)∑
a′ e

σθ(s,a′)
, (31)

where σ > 0 is a hyperparameter that scales how differences in values of θ(s, a)
and θ(s, a′) change the probabilities of the actions a and a′. For now, assume
that σ = 1. To see that this is a valid definition of π, we must show that π(s, ·)
is a probability distribution over A for all s ∈ S. That is,

∑
a∈A π(s, a) = 1 for

all s and π(s, a) ≥ 0 for all s and a. We now show these two properties. First,
for all s ∈ S: ∑

a∈A
π(s, a) =

∑
a∈A

eσθ(s,a)∑
a′∈A e

σθ(s,a′)
(32)

=

∑
a∈A e

σπ(s,a)∑
a′∈A e

σθ(s,a′)
(33)

=1. (34)

Second, for all s and a, eσθ(s,a) > 0, and so all terms in the numerator and
denominator of (31) are non-negative, and thus π(s, a) is non-negative.

This distribution is also known as the Boltzman distribution or Gibbs distri-
bution. A drawback of using this distribution is that it cannot exactly represent
deterministic policies without letting θ(s, a) = ±∞.

We typically denote the parameters of a policy by θ, and we define a
parameterized policy to be a function π : S × A × Rn → [0, 1] such that
π(s, a, θ) = Pr(At = a|St = s, θ). Thus, changing the policy parameter vector θ
results in the parameterized policy being a different policy. So, you might see
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the equivalent definition of a tabular softmax policy:

π(s, a, θ) :=
eσθs,a∑
a′ e

σθs,a′
. (35)

Tabular softmax policies are just one way that the policy might be parame-
terized. In general, you should pick the policy parameterization (the way that
policy parameter vectors map to stochastic policies) to be one that you think
will work well for the problem you want to solve. This is more of an art than a
science—it is something that you will learn from experience.

Now that we have represented the policy as a vector in Rn (with n = |S||A|
when using a tabular softmax policy), we must redefine our objective function
to be a function of policy parameter vectors rather than policies. That is, let

J(θ) := E[G|θ], (36)

where conditioning on θ denotes that At ∼ π(St, ·, θ). Often a policy param-
eterization will be used that cannot represent all policies. In these cases, the
goal is to find the best policy that can be represented, i.e., the optimal policy
parameter vector:

θ? ∈ arg max
θ∈Rn

J(θ). (37)

Examples of other parameterized policies include deep neural networks, where
the input to the network is the state, s, and the network has one output per
action. One can then use softmax action selection over the outputs of the
network. If the actions are continuous, one might assume that the action, At,
should be normally distributed given St, where the mean is parameterized by
a neural network with parameters θ, and the variance is a fixed constant (or
another parameter of the policy parameter vector).

One might also choose to represent deterministic policies, where the input
is a state and the output is the action that is always chosen in that state. For
example, consider the problem of deciding how much insulin an insulin pump
should inject prior to a person eating a meal. One common (and particularly
simple) policy parameterization is:

injection size =
current blood glucose− target blood glucose

θ1
+

meal size

θ2
,

(38)
where θ = [θ1, θ2]ᵀ ∈ R2 is the policy parameter vector, the current blood glucose
and meal size form the state, the target blood glucose is a constant value specified
by a diabetologist, and the injection size is the action (Bastani, 2014). Notice
that this representation results in a small number of policy parameters—far
fewer than if we were to use a neural network. Similarly, many control problems
can use policies parameterized using few parameters (Schaal et al., 2005) (see
also PID and PD controllers).

We did not discuss linear function approximation during Lecture 7. We will
discuss it during a future lecture. For those wanting to get ahead, here is a
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brief description of linear function approximation. Another common policy
representation (typically used when states are not discrete) is softmax action
selection with linear function approximation. Later we will discuss linear function
approximation in general and in more detail. Here we will consider a single
specific use. Let φ : S → Rm be a function that takes a state as input and returns
a vector of features as output. Notice that φ(s) can be a short vector even when
S is continuous. For example, if S = R, we could define φ(s) = [s, s2, s3, ..., s10]ᵀ.
For now we define φ(s) vector to be of length m because we use n to denote the
total number of policy parameters. Later we may use n to denote the number of
features when using linear function approximation to represent structures other
than the policy (e.g., when we discuss linear temporal difference learning, we
will use n to denote the number of features).

To use linear function approximation for softmax action selection, we store a
different vector, θa, for each action a ∈ A. We then compute θ(s, a) from (31)
as θᵀaφ(s), where vᵀ denotes the transpose of the vector v. That is,

θ(s, a) =θᵀaφ(s) (39)

=θa · φ(s) (40)

=

m∑
i=1

θa,iφi(s), (41)

where θa,i is the ith entry in the vector θa and φi(s) is the ith entry in the vector
φ(s). Hence, in softmax action selection using linear function approximation:

π(s, a, θ) =
eσθ

ᵀ
aφ(s)∑

a′∈A e
σθᵀ
a′φ(s)

, (42)

where θ is one big vector containing m|A| parameters: one vector θa ∈ Rm for
each of the |A actions. Although you might think of θ as being a matrix, I
encourage you to think of θ as a vector (the matrix with all of the columns
stacked into one big column)—this will simplify later math. Also, we refer to
this as “linear” because θᵀaφ(s) is linear in feature space, even though it may not
be a linear function of s due to nonlinearities in φ.

The question remains: how should we define φ? Which features allow the
agent to represent a good policy? You can view a neural network as learning
these features (the output of the second to last layer is φ(s)). However, there are
also known choices for φ(s) that tend to result in strong performance (Konidaris
et al., 2011b). We will discuss some of these in more detail later.

Selecting policy representations with small numbers of parameters often
speeds up learning. This is because the space of policy parameter vectors that
an algorithm must search is lower dimensional—when the problem is phrased as
in (27), n is the number of policy parameters, and so fewer policy parameters
results in a smaller search space. Thus, deep neural networks should usually
be a last resort when selecting a policy representation, since they often have
thousands, if not millions of policy parameters.
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Figure 8: Example learning curve. The horizontal axis shows the number of
episodes that the agent has been learning for, and the vertical axis shows the
mean return. Here the “expected return” is averaged over many trials—many
lifetimes of the agent. This plot was averaged over 100,000 trials. That is,
100,000 of each type of agent (Sarsa, Q-learning, and Actor-Critic) were created
and trained from scratch for 200 episodes each. The discounted returns of these
100,000 agents on the 20th episode were averaged to create the points at the
20th episode mark on the horizontal axis. Standard error error-bars are included,
but are too small to be seen. It is not uncommon for researchers to provide
standard deviation error bars. Researchers also sometimes plot total time-steps
on the horizontal axis (particularly when episode lengths vary significantly with
policy performance), and cumulative reward (total reward since the first step of
the first episode) on the vertical axis.
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3.3 Evaluating RL Algorithms

There are many different ways that researchers report the performance of their
algorithms. The most common method is for researchers to optimize all of the
hyperparameters for all of the algorithms, and then plot learning curves for
each algorithm, which show how quickly the agent learns when using each RL
algorithm. The details of this process are not standardized across the community.
An example of a learning curve is depicted in Figure 8.

There is no agreed upon standard for how the optimization of hyperparameters
should be performed. Some researchers use grid searches and others random
searches. Research on hyperparameter optimization suggests that you should at
least use a random search (Bergstra and Bengio, 2012) rather than a grid search.
You might consider using a BBO algorithm to optimize the hyperparameters of
the algorithm. There is also no agreed upon objective for the hyperparameter
optimization: some authors choose the hyperparameters that maximize the area
under the learning curve (the sum of returns over a fixed number of episodes,
averaged over several trials), while others optimize for the performance of the
final policy after a fixed number of episodes.

Notice that this approach for reporting the performance of RL algorithms does
not capture how difficult it is to find good hyperparameters for each algorithm.
This problem is not new—there has been a push for many years now to report
the sensitivity of algorithms to their hyperparameters, and increasingly many
papers provide plots showing hyperparameter sensitivity. Notice also that some
papers present similar looking plots, but report statistics other than expected
return (Johns, 2010, Page 80).

4 Value Functions

So far we have described the problem we want to solve mathematically, and have
described how BBO methods can be applied. These BBO algorithms do not
leverage the assumed MDP structure of the environment. We will now present
value functions, which are a tool that we will use to leverage the MDP structure
of the environment. Notice that value function are not a complete agent on their
own.

4.1 State-Value Function

The state-value function, vπ : S → R, is defined as follows, for all s:

vπ(s) := E

[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s, π

]
. (43)

Using the Gt notation we have the equivalent definition (you may provide this
as the definition when asked):

vπ(s) := E [Gt|St = s, π] . (44)
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In English, vπ(s) is the expected discounted return if the agent follows policy π
from state s. Notice that this quantity depends on the policy, π. More informally,
vπ(s), is a measure of how “good” it is for the agent to be in state s when using
policy π. We call vπ(s) the value of state s.

As an example, consider the MDP depicted in Figure 9. For this MDP:

vπ1(s1) =0 (45)

vπ1(s2) =12γ0 = 12 (46)

vπ1(s3) =0γ0 + 12γ1 = 6 (47)

vπ1(s4) =0γ0 + 0γ1 + 12γ2 = 3 (48)

vπ1(s5) =0γ0 + 0γ1 + 0γ2 + 12γ3 = 1.5 (49)

vπ1(s6) =0 (50)

vπ2(s1) =0 (51)

vπ2(s2) =0γ0 + 0γ1 + 0γ2 + 2γ3 = 1/4 (52)

vπ2(s3) =0γ0 + 0γ1 + 2γ2 = 1/2 (53)

vπ2(s4) =0γ0 + 2γ1 = 1 (54)

vπ2(s5) =2γ0 = 2 (55)

vπ2(s6) =0. (56)

𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4 𝑠𝑠5 𝑠𝑠6

𝑠𝑠∞

left

left left left

left,rightleft,right

right

rightrightright
𝑅𝑅𝑡𝑡 = +12 𝑅𝑅𝑡𝑡 = +2

Figure 9: A simple MDP that we will call the “chain” MDP. There are many
“chain” MDPs used in the RL literature—this is not a standard one. In each state
the agent can choose to move left (L) or right (R), and the transition function
is deterministic in implementing these transitions. In states s1 and s6, both
actions cause a transition to s∞. The rewards are always zero, except for when
the agent transitions from s2 to s1, in which case the reward is +12, or when
the agent transitions from s5 to s6, in which case the reward is +2. The initial
state distribution is not specified. For simplicity, let γ = 0.5. We will consider
two policies for this MDP. The first, π1, always selects the left action, while the
second, π2, always selects the right action.

Notice that we use t on the right side of (43), even though it does not appear
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on the left side. This is because the right side takes the same value for all t. We
can show this as follows:

vπ(s) :=E

[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s, π

]
(57)

=

∞∑
k=0

γkE [Rt+k|St = s, π] (58)

=E[Rt|St = s, π] + γE[Rt+1|St = s, π] + γ2E[Rt+2|St = s, π] + · · · (59)

=
∑
a∈A

Pr(At = a|St = s, π)E[Rt|St = s,At = a, π] (60)

+ γ
∑
a∈A

Pr(At = a|St = s, π)
∑
s′∈S

Pr(St+1 = s′|St = s,At = a, π) (61)

×
∑
a′∈A

Pr(At+1 = a′|St+1 = s′, St = s,At = a, π) (62)

×E[Rt+1|St+1 = s′, At+1 = a′, St = s,At = a, π] (63)

. . . (64)

=
∑
a∈A

π(s, a)R(s, a) (65)

+ γ
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′)
∑
a′∈A

π(s′, a′)R(s′, a′) (66)

+ γ2
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′)
∑
a′∈A

π(s′, a′)
∑
s′′∈S

p(s′, a′, s′′)
∑
a′′∈A

π(s′′, a′′)R(s′′, a′′)

(67)

. . . , (68)

where × denotes scalar multiplication split across two lines. Notice that t does
not show up in any terms in the last expression, and so regardless of the value
of t, vπ(s) takes the same value. Hence, the following definitions are equivalent
(do not provide these when asked for the definition of the state value function):

vπ(s) :=E

[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s, π

]
(69)

vπ(s) :=E [G|S0 = s, π] (70)

vπ(s) :=E

[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s, π

]
. (71)
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4.2 Action-Value Function

The action-value function, also called the state-action value function or Q-
function, is defined as:

qπ : S ×A → R (72)

qπ(s, a) := E[Gt|St = s,At = a, π], (73)

for all s and a. Recall that conditioning on π denotes that At ∼ π(St, ·) for all
times, t, where At has not otherwise been specified. Here At has been specified,
and so conditioning on π only applies to time steps other than t. That is, qπ(s, a)
is the expected discounted return if the agent takes action a in state s and
follows the policy π thereafter. Equivalent definitions of qπ are:

qπ(s, a) :=E

[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s,At = a, π

]
(74)

qπ(s, a) :=E [G|S0 = s,A0 = a, π] (75)

qπ(s, a) :=E

[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s,A0 = a, π

]
. (76)

For the chain MDP depicted in Figure 9:

qπ1(s1, L) =0 (77)

qπ1(s1, R) =0 (78)

qπ1(s2, L) =12γ0 = 12 (79)

qπ1(s2, R) =0γ0 + 0γ1 + 12γ2 = 3 (80)

qπ1(s3, L) =0γ0 + 12γ1 = 6 (81)

qπ1(s3, R) =0γ0 + 0γ1 + 0γ2 + 12γ3 = 1.5. (82)

Notice that qπ(s, a) and vπ(s) are both always zero if s is the terminal absorbing
state. Also, take particular note of (80)—it shows a nuance of q-values that is
often missed. That is, the agent begins in s2 and takes the action to go right. It
then takes the action to go left, bringing it back to s2. Now when it is again in s2,
it takes the action to go left. In this sense, the q-function considers the behavior
of an agent that is not following a fixed policy. For more on this topic, see the
work of Bellemare et al. (2016) for further discussion of this “inconsistency”.

4.3 The Bellman Equation for vπ

The Bellman equation is a recursive expression for the value function—a sort of
consistency condition that the value function satisfies. Specifically, the Bellman
equation for the state-value function can be derived from the definition of the
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state-value function:

vπ(s) :=E

[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s, π

]
(83)

=E

[
Rt +

∞∑
k=1

γkRt+k

∣∣∣∣∣St = s, π

]
(84)

=E

[
Rt + γ

∞∑
k=1

γk−1Rt+k

∣∣∣∣∣St = s, π

]
(85)

(a)
=
∑
a∈A

π(s, a)R(s, a) + E

[
γ

∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, π

]
(86)

(b)
=
∑
a∈A

π(s, a)R(s, a) +
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′) (87)

×E

[
γ

∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a, St+1 = s′, π

]
(88)

(c)
=
∑
a∈A

π(s, a)R(s, a) +
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′) (89)

× γE

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St+1 = s′, π

]
(90)

(d)
=
∑
a∈A

π(s, a)R(s, a) +
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′)γvπ(s′) (91)

=
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′) (R(s, a) + γvπ(s′)) , (92)

where × denotes scalar multiplication split across two lines, (a) comes from
modifying the indexing of the sum to start at zero instead of one, but changes
all uses of k within the sum to k+ 1, (b) comes from the law of total probability,
which allows us to sum over At and St+1, (c) follows from the Markov property,
and (d) comes from the definition of the state-value function (see (43)).

This final expression gives the Bellman equation for vπ:

vπ(s) =
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′) (R(s, a) + γvπ(s′)) . (93)

Another way to understand the Bellman equation for vπ is to consider the
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expansion:

vπ(s) =E
[
Rt + γRt+1 + γ2Rt+2 + . . .

∣∣St = s, π
]

(94)

=E [Rt + γ (Rt+1 + γRt+2 + . . . )|St = s, π] (95)

=E [Rt + γvπ(St+1)|St = s, π] (96)

=
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′) (R(s, a) + γvπ(s′)) . (97)

Consider the “Cookie MDP” depicted in Figure 10, which was created for
this course (it is not a standard domain). Clearly vπ(s3) = 0. We can then
compute vπ(s2) in two different ways. The first is to use the definition of the
value function (and the property that state transitions are deterministic in this
case):

vπ(s2) = R2 + γR3 = 10 + γ0 = 10. (98)

The second approach is to use the Bellman equation (and the property that state
transitions are deterministic in this case):

vπ(s2) = R2 + γvπ(s3) = 10 + γ0 = 10. (99)

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠∞

𝑅𝑅𝑡𝑡 = +1 cookie

𝑅𝑅𝑡𝑡 = +1 cookie 𝑅𝑅𝑡𝑡 = +10 cookies

Figure 10: The “Cookie MDP”. Under some policy, π, the agent always begins
in s0, and walks down the line of states. The agent receives a reward of +1 when
transitioning from state s0 to s1 and a reward of +10 when transitioning from
s2 to s3. All other transitions result in a reward of zero.

Similarly, we can compute vπ(s1) using the definition of the value function
or the Bellman equation:

vπ(s1) =R1 + γR2 + γ2R3 = 0 + γ10 + γ20 = γ10. (100)

vπ(s1) =R1 + γvπ(s2) = 0 + γ10. (101)

We can also compute vπ(s0) both ways:

vπ(s0) =R0 + γR1 + γ2R2 + γ3R3 = 1 + γ0 + γ210 + γ30 = 1 + γ210. (102)

vπ(s0) =R0 + γvπ(s1) = 1 + γγ10 = 1 + γ210. (103)
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Notice that already it is becoming easier to compute the value of states
using the Bellman equation than it is to compute the values of states from the
definition of the value function. This is because the Bellman equation only needs
to look forward one time step into the future, while the definition of the value
function must consider the entire sequence of states that will occur until the end
of the episode. When considering larger problems, and particularly problems
with stochastic policies, transition functions, and rewards, the Bellman equation
will be increasingly useful, since computing state-values from the definition of
the value function would require reasoning about every possible sequence of
events that could occur from the occurrence of that state until the end of the
episode.

For more intuition about the Bellman equation, imagine that the current
state is s. We can view the Bellman equation as breaking the expected return
that will occur into two parts: the reward that we will obtain during the next
time step, and the value of the next state that we end up in. That is,

vπ(s) = E

 R(s,At)︸ ︷︷ ︸
immediate reward

+γ vπ(St+1)︸ ︷︷ ︸
value of next state

∣∣∣∣∣∣St = s, π

 . (104)

This should make intuitive sense, because the value of the next state is the
expected discounted sum of rewards that we will obtain from the next state, and
so summing the expected immediate reward and the expected discounted sum
of rewards thereafter gives the expected discounted sum of rewards from the
current state.

4.4 The Bellman Equation for qπ

While the Bellman equation for vπ is a recurrent expression for vπ, the Bellman
equation for qπ is a recurrent expression for qπ. Specifically:

qπ(s, a) = R(s, a) + γ
∑
s′∈S

p(s, a, s′)
∑
a′∈A

π(s′, a′)qπ(s′, a′). (105)

Question 15. Can you derive the Bellman equation for qπ(s, a) from the
definition of qπ?
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Answer15.

q
π
(s,a):=E[∞∑

k=0

γ
k
Rt+k∣∣∣∣

∣
St=s,At=a,π](106)

=E[Rt|St=s,At=a,π]+E[∞∑
k=1

γ
k
Rt+k∣∣∣∣

∣
St=s,At=a,π]

(107)

=E[Rt|St=s,At=a,π]+γE[∞∑
k=1

γ
k−1

Rt+k∣∣∣∣
∣
St=s,At=a,π]

(108)

=E[Rt|St=s,At=a,π]+γE[∞∑
k=0

γ
k
Rt+k+1

∣∣∣∣
∣
St=s,At=a,π]

(109)

=E[Rt|St=s,At=a,π]+γ∑
s′∈S

Pr(St+1=s′|St=s,At=a,π)

(110)

×∑
a′∈A

Pr(At+1=a′|St+1=s′,S
t=s,At=a,π)(111)

×E[∞∑
k=0

γ
k
Rt+k+1

∣∣∣∣
∣
St=s,At=a,St+1=s′,A

t+1=a′π]
(112)

=R(s,a)+γ∑
s′∈S

p(s,a,s′)∑
a′∈A

π(s′,a′)qπ(s′,a′).(113)

4.5 Optimal Value Functions

The optimal value function, v∗, is a function v∗ : S → R defined by:

v∗(s) := max
π∈Π

vπ(s). (114)

Notice that for each state v∗ “uses” the policy, π, that maximizes vπ(s). Thus,
v∗ is not necessarily associated with a particular policy—v∗(s) can be the value
function associated with different policies depending on which state, s, it is
evaluated on.

Consider the relation ≥ for policies defined as:

π ≥ π′ if and only if ∀s ∈ S, vπ(s) ≥ vπ
′
(s). (115)

Notice that this relation produces a partial ordering on the set of policies. This
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is not a total order on the set of policies because there can exist two policies, π
and π′, such that both π 6≥ π′ and π′ 6≥ π.

Question 16. Give an example MDP for which there exist policies π and
π′ such that π 6≥ π′ and π′ 6≥ π.

We now present a definition of an optimal policy that differs from our earlier
definition. Specifically, an optimal policy, π∗ is any policy that is at least as
good as all other policies. That is, π∗ is an optimal policy if and only if

∀π ∈ Π, π∗ ≥ π. (116)

Particularly given that ≥ only produces a partial ordering, at this point it may
not be clear than such an optimal policy exists.

Later we will prove that for all MDPs where |S| <∞, |A| <∞, Rmax <∞,
and γ < 1, there exists at least one optimal policy, π∗ under this definition of an
optimal policy. That is, Property 1 holds for this definition of an optimal policy
as well as the definition of an optimal policy in (17). From the definition of v∗

in (114), it follows that v∗ = vπ
∗

for all optimal policies, π∗.
We now have two different definitions of an optimal policy. Both definitions

are standard in RL research. The definition presented in (17) is common in
papers that focus on policy optimization, like BBO algorithms and algorithms
that compute the gradient of J(θ) (we will talk more about these policy gradient
algorithms later). The definition presented in (116) is common in theoretical
reinforcement learning papers and in papers that emphasize the use of value
functions.

Question 17. Which definition of an optimal policy is stricter, the defini-
tion in (17) or the definition in (116)?

Answer17.Thedefinitionin(116)isstricter.Thatis,everyoptimal
policyaccordingto(116)isanoptimalpolicyaccordingto(17),butevery
optimalpolicyaccordingto(17)isnotnecessarilyoptimalaccordingto(116).
Thedifferencebetweenthesetwodefinitionsstemsfromtheirrequirements
forstates,s,thatarenotreachable(fromanystateinthesupportof
theinitialstatedistribution).Thedefinitionin(17)doesnotplaceany
requirementsonthebehaviorofanoptimalpolicyfortheseunreachable
states,whilethedefinitionin(116)requiresanoptimalpolicytoactto
maximizetheexpectedreturnifweretoeverbeplacedintheseunreachable
states.

Also, notice that even when π∗ is not unique, the optimal value function, v∗

is unique—all optimal policies share the same state-value function.
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Just as we defined an optimal state-value function, we can define the optimal
action-value function, q∗ : S ×A → R, where

q∗(s, a) := max
π∈Π

qπ(s, a). (117)

Also like the optimal state-value function, q∗ = qπ
∗

for all optimal policies, π.

Question 18. Given v∗, can you compute π∗ if you do not know p and R?

Answer18.No.Anyactionin

argmax
a∈A∑

s′

p(s,a,s′)[R(s,a)+γv∗(s′)](118)

isanoptimalactioninstates.Computingtheseactionsrequiresknowledge
ofpandR.

Question 19. Given q∗, can you compute π∗ if you do not know p and R?
Answer19.Yes.Anyactionin

argmax
a∈A

q∗(s,a)(119)

isanoptimalactioninstates.

4.6 Bellman Optimality Equation for v∗

The Bellman optimality equation for v∗ is a recurrent expression for v∗. We will
show later that it holds for optimal policies, and only for optimal policies.

To try to get a recurrent expression for vπ, we can imagine what would
happen if there was an optimal policy π∗, with value function v∗. We can begin
with the Bellman equation for this policy π∗:

v∗(s) =
∑
a∈A

π∗(s, a)
∑
s′∈S

p(s, a, s′) [R(s, a) + γv∗(s′)]︸ ︷︷ ︸
q∗(s,a)

. (120)

Notice that in state s, π∗ will pick the action that maximizes q∗(s, a). So, we do
not need to consider all possible actions, a—we only need to consider those that
cause the q∗(s, a) term in (120) to be maximized. Thus,

v∗(s) = max
a∈A

∑
s′∈S

p(s, a, s′) [R(s, a) + γv∗(s′)]︸ ︷︷ ︸
q∗(s,a)

. (121)
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The above equation is the Bellman optimality equation for v∗. We say that a
policy, π, satisfies the Bellman optimality equation if for all states s ∈ S:

vπ(s) = max
a∈A

∑
s′∈S

p(s, a, s′) [R(s, a) + γvπ(s′)] . (122)

A possible misconception is that we have “derived” the Bellman optimality
equation formally. We have not—we have not established that there actually
exists a policy π∗ such that vπ

∗
= v∗, a property that we used when introducing

the Bellman optimality equation. Rather, one should view the Bellman optimality
equation at this point as an equation that policies may, or may not satisfy. The
Bellman optimality equation will be useful to us because we will establish that
1) if a policy π satisfies the Bellman optimality equation, then it is an optimal
policy, and 2) if the state and action sets are finite, rewards are bounded, and
γ < 1, then there exists a policy π that satisfies the Bellman optimality equation.
With these two results, we will have established the existence of an optimal
policy, π∗.

Once we have established these results, we will have that all optimal policies
satisfy the Bellman optimality equation, there exists at least one optimal policy,
and all optimal policies π have value functions vπ that are equal to v?.

Like the Bellman optimality equation for v∗, we can define Bellman optimality
equation for q∗ as:

q∗(s, a) =
∑
s′∈S

p(s, a, s′)

[
R(s, a) + γ max

a′∈A
q∗(s′, a′)

]
. (123)

Question 20. Derive the Bellman optimality equation for q∗ starting with
the Bellman equation for qπ

∗
.

We now establish the first link in our line of reasoning that will allow us to
establish the existence of an optimal policy:

Theorem 1. If a policy π satisfies the Bellman optimality equation, then π is
an optimal policy.

Proof. By the assumption that π satisfies the Bellman optimality equation, we
have that for all states s:

vπ(s) = max
a∈A

∑
s′∈S

p(s, a, s′)[R(s, a) + γvπ(s′)]. (124)

Applying the Bellman optimality equation again, this time for vπ(s′), we can
expand the above equation:

vπ(s) = max
a∈A

∑
s′∈S

p(s, a, s′)

[
R(s, a) + γ

(
max
a′∈A

∑
s′′

p(s′, a′, s′′)(R(s′, a′) + γvπ(s′′)

)]
(125)
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We could continue this process, constantly replacing the final vπ term using
the Bellman optimality equation. If we could do this infinitely often, we would
eliminate π from the expression entirely. Consider what this expression would
become if s corresponds to the state at time t. R(s, a) is the first reward, and
R(s′, a′) is the second reward (which is discounted by γ). We would eventually
obtain an R(s′′, a′′) term, which would be discounted by γ2. The p terms are
capturing state transition dynamics. So, ignoring for a moment how actions
are selected, this expression is the expected discounted sum of rewards. Now,
when computing this expected discounted sum of rewards, which actions are
being chosen? At each time, t, the action is chosen that maximizes the expected
discounted sum of future rewards (given that in the future the actions are chosen
to also maximize the discounted sum of future rewards).

Consider now any policy π′. What would happen if we replaced each maxa∈A
with

∑
a∈A π

′(s, a)? Would the expression become bigger or smaller? We argue
that the expression could not become bigger. That is, for any policy π′:

vπ(s) = max
a∈A

∑
s′∈S

p(s, a, s′)

[
R(s, a) + γ

(
max
a′∈A

∑
s′′

p(s′, a′, s′′)(R(s′, a′) + γ . . .

)]
(126)

≥
∑
a∈A

π′(s, a)
∑
s′∈S

p(s, a, s′)

[
R(s, a) + γ

(∑
a′∈A

π′(s′, a′)
∑
s′′

p(s′, a′, s′′)(R(s′, a′) + γ . . .

)]
.

(127)

If you do not see why this is true, consider any finite set X , any distribution
µ over the set X , and any function f : X → R. Convince yourself that the
following property holds:

max
x∈X

f(x) ≥
∑
x∈X

µ(x)f(x). (128)

We have simply applied this property repeatedly, where X is A, µ is π(s, ·), x is
a, and f is the remainder of the expression as a function of a.

Continuing the proof, given that the above holds for all policies π′, we have
that for all states s ∈ S and all policies π′ ∈ Π:

vπ(s) = max
a∈A

∑
s′∈S

p(s, a, s′)

[
R(s, a) + γ

(
max
a′∈A

∑
s′′

p(s′, a′, s′′)(R(s′, a′) + γ . . .

)]
(129)

≥E[Gt|St = s, π′] (130)

=vπ
′
(s). (131)

Hence, for all states s ∈ S, and all policies π′ ∈ Π, vπ(s) ≥ vπ
′
(s), i.e., for all

policies π′ ∈ Π, we have that π ≥ π′, and hence π is an optimal policy.
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Notice that this theorem has not established the existence of an optimal
policy because we did not show that there exists a policy that satisfies the
Bellman optimality equation.

5 Policy Iteration and Value Iteration

So far we have defined the problem that we would like to solve, discussed BBO
algorithms, which ignore the MDP structure of the problem, and defined value
functions that more sophisticated algorithms will use to leverage the MDP
structure of the environment. In this section we will show how value functions
can be used to efficiently solve for the optimal policies of finite MDPs when the
transition function and reward function are known. That is, in this section we
will present standard planning algorithms. We present these algorithms because
the later RL algorithms (which do not require p and R to be known) are closely
related to these algorithms (they can be viewed as stochastic approximations
to these planning algorithms). We begin with the question of how the value
function for a policy can be computed.

5.1 Policy Evaluation

Here we consider the question: given a policy, π, how can we efficiently compute
vπ? Notice that the Bellman equation provides us with |S| equations and |S|
unknown variables, vπ(s1), vπ(s2), . . . , vπ(s|S|). These equations are:

vπ(s1) =
∑
a∈A

π(s1, a)
∑
s′∈S

p(s1, a, s
′) (R(s1, a) + γvπ(s′)) (132)

vπ(s2) =
∑
a∈A

π(s2, a)
∑
s′∈S

p(s2, a, s
′) (R(s2, a) + γvπ(s′)) (133)

. . .

vπ(s|S|) =
∑
a∈A

π(s|S|, a)
∑
s′∈S

p(s|S|, a, s
′)
(
R(s|S|, a) + γvπ(s′)

)
. (134)

Notice that this is a system of linear equations for which we know there is
a unique solution (the value function—we know this is unique because these
equations were derived from the definition of the value function in (43), which is
clearly unique). This system can be solved in O(|S|3) operations (in general this
problem requires Ω(|S|2) operations, and in Fall 2018 the algorithm with the
best asymptotic runtime is that of Coppersmith and Winograd (1987), which
requires O(n2.736) operations.).

An alternative approach is to use dynamic programming. Although not nec-
essarily more efficient, this dynamic programming approach will later allow us to
efficiently interleave steps of evaluating the current policy and then improving the
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current policy. Here, when we talk about evaluating a policy or policy evaluation,
we refer to estimating the state-value or action-value function associated with
the policy. Later we will discuss a different form of policy evaluation wherein
the goal is to estimate J(π), not the entire value function, vπ.

Let v0, v1, v2, . . . denote a sequence of functions where each vi : S → R. Note
that some people like to include hat symbols on estimators. In the notes we will
continue by writing vi to denote the ith estimator of vπ, but you are free in your
assignments to write v̂i (as we are doing in lecture) in place of vi. Intuitively,
this sequence of functions represents the sequence of estimates of vπ produced
by an algorithm estimating vπ in an incremental manner. This has been a point
of confusion for students in the past, who did not recognize that vi and vπ are
different. So, to say it again, notice that vi is our ith approximation of vπ. It is
not necessarily vπ. Also, although we typically “know” vi (we have an analytic
form for it, or code to evaluate it), we often do not precisely know vπ (if we did,
we would have no need to approximate it!).

Consider the setting where v0 is chosen arbitrarily. One way to improve our
estimate is to try to make the two sides of the Bellman equation equal. Recall
that the Bellman equation for vπ is:

vπ(s) =
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′) (R(s, a) + γvπ(s′)) . (135)

We can therefore try to make the two sides of the Bellman equation equal with
the following update:

vi+1(s) =
∑
a∈A

π(s, a)
∑
s′∈S

p(s, a, s′)
(
R(s, a) + γvi(s

′)
)
. (136)

Applying this update to compute vi+1(s) for ever state s given vi, is called a full
backup. Applying the update to a compute vi+1(s) for a single state, s, is called
a backup.

To see why this is a dynamic programming approach, consider what this
algorithm does if we stored v0, v1, . . . as a matrix with v0 as the first column, v1

and the second column, etc. This update rule fills this matrix from the left to
the right, where the values for entries depend on previously computed values for
the previous column.

From our derivation of the Bellman equation, it should be clear that vπ is
a fixed point of this iterative procedure (that is, if vi = vπ, then vi+1 = vπ as
well). Less obviously, vi → vπ. We will not prove this property (this update is a
stepping stone to the value iteration update that we present later, and we will
focus on proving the convergence of the value iteration update).

Question 21. Consider a 4× 4 gridworld where the agent starts in the top
left, the bottom right state is terminal, rewards are always −1, γ = 1, and
state transitions are deterministic. Consider the policy that always chooses
the action to move down, except when it is on the bottom row, at which
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point it chooses the action to move right. Starting with v0(s) = 0 for all s,
compute v1, v2, . . . , v7.

Answer21.v0=

0000
0000
0000
0000

v1=

−1−1−1−1
−1−1−1−1
−1−1−1−1
−1−1−1−1

v2=

−2−2−2−2
−2−2−2−2
−2−2−2−2
−2−2−2−1

v3=

−3−3−3−3
−3−3−3−3
−3−3−3−2
−3−3−2−1

v4=

−4−4−4−4
−4−4−4−3
−4−4−3−2
−4−3−2−1

v5=

−5−5−5−4
−5−5−4−3
−5−4−3−2
−4−3−2−1

v6=

−6−6−5−4
−6−5−4−3
−5−4−3−2
−4−3−2−1

v7=

−7−6−5−4
−6−5−4−3
−5−4−3−2
−4−3−2−1

Allowingrewards

whentransitioningtos∞fromotherstatesisok.Wecanhandlethisby
introducinganewstatethatoccursjustbefores∞.Therewardcanbe
non-zerowhentransitioningintothisnewstate,andthisnewstatealways
transitionstos∞witharewardofzero.

Notice that in Question 21 information appears to flow backwards across state
transitions. Also notice that in this example the process has reached its fixed
point after only seven iterations. In general, this policy evaluation algorithm is
only guaranteed to converge in the limit, and so practical implementations might
halt the process when all changes to the current state-value approximation are
smaller than some predefined constant value.

The dynamic programming algorithm for policy evaluation that we have
described thus far can be implemented by storing 2|S| values—by storing vi only
until vi+1 has been computed. When a new estimate of vπ(s) has been computed,
it is placed in vi+1(s) in order to not overwrite the value stored in vi(s), which
might be used when computing the next values for other states. An alternative in-
place implementation keeps only a single table, performs individual state backups
(rather than full backups) and stores updated state-value approximations directly
in the same table from which they were computed. This variant has also been
shown to converge, even if states are updated in any order or if some states are
updated more frequently than others (as long as every state is updated infinitely
often). Notice that in these in-place variants, the order that states are updated
in matters. In Question 21, updating states from the bottom left to the top right
can result in a single sweep of the state space being sufficient for the algorithm
to reach its fixed point, while updating states from the top left to bottom right
will take many sweeps before convergence.
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5.2 Policy Improvement

Once we have estimated vπ or qπ for some initial policy, π, how can we
find a new policy that is at least as good as π? Notice that if we have
vπ, we can easily compute qπ(s, a) for any (s, a) by the equation qπ(s, a) =∑
s′∈S p(s, a, s

′)
(
R(s, a) + γvπ(s′)

)
. So, for now consider how we could find a

policy π′ that is always at least as good as π if we have already computed qπ.
Consider a greedy approach, where we define π′ to be a deterministic policy

that selects the action that maximizes qπ(s, ·) when in state s. That is, π′ : S → A
is a deterministic policy defined such that

π′(s) ∈ arg max
a∈A

qπ(s, a). (137)

This policy is the greedy policy with respect to qπ. It is greedy because it optimizes
for the immediate future without considering long-term ramifications. Recall
that qπ(s, a) is the expected discounted return if the agent takes action a in
state s and follows the policy π thereafter. So, when π′ chooses actions, a, that
maximize qπ(s, a), it not necessarily choosing actions that cause qπ

′
(s, a) or

vπ
′
(s) to be maximized. It is choosing the actions that maximize the expected

discounted return if the action is chosen at the current step, and then afterwards
the policy π (not π′!) is used. Can this greedy update to the policy, which only
considers using π′ to take a single action, cause π′ to be worse than π?

Perhaps surprisingly, the greedy policy with respect to qπ is always at least
as good as π, i.e., π′ ≥ π (recall the definition of ≥ for policies, presented in
(115)). This result is described by the policy improvement theorem, Theorem 2.

Theorem 2 (Policy Improvement Theorem). For any policy π, if π′ is a deter-
ministic policy such that ∀s ∈ S,

qπ(s, π′(s)) ≥ vπ(s), (138)

then π′ ≥ π.

Proof.

vπ(s) ≤qπ(s, π′(s)) (139)

=E [Rt + γvπ(St+1)|St = s, π′] (140)

≤E [Rt + γqπ(St+1, π
′(St+1))|St = s, π′] (141)

=E [Rt + γE [Rt+1 + γvπ(St+2)|St = s, π′]|St = s, π′] (142)

=E
[
Rt + γRt+1 + γ2vπ(St+2)

∣∣St = s, π′
]

(143)

≤E
[
Rt + γRt+1 + γ2Rt+2 + γ3vπ(St+3)

∣∣St = s, π′
]

(144)

. . . (145)

≤E
[
Rt + γRt+1 + γ2Rt+2 + γ4Rt+3 + · · ·

∣∣St = s, π′
]

(146)

=vπ
′
(s), (147)
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where each step follows from the previous using mixtures of the definitions
of value functions and the assumption within the theorem statement. Notice
that (140) conditions on π′, not π. This is because the only action that this
conditioning impacts is At—all subsequent actions are captured by the vπ(St+1)
term, which uses the policy π. Notice also that the inner expectation in (142)
does not condition on St+1 taking a particular value, which one might expect
given that it is an expansion of qπ(St+1, π

′(St+1)). This is because the state,
St+1, that qπ(St+1, π

′(St+1)) takes as its first argument is a random variable. So,
the condition that one might expect in (142) when expanding qπ(St+1, π

′(St+1))
is that St+1 = St+1. This condition is a tautology, and so it can be ignored.

The policy improvement theorem also holds for stochastic greedy policies, as
described in Theorem 3, for which we do not provide a proof.

Theorem 3 (Policy Improvement Theorem for Stochastic Policies). For any
policy π, if π′ satisfies ∑

a∈A
π′(s, a)qπ(s, a) ≥ vπ(s), (148)

for all s ∈ S, then π′ ≥ π.

We now have the components to create our first planning algorithm, policy
iteration. The policy iteration algorithm interleaves policy evaluation steps using
the dynamic programming approach and policy improvement steps. This process
is depicted in Figure 11, and presented using pseudocode in Algorithm 3.

𝜋𝜋0 𝑣𝑣𝜋𝜋0 𝜋𝜋1 𝑣𝑣𝜋𝜋1 𝜋𝜋2 𝑣𝑣𝜋𝜋2
policy 

evaluation
policy 

evaluation
policy 

evaluation
policy 

improvement
policy 

improvement
policy 

improvement

Figure 11: Diagram of the policy iteration algorithm. It begins with an arbitrary
policy, π0, and evaluates it using the dynamic programming approach described
previously to produce vπ0 . It then performs greedy policy improvement to select
a new deterministic policy, π1, that is at least as good as π0. It then repeats
this process, evaluating π1, and using the resulting value function to obtain a
new policy, π2, etc.
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Algorithm 3: Policy iteration. This pseudocode assumes that policies
are deterministic.

1 Initialize π0 arbitrarily;
2 for i = 0 to ∞ do

/* Policy Evaluation */
3 Initialize v0 arbitrarily;
4 for k = 0 to ∞ do
5 For all s ∈ S:

vk+1(s) =
∑
s′∈S

p(s, πi(s), s
′) (R(s, πi(s)) + γvk(s′)) (149)

if vk+1 = vk then
6 vπi = vk;
7 break;

/* Check for Termination */

8 if ∀s ∈ S, πi(s) ∈ arg maxa∈A
∑
s′∈S p(s, a, s

′)
(
R(s, a) + γvπi(s′)

)
then

9 terminate;

/* Policy Improvement */
10 Compute πi+1 such that for all s,

πi+1(s) ∈ arg max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γvπi(s′)

)
, (150)

with ties broken by selecting actions according to some strict total
order on A;

Notice that the number of deterministic policies for a finite MDP is finite. So,
either policy iteration terminates after a finite number of iterations (if rewards
are bounded and γ < 1) or some policy must occur at least twice (there is a
cycle in the sequence of policies). We now show that there cannot be a cycle of
policies, so we can conclude that policy iteration terminates after a finite number
of iterations.

Theorem 4. It cannot occur that πj = πk for j 6= k when using the policy
iteration algorithm.

Proof. We assume without loss of generality that j < k. We have from the
policy improvement theorem that πj ≤ πj+1 ≤ · · · ≤ πk. Since πj = πk, and
thus vπj = vπk , we therefore have that vπj = vπj+1 = vπk . So (recall that the
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policies are deterministic policies):

vπj (s) =vπj+1(s) (151)

(a)
=R(s, πj+1(s)) +

∑
s∈S

p(s, πj+1(s), s′)γvπj+1(s′) (152)

(b)
=R(s, πj+1(s)) +

∑
s∈S

p(s, πj+1(s), s′)γvπj (s′) (153)

(c)
= max

a∈A
R(s, a) +

∑
s∈S

p(s, a, s′)γvπj (s′), (154)

where (a) comes from the Bellman equation, (b) holds because vπj = vπj+1 ,
and (c) holds by the definition of πj+1. Furthermore, by the Bellman equation
for vπj we have that:

vπj (s) = R(s, πj(s)) +
∑
s∈S

p(s, πj(s), s
′)γvπj (s′). (155)

For (155) and (154) to hold simultaneously, we have that

max
a∈A

R(s, a) +
∑
s∈S

p(s, a, s′)γvπj (s′) = R(s, πj(s)) +
∑
s∈S

p(s, πj(s), s
′)γvπj (s′),

(156)
and hence that

πj(s) ∈ arg max
a∈A

R(s, a) +
∑
s∈S

p(s, a, s′)γvπj (s′). (157)

However, this means that the termination condition for policy iteration would
have been satisfied with πj .

Now that we know policy iteration terminates, consider what we know about
the policy that it converges to. When this it terminates, we have that for all
s ∈ S,

vπi+1(s)
(a)
=
∑
a∈A

πi+1(s, a)
∑
s′∈S

p(s, a, s′)(R(s, a) + γvπi+1(s′)) (158)

(b)
=
∑
a∈A

πi+1(s, a)
∑
s′∈S

p(s, a, s′)(R(s, a) + γvπi(s′)) (159)

(c)
= max

a∈A

∑
s′∈S

p(s, a, s′)(R(s, a) + γvπi(s′)) (160)

(b)
= max

a∈A

∑
s′∈S

p(s, a, s′)(R(s, a) + γvπi+1(s′)), (161)

where (a) is the Bellman equation (and where we view πi+1 as a distribution
rather than a mapping from states to actions), (b) both follow from the starting
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assumption that the process has terminated, and so πi+1 = πi, and (c) comes
from the fact that πi+1 is greedy with respect to vπi . Since (161) is the Bellman
optimality equation, πi+1 is an optimal policy—when policy iteration stops, the
policy is optimal.

Notice also that the policy evaluation algorithm could terminate when vπi+1 =
vπi . Using this termination condition would not require πi+1 to break ties in
any particular order and is equivalent, but makes the analysis of the final policy
less straightforward.

5.3 Value Iteration

Notice that the policy iteration algorithm is not efficient. Even though policy
evaluation using dynamic programming is guaranteed to converge to vπ, it is
not guaranteed to reach vπ, except in the limit as the number of iterations of
policy evaluation goes to infinity. Thus, each iteration of the outer loop in policy
iteration (the loop over i), may require an infinite amount of computation. An
obvious question is whether or not the policy evaluation algorithm can be stopped
early—when vk+1 6= vk, but perhaps after some fixed number of iterations (i.e.,
the loop over k goes from 0 to K, for some constant K).

If policy evaluation is stopped early, then the estimate of vπi will have error,
and so the policy that is greedy with respect to the estimate of vπi may not
be an improvement over the current policy. However, perhaps surprisingly, this
process does still converge to an optimal policy. A particularly popular variant
of this algorithm is value iteration, which uses K = 1—it performs a single
iteration of policy evaluation between policy improvement steps. Importantly,
each iteration of policy evaluation begins with the value function estimate used
in the previous step (rather than a random initial value function. Pseudocode
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for value iteration is presented in Algorithm 4.

Algorithm 4: Value Iteration. This pseudocode is an inefficient imple-
mentation that we use as a stepping-stone to the common pseudocode.

1 Initialize π0 and v0 arbitrarily;
2 for i = 0 to ∞ do

/* Policy Evaluation */
3 For all s ∈ S:

vi+1(s) =
∑
s′∈S

p(s, πi(s), s
′) (R(s, πi(s)) + γvi(s

′)) (162)

/* Check for Termination */
4 if vi+1 = vi then
5 terminate;

/* Policy Improvement */
6 Compute πi+1 such that for all s,

πi+1(s) ∈ arg max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γvi+1(s′)

)
. (163)

If we were to following the pseudocode in Algorithm 4, we would obtain the
following sequence of policies and value functions:

v0 : arbitrary (164)

π0 : arbitrary (165)

v1 :∀s, v1(s) =
∑
s′∈S

p(s, π0(s), s′)
(
R(s, π0(s)) + γv0(s′)

)
(166)

π1 :∀s, π1(s) ∈ arg max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv1(s′)

)
(167)

v2 :∀s, v2(s) =
∑
s′∈S

p(s, π1(s), s′)
(
R(s, π1(s)) + γv1(s′)

)
(168)

π2 :∀s, π2(s) ∈ arg max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv2(s′)

)
(169)

v3 :∀s, v3(s) =
∑
s′∈S

p(s, π2(s), s′)
(
R(s, π2(s)) + γv2(s′)

)
(170)

π3 :∀s, π3(s) ∈ arg max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv3(s′)

)
(171)

. . . (172)

Notice the similarity between the updates to the policy and the value function
estimate. When computing v2(s) we use π1(s), which is the action, a, that
maximizes the expression on the right side of (167). This expression is the same

54



expression as that in the right side of (168). Thus, the expression for v2(s) can
be written as:

v2(s) = max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv1(s′)

)
. (173)

This same trend holds for v3 and v2. In general, we can compute vi+1 directly
from vi without explicitly computing πi. This results in the more efficient form
for the value iteration algorithm:

vi+1(s) = max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γvi(s

′)
)
. (174)

Notice that, while the policy evaluation algorithm is an iterative form for the
Bellman equation, the value iteration update in (174) is an iterative form for
the Bellman optimality equation. Pseudocode for the value iteration algorithm
using this more efficient update is presented in Algorithm 5.

Algorithm 5: Value Iteration.

1 Initialize v0 arbitrarily;
2 for i = 0 to ∞ do

/* Policy Evaluation */
3 For all s ∈ S:

vi+1(s) = max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γvi(s

′)
)
. (175)

/* Check for Termination */
4 if vi+1 = vi then
5 terminate;

5.4 The Bellman Operator and Convergence of Value It-
eration

In this subsection we prove that value iteration converges to a single unique
value function. We then argue that this result implies all of the claims that we
previously stated we would prove later: a deterministic optimal policy exists for
all finite MDPs with bounded rewards and γ < 1, and the Bellman optimality
equation only holds for vπ

∗
, where π∗ is an optimal policy.

Before we present the main theorem of this subsection, we will establish
additional notation. First notice that, for finite MDPs, we can view value function
estimates as vectors in R|S|, where each element in the vector corresponds to the
value of one state. Also, recall that an operator is a function that takes elements
of a space as input and produces elements of the same space as output. Let
T : R|S| → R|S| be an operator that we call the Bellman operator, which takes
value function estimates as input and produces as output new value function
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estimates, and such that

T (vi) := vi+1, (176)

where the sequence of value function approximations, v0, v1, . . . , is as defined by
(174). That is,

T (vi) = max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γvi(s

′)
)
. (177)

That is, the Bellman operator is the operator that encodes a single iteration of
value iteration. We will abuse notation and omit parenthesis, writing T vi = vi+1,
and further assume that the order of operations prioritizes evaluation of the
Bellman operator over evaluation of the value function approximation, so that
T v(s) denotes T (v) evaluated at s.

An operator is a contraction mapping if there exists a λ ∈ [0, 1) such that
∀x ∈ X ,∀y ∈ Y, d(f(x), f(y)) ≤ λd(x, y), where d is a distance function. Figure
12 presents a diagram that may assist in understanding the definition of a
contraction mapping.𝜋𝜋0 𝑣𝑣𝜋𝜋0 𝜋𝜋1 𝑣𝑣𝜋𝜋1 𝜋𝜋2 𝑣𝑣𝜋𝜋2

policy 
evaluation

policy 
evaluation

policy 
evaluation

policy 
improvement

policy 
improvement

policy 
improvement

𝒳𝒳

𝑥𝑥

𝑦𝑦

𝑓𝑓(𝑦𝑦)
𝑓𝑓(𝑥𝑥) 𝑓𝑓

𝑓𝑓

𝑑𝑑 𝑓𝑓 𝑥𝑥 , 𝑓𝑓 𝑦𝑦

𝑑𝑑 𝑥𝑥,𝑦𝑦
𝑑𝑑 𝑓𝑓 𝑥𝑥 , 𝑓𝑓 𝑦𝑦

𝑑𝑑 𝑥𝑥,𝑦𝑦 ≤ 𝜆𝜆

Figure 12: Diagram to assist with interpreting the definition of a contraction
mapping. Here x and y denote two points in the space X . The function, f ,
maps x to f(x), and y to f(y). If f is a contraction mapping, then for every
possible x and y, the distance between x and y (the length of the green dotted
line) must be greater than the distance between f(x) and f(y) (the length of
the dotted blue line). Moreover, the ratio of these distances must be at most λ.
For example, if λ = 0.5, then every application of f to two points, x and y must
at least halve the distance between x and y.

Question 22. If f is a contraction mapping, then is the sequence xi+1 =
f(xi) guaranteed to converge? Is it guaranteed to converge to a unique point
within X?
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Answer22.Undercertainconditions,thissequencewillconvergetoa
uniquefixed-pointwithinX.Thisshouldbeintuitivelyclear,sinceifthe
processweretobestartedatanytwopointsinX,thedistancebetween
thei

th
pointineachsequencewilldecreaseatarateofλduringeach

iteration.Furthermore,thefixedpointmustbeunique,sinceotherwise
definingxtobeonefixedpointandytobetheotherfixedpointwould
resultind(f(x),f(y))=d(x,y)6≤λd(x,y).Thisintuitioniscapturedby
theBanachfixedpointtheorem,presentedbelow.

As described in the answer to the above question, if f is a contraction
mapping then it is guaranteed to converge to a unique fixed point. This intuition
is formalized by the Banach fixed-point theorem:

Theorem 5 (Banach Fixed-Point Theorem). If f is a contraction mapping on
a non-empty complete normed vector space, then f has a unique fixed point, x∗,
and the sequence defined by xk+1 = f(xk), with x0 chosen arbitrarily, converges
to x∗.

Proof. We do not provide a proof in this course. A proof can be found on
Wikipedia.

We will apply the Banach fixed-point theorem where f ← T , x ∈ R|S|,
and d(v, v′) := maxs∈S |v(s) − v′(s)|. That is, we will consider the max norm,
‖v − v′‖∞ = maxs∈S |v(s) − v′(s)|. Recall that the max norm is the p-norm,
with p =∞. In order to apply the Banach fixed-point theorem, first notice that
R|S| is complete under the max-norm.5 We must also show that the Bellman
operator is a contraction mapping—we show this in Theorem 6.

Theorem 6 (The Bellman operator is a contraction mapping). The Bellman
operator is a contraction mapping on R|S| with d(v, v′) := maxs∈S |v(s)− v′(s)|
if γ < 1.

Proof.

‖T v − T v′‖∞ = max
s∈S
|T v(s)− T v′(s)| (178)

= max
s∈S

∣∣∣∣∣max
a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv(s′)

)
−max

a∈A

∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv′(s′)

)∣∣∣∣∣ ,
(179)

by the definition of the Bellman operator. To continue, we derive a relevant
property of arbitrary functions, f : X → R and g : X → R, for arbitrary sets,
X . We begin with a simple expression and then list inequalities implied by the

5This follows from the Riesz-Fisher theorem, which implies that Lp space is complete for
1 ≤ p ≤ ∞.
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preceding inequalities to obtain the desired expression:

∀x, f(x)− g(x) ≤|f(x)− g(x)| (180)

∀x, f(x) ≤|f(x)− g(x)|+ g(x) (181)

max
x∈X

f(x) ≤max
x∈X
|f(x)− g(x)|+ g(x) (182)

max
x∈X

f(x) ≤max
x∈X
|f(x)− g(x)|+ max

x∈X
g(x) (183)

max
x∈X

f(x)−max
x∈X

g(x) ≤max
x∈X
|f(x)− g(x)|. (184)

If maxx∈X f(x)−maxx∈X g(x) ≥ 0, then it follows from (184) that∣∣∣∣max
x∈X

f(x)−max
x∈X

g(x)

∣∣∣∣ ≤ max
x∈X
|f(x)− g(x)|. (185)

If maxx∈X f(x)−maxx∈X g(x) < 0, then we have from (184) that:

max
x∈X

g(x)−max
x∈X

f(x) ≤max
x∈X
|g(x)− f(x)|, (186)

which also implies (185), since maxx∈X g(x) − maxx∈X f(x) ≥ 0 and |f(x) −
g(x)| = |g(x)− f(x)|. Applying (185) to (179), we obtain:

‖T v − T v′‖ ≤max
s∈S

max
a∈A

∣∣∣∣∣∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv(s′)

)
−
∑
s′∈S

p(s, a, s′)
(
R(s, a) + γv′(s′)

)∣∣∣∣∣
(187)

=γmax
s∈S

max
a∈A

∣∣∣∣∣∑
s′∈S

p(s, a, s′)
(
v(s′)− v′(s′)

)∣∣∣∣∣ (188)

≤γmax
s∈S

max
a∈A

∑
s′∈S

p(s, a, s′)
∣∣(v(s′)− v′(s′)

)∣∣ (189)

≤γmax
s∈S

max
a∈A

max
s′∈S

∣∣(v(s′)− v′(s′)
)∣∣ (190)

=γmax
s′∈S
|v(s′)− v′(s′)| (191)

=γ‖v − v′‖∞. (192)

Thus, we have that the Bellman operator is a contraction mapping, and so
by the Banach fixed point theorem it follows that the value iteration algorithm
converges to a unique fixed point, which we denote here by v∞.

Theorem 7. Value iteration converges to a unique fixed point v∞ for all MDPs
with finite state and action sets, bounded rewards, and γ < 1.

Proof. This follows from the Banach fixed point theorem (Theorem 5) and the
fact that the Bellman operator (which encodes the value iteration update) is a
contraction (Theorem 6).
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Although we do not provide a proof, policy iteration and value iteration both
converge in a number of iterations that is polynomial in |S| and |A|. Notice also
that the Bellman operator is a contract with parameter γ—as γ approaches one
the speed of convergence slows, while small values for γ speed up convergence.
This is intuitive because small γ mean that events that occur in the distant
future are of little importance, and so the value function will become accurate
after fewer backups.

We can now establish that the existence of deterministic optimal policies:

Theorem 8. All MDPs with finite state and action sets, bounded rewards, and
γ < 1 have at least one optimal policy.

Proof. By Theorem 7 we have that value iteration converges to a unique fixed
point v∞. Consider any deterministic policy π∞ satisfying:

π∞(s) ∈ arg max
a∈A

∑
s′∈S

p(s, a, s′)(R(s, a) + γv∞(s)). (193)

At least one such policy exists, since A is a finite set. Recall that value iteration
corresponds to one iteration of policy iteration, but where policy evaluation only
conducts a single full backup. This π∞ is the greedy policy with respect to v∞.
Since v∞ is a fixed point of value iteration, performing one full backup of policy
evaluation for π∞ results in v∞ again. This means that v∞ is a fixed-point of
policy evaluation for π∞. That is:

v∞(s) =
∑
s′∈S

p(s, π∞(s), s′)(R(s, π∞(s)) + γv∞(s′)). (194)

As this is the Bellman equation, we have that v∞ is the state-value function for
π∞. Next, since v∞ is a fixed point of the value iteration algorithm, we have
that for all s ∈ S:

v∞(s) = max
a∈A

∑
s′∈S

p(s, a, s′)(R(s, a) + γv∞(s′)), (195)

which is the Bellman optimality equation. Since v∞ is the value function for
π∞, we therefore have that π∞ satisfies the Bellman optimality equation. We
showed in Theorem 1 that any policy satisfying the Bellman optimality equation
is an optimal policy, and so we have that π∞ is an optimal policy.

6 Monte Carlo Methods

Monte Carlo algorithms, which have a history worth reading about, use random-
ness to solve problems that are deterministic in principle. A classical example
is the estimation of π. Consider the unit circle, drawn with its center at the
bottom left corner of a unit square. The percent of the area inside the square
that is also inside the circle is π/4. Hence, once can estimate π by throwing
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darts at the unit square (such that the darts land with a uniform distribution
over the square). An estimate of π is then given by:

π ≈ 4
number of darts inside the unit square and the circle

number of darts inside the unit square
. (196)

In this example, the random dart throws are used to provide an (unbiased)
estimate of the deterministic value, π.

6.1 Monte Carlo Policy Evaluation

Consider using a Monte Carlo approach to estimate the state-value function for a
policy π. In this case, a “dart throw” corresponds to sampling history (running an
episode) using the policy, π. More specifically, consider the task of estimating the
value of a state, s ∈ S. If we generate a history, H = (S0, A0, R0, S1, A1, R1, . . . ),
starting from S0 = s, how can we construct an unbiased estimator of vπ(s)?

Question 23. Which of the following three estimators of vπ(s) is an unbi-
ased estimator?

1.
∑∞
k=0 γ

kRk.

2.
∑∞
k=0 γ

kRtlast+k, where tlast is the last time step where the state was
s.

3. Other estimators that average the returns from each occurrence of s
within the history.

We can construct an unbiased estimator of vπ(s) by computing the discounted
return starting from the first occurrence of s within a history sampled using the
policy, π. If we were to compute the return from the last visit to the state, s,
it would not necessarily produce an unbiased estimate. To see why, consider
an MDP with a single state, s0, that self-transitions with probability 0.5, and
transitions to s∞ with probability 0.5. Let γ = 1. Let the reward be +1 for
self-transitions, and 0 for transitioning to s∞. The value of s0 in the example is
1, and the expected return from the first visit to s0 is 1. However, if we compute
the expected return from the last visit to s0, it is zero.

Next consider the expected return if we only consider returns from the second
time that s is visited in each trajectory. By the Markov property, what happened
prior to entering state s will not change the expected return, and so this remains
an unbiased estimator of vπ(s) provided that we discard any episodes in which
state s did not occur twice.

However, consider what happens if we average the expected return from
every occurrence of s. This is not necessarily an unbiased estimator. Consider
our example above. The expected value of the every-visit estimator can be
computed as follows, where the 0.5k terms compute the probability that Sk+1

is the first occurrence of s∞, and the values in parentheses after these terms
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are the corresponding average return from all visits to s (that is, 1
k

∑k−1
i=0 i =

(k − 1)k/2k = (k − 1)/2).

0.5(0) + 0.52

(
1

2

)
+ 0.53

(
2

2

)
+ 0.54

(
3

2

)
+ 0.55 (2) + . . .+ 0.5k

(
k − 1

2

)
. . .

(197)

=

∞∑
k=1

0.5k
(
k − 1

2

)
(198)

=0.5. (199)

Since vπ(s) = 1, this means that averaging the values from every visit provides
a biased estimate (an estimate with expected value 0.5).

In summary, the expected discounted return is an unbiased estimator of
vπ(st), where st is the state the occurred at time t if we use the kth time that
state s occurred, where episodes in which state s did not occur k times are
discarded. This includes the first-visit special case, where k = 1. It is not an
unbiased estimator if we use the k-from-last occurrence of state st,

6 nor is it
unbiased if we average the returns from multiple occurrences of state st (this
includes the case where we consider every occurrence of state st).

This suggests a simple algorithm for estimating vπ: generate many episodes
of data, and for each state, average the discounted returns after it was visited for
the first time in each episode. This algorithm is called First-Visit Monte Carlo,
pseudocode for which is provided in Algorithm 6.

Algorithm 6: First-Visit Monte Carlo
Input:
1) Policy, π, whose state-value function will be approximated
2) Initial state-value function estimate, v (e.g., initialized to zero)

1 Returns(s)← an empty list, for all s ∈ S. while true do
2 Generate an episode using π;
3 for each state, s, appearing in the episode do
4 t← time of first occurrence of s in the episode;

5 G←
∑∞
k=0 γ

kRt+k;
6 Append G to Returns(s);
7 v(s)← average(Returns(s));

If every state is visited infinitely often, then (for any finite MDP with bounded
rewards and γ < 1) the state-value function estimate, v, in First-Visit Monte
Carlo converges almost surely to vπ. The proof of this property stems from the
Khitchine strong law of large numbers:

Property 2 (Khintchine Strong Law of Large Numbers). Let {Xi}∞i=1 be in-
dependent and identically distributed random variables. Then ( 1

n

∑n
i=1Xi)

∞
n=1

6This is an unbiased estimator of the expected return conditioned on the event that state
st will occur precisely k (or k− 1, depending on how you index) times before the episode ends.
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is a sequence of random variables that converges almost surely to E[X1], i.e.,
1
n

∑n
i=1Xi

a.s.−→ E[X1].

Proof. See the work of Sen and Singer (1993, Theorem 2.3.13).

For a review of almost sure convergence, see Wikipedia. Another useful law
of large numbers, which we will not use here, is the Kolmogorov trong law of
large numbers:

Property 3 (Kolmogorov Strong Law of Large Numbers). Let {Xi}∞i=1 be
independent (not necessarily identically distributed) random variables. If all Xi

have the same mean and bounded variance, then ( 1
n

∑n
i=1Xi)

∞
n=1 is a sequence

of random variables that converges almost surely to E[X1].

Proof. See the work of Sen and Singer (1993, Theorem 2.3.10 with Proposition
2.3.10).

To see that First-Visit Monte Carlo converges almost surely to vπ, consider
the sequence of estimates, vk(s) for a particular state, s. We have that vk(s) =
1
k

∑k
i=1Gi, where Gi is the ith return in Returns(s). Notice that E[Gi] = vπ(s)

and that the Gi are i.i.d. because they are sampled from independent episodes.
Hence, by Khintchine’s strong law of large numbers we have that vk(s)

a.s.−→ vπ(s).
Furthermore, because the number of states is finite, we have that this convergence
is uniform, not just pointwise. That is, not only does the value of each state
converge almost surely to the correct value, but the entire value function estimate
converges to the true state-value function.

Furthermore, Var(vk(s)) ∝ 1
k since (using the fact that Gi are i.i.d.):

Var(vk(s)) = Var

(
1

k

k∑
i=1

Gi

)
(200)

=
1

k2
Var

(
k∑
i=1

Gi

)
(201)

=
1

k2
kVar (Gi) (202)

=
1

k
Var (Gi) . (203)

An alternative to First-Visit Monte Carlo is Every-Visit Monte Carlo, which
uses the return from every visit to state s during an episode. Pseudocode for this
algorithm is provided in Algorithm 7. Notice that the return estimates used by
Every-Visit Monte Carlo are not all unbiased estimators of vπ(s). Furthermore,
these estimators are not all independent, since two returns computed from
the same episode may be correlated. Hence, our argument using Khintchine’s
strong law of large numbers does not apply, and we also cannot directly use
Kolmogorov’s strong law, since the Gi will not be independent. However, it can
be shown that if every state is visited infinitely often, then (for any finite MDP

62

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Pointwise_convergence


with bounded rewards and γ < 1) the state-value approximation of Every-Visit
Monte Carlo also converges almost surely to vπ.

Algorithm 7: Every-Visit Monte Carlo
Input:
1) Policy, π, whose state-value function will be approximated
2) Initial state-value function estimate, v (e.g., initialized to zero)

1 Returns(s)← an empty list, for all s ∈ S. while true do
2 Generate an episode using π;
3 for each state, s, appearing in the episode and each time, t, that it

occurred do
4 G←

∑∞
k=0 γ

kRt+k;
5 Append G to Returns(s);
6 v(s)← average(Returns(s));

Notice that we can also use Monte Carlo methods to estimate action values.
The idea is the same: our estimate, q̂(s, a) will be the average return from the
first time that action, a, was taken in state s in each episode. This raises a
problem: what if the policy, π, never takes an action, a? If we are going to use
Monte Carlo approximation to estimate qπ(s, a) within policy iteration, we need
to compute the action-values for all actions, not just the actions that π takes
(this is particularly true because policy iteration typically uses deterministic
policies). That is, we need to estimate the value of all actions at each state,
not just the action that we currently favor.7 One way to fix this problem is
to use exploring starts: to randomize S0 and A0 such that every state-action
pair has non-zero probability of being the initial state and action. Although
effective, this is not always possible (some systems cannot be reset to arbitrary
states—you can reset a chess board to a different state, but you cannot reset
a student interacting with a tutoring system to a particular state). Another
solution is to use a stochastic policy—to ensure that the policies being evaluated
have non-zero probability for every action in every state.

Using these Monte Carlo evaluation algorithms we can create a Monte Carlo
control algorithm. Recall that we refer to algorithms as control algorithms if
they search for an optimal policy, and evaluation algorithms if they estimate the
value function associated with a policy. In order to use Monte Carlo evaluation
within the policy iteration algorithm, we must estimate qπ rather than vπ. This
is because, now that we are assuming p and R are not known, we could not
perform the greedy policy improvement step in Algorithm 3. However, if we
estimate the action-value function we can: the greedy policy, πi+1 with respect

7Interestingly, this problem comes up in more modern reinforcement learning results as
well. For example, Silver et al. (2014) present the deterministic policy gradient theorem, which
considers a deterministic policy, π, but requires estimates of the action-value function for
actions that the deterministic policy will never take. The solution they propose is the same as
one we use here: sampling using a stochastic policy.
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to the current policy, πi, satisfies the following for all s:

πi+1(s) ∈ arg max
a∈A

qπi(s, a). (204)

Unlike line 150 of Algorithm 3, this can be computed without knowledge of p or
R.

Policy iteration, using Monte Carlo evaluation instead of dynamic program-
ming policy evaluation (and estimating qπ instead of vπ), has the same properties
as standard policy iteration if Monte Carlo evaluation is guaranteed to converge
to qπ (e.g., if using exploring starts).

This algorithm remains impractical because it calls for an infinite number of
episodes to be run in order to compute one iteration (to evaluate a policy). We
can create a Monte Carlo control algorithm similar to value iteration, which avoids
this infinite number of episodes in the evaluation step by terminating evaluation
after one episode. This algorithm accumulates returns over all episodes—it uses
all past returns to evaluate the current policy, not just the returns generated by
the current policy. Pseudocode for this algorithm is presented in Algorithm 8.

Algorithm 8: Monte Carlo - Exploring Starts.

1 for all s ∈ S and a ∈ A do
2 q(s, a)← arbitrary;
3 π(s)← arbitrary;
4 Returns(s, a)← empty list;

5 for i = 0 to ∞ do
6 Generate an episode using exploring starts and π;
7 for each (s, a) appearing in the episode do
8 G← return following the first occurrence of (s, a);
9 Append G to Returns(s, a);

10 q(s, a)← average(Returns(s, a));

11 for each s in the episode do
12 π(s)← arg maxa∈A q(s, a);

Notice that this algorithm cannot converge to a sub-optimal policy. If it
did, then q would converge to qπ (by the convergence of first-visit Monte Carlo
for policy evaluation), and π would be improved (if not, then π is a fixed-point
of the Bellman operator, and so it is an optimal policy). Whether or not this
algorithm converges (almost surely) to q∗ remains an open problem, though
researchers have shown that it does converge to q∗ in restricted settings like if
updates are performed synchronously to all state action pairs (Tsitsiklis, 2002)
or for a class of MDPs called Optimal Policy Feed-Forward MDPs (Wang and
Ross, 2020).

Notice also that we can avoid exploring starts by removing the exploring starts
and changing line 11 to compute the greedy action, a∗ ← arg maxa∈A q(s, a) (if
more than one action is optimal, select one of the optimal actions arbitrarily),
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and then defining the ε-greedy policy (a stochastic policy):

π(s, a) =

{
1− ε+ ε

|A| if a = a∗
ε
|A| otherwise.

(205)

By variations on the policy improvement theorem, policy iteration using ε-greedy
policies converges to an optimal ε-greedy policy. For more details on this topic,
see the work of Sutton and Barto (1998, Section 5.4).

Note: When more than one action is optimal with respect to q(s, a), the
equation for action probabilities is given by:

π(s, a) =

{
1−ε
|A∗| + ε

|A| if a ∈ A∗
ε
|A| otherwise,

(206)

where A∗ = arg maxa∈A q(s, a).

6.2 A Gradient-Based Monte Carlo Algorithm

Consider another Monte Carlo algorithm. It begins with a value function
estimate, v ∈ R|S|. At time t it performs the update:

v(St)← v(St) + α(Gt − V (St)). (207)

We will see many updates of this form. The general form is:

f(x)← f(x) + α(g(x)− f(x)). (208)

Here we refer to g(x) as the target for f(x), and this update changes f(x) to be
more similar to g(x).

We now show that this update can be viewed as the gradient descent update
on a loss function called the mean squared value error (MSVE):

MSVE(v) := E

[
1

2
(vπ(S)− v(S))2

]
, (209)

where the expectation is over states, S. The precise distribution of states can
be found in the second edition of Sutton and Barto’s book—here we use the
intuition that this distribution is the “observed distribution of states when the
policy π is executed.

The gradient descent algorithm on MSVE uses the update:

v ←v − α∂MSVE(v)

∂v
(210)

=v − α ∂

∂v
E

[
1

2
(vπ(S)− v(S))2

]
(211)

=v + αE

[
(vπ(S)− v(S))

∂v(S)

∂v

]
. (212)
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Because we do not know vπ, nor the distribution over states that results from
running π, we cannot compute this gradient update. Instead we can perform
stochastic gradient descent, wherein an unbiased estimator of the gradient is
used. We can obtain an unbiased estimate by sampling the state, S, and using
the Monte Carlo return, G, in place of vπ(S). Thus we obtain the stochastic
gradient descent update:

v ← v + α(Gt − v(St))
∂v(St)

∂v
. (213)

Consider now the term ∂v(S)/∂v. This term is a vector with |S| entries, all of
which are zero, except for the Sth, which is one. Hence, the update update to
the entire vector v can be written as an update to only the Sth term, since all
other updates are set to zero by multiplication with ∂v(S)/∂v, giving the update
in (207).

Thus, because (207) is an instance of the stochastic gradient descent algorithm,
its convergence properties have been well-studied (Bertsekas and Tsitsiklis, 2000).
That is, with sufficient smoothness assumptions, it will converge to a locally
optimal solution. Furthermore, because MSVE is a quadratic function of v, it
is convex, and the local optimum is the global minimum—stochastic gradient
descent will converge to vπ (with different forms of convergence given different
smoothness assumptions and assumptions on the step size sequence).

Note: Here the notes are going ahead a bit—we will talk about this next part
in the next lecture. Including it here makes the subsequent technical write-up
(that we did cover in lecture) more straightforward. Notice that this algorithm
can easily be adapted to work with continuous states. Let vw be a function
parameterized by the vector w ∈ Rn (here n is not related to any n previously
discussed—it is an arbitrary integer). That is, different vectors, w, result in v
being a different function, but for all w ∈ Rn, vw : S → R. In reinforcement
learning literature, we refer to vw as a function approximator. A common
example of a function approximator is an artificial neural network, wherein w
are the weights of the network.

Following our derivation of (207) as the stochastic gradient descent update
for MSVE, we can obtain the equivalent update using function approximation:

w ← w + α(Gt − vw(St))
∂vw(St)

∂w
. (214)

Again, because this algorithm is stochastic gradient descent, it will converge
almost surely to a locally optimal solution given the appropriate assumptions.
However, because vw may not be a linear function of w, this solution may not be
a global optimum. Furthermore, the global optimum may not be vπ, if this true
state-value function is not representable by the chosen function approximator.
Lastly, notice that (207) is a special case of (214), where vw stores one number
per state.
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7 Temporal Differenence (TD) Learning

Temporal difference learning, introduced by (Sutton, 1988a), is a policy evalu-
ation algorithm. Like Monte-Carlo algorithms, it learns from experiences (by
sampling—choosing actions using π and seeing what happens) rather than re-
quiring knowledge about p and R. However, like the dynamic programming
methods it produces estimates based on other estimates—it bootstraps. This
latter property means that it can perform its updates before the end of an
episode (a requirement of the Monte Carlo methods).

Like previous algorithms, TD begins with an initial value function estimate,
v. As an evaluation algorithm rather than a control algorithm, it estimates vπ

(as opposed to obtaining π∗ by estimating q∗). The TD update given that the
agent was in state s, took action a, transitioned to state s′, and obtained reward
r is:

v(s)← v(s) + α(r + γv(s′)− v(s)). (215)

Using other notation it can be defined equivalently as:

v(St)← v(St) + α(Rt + γv(St+1)− v(St)). (216)

This is very much like the Gradient-Based Monte Carlo Algorithm from Section
6.2, except that instead of using Gt as the target, it uses Rt + γv(St+1).

The temporal difference error (TD error), δt is defined as:

δt = Rt + γv(St+1)− v(St), (217)

and allows us to write the TD update as:

v(St)← v(St) + αδ. (218)

Notice that a positive TD error means that the observed outcome (the reward,
Rt, plus the value, v(St+1), of the resulting state) was better than what was
expected (i.e., the value, v(St), of the current state). Also, note that the TD
error can refer to different terms: it can use the current value estimate, v, or it
could use the true state-value function, vπ. In both cases δt is referred to as the
TD error.

Question 24. What is E[δt|St = s] if δt uses the true state-value function,
vπ?

Answer24.

E[δt|St=s]=E[Rt+γv
π
(St+1)−v

π
(St)|St=s](219)

=E[Rt+γv
π
(St+1)|St=s]−v

π
(s)(220)

(a)
=v

π
(s)−v

π
(s)(221)

=0.(222)

where(a)comesfromtheBellmanequation.
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Question 25. What is E[δt|St = s,At = a] if δt uses the true state-value
function, vπ?

Answer25.

E[δt|St=s,At=a]=E[Rt+γv
π
(St+1)−v

π
(St)|St=s,At=a](223)

=E[Rt+γv
π
(St+1)|St=s,At=a]−v

π
(s)(224)

(a)
=q

π
(s,a)−v

π
(s)(225)

=A(s,a),(226)

wherehereAisafunctionwehavenotyetdiscussedcalledtheadvantage
function,andA:S×A→R,A(s,a):=q

π
(s,a)−v

π
(s).Notethatthis

definitionoftheadvantagefunction,althoughpopularrecentlyandinpolicy
gradientalgorithms,differsfromtheoriginaldefinitionpresentedandstudied
byBaird(1993).

Consider further all of the possible causes for a positive TD error. A positive
TD error might occur because 1) v(s) was too small, 2) the random nature
of rewards and state transitions, combined with luck, and/or 3) v(s′) was too
large. If v = vπ, then the TD errors are due to #2, but will average out to be
mean-zero updates (this follows from the Bellman equation). If v 6= vπ, then
the TD update attempts to correct for #1, but does not make corrections due
to #3. This is because, by the Markov property, we know that vπ(s′) does not
depend on how we got to state s′, and yet the TD error is due to the transition
(s, a, r, s′)—i.e., the TD error describes events prior to reaching s′, and should
not impact our estimates of the value of state s′.

Notice that the TD update can also be viewed as converting the Bellman
equation into an update rule, just like with policy evaluation using dynamic
programming. However, whereas we could exactly compute the right side of the
Bellman equation when using dynamic programming (because we assumed p
and R are known), the TD algorithm does not assume p and R are known and
so instead uses sampling—it samples At, Rt, and St+1 according to π, p, and R.

Notice that we can write the TD update with function approximation as:

w ← w + α(Rt + γvw(St+1)− vw(St))
∂vw(St)

∂w
. (227)

Question 26. Consider the function approximator vw that is defined such
that |w| = |S| and the ith element of w is vw(s). This tabular representation
causes the update using function approximation to be equivalent to the update
in (216). Prove this.
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One might think that the TD algorithm is a gradient algorithm, much like
the Gradient-Based Monte Carlo Algorithm from Section 6.2, except with the
target replaced with Rt + γv(St+1). However, this is not the case. Consider how
one might try to derive TD as a gradient algorithm. We begin by defining our
loss function:

L(w) =E

[
1

2
(Rt + γvw(St+1)− vw(St))

2

]
(228)

=E[
1

2
δ2
t ]. (229)

We then compute the gradient:

∂

∂w
L(w) =

∂

∂w
E

[
1

2
(Rt + γvw(St+1)− vw(St))

2

]
(230)

=E

[
δt

(
γ
∂vw(St+1)

∂w
− ∂vw(St)

∂w

)]
(231)

=E

[
−δt

(
∂vw(St)

∂w
− γ ∂vw(St+1)

∂w

)]
, (232)

where the sign change in the last term is to obtain a standard form. This suggests
a stochastic gradient descent update (notice that the negative from this being a
descent algorithm cancels with the negative before the δt):

w ← w + αδt

(
∂vw(St)

∂w
− γ ∂vw(St+1)

∂w

)
. (233)

Notice that the loss function we began with is L(w) = E[δ2
t /2]. This is not

actually the objective we want! The TD-error is not zero even when our estimator,
vw, is exactly correct (equal to vπ) due to stochasticity in Rt and St+1. Hence,
the expected TD error is zero when the value estimate is correct, but the expected
squared TD error is not. Minimizing the expected squared TD error does not
result in the state-value function—rather, minimizing the squared expected TD
error does (the squared expected TD error is called the Mean Squared Bellman
Error MSBE). Later we will come back and reconsider taking the derivative of
the squared expected TD-error. For now, let us continue analyzing the update
for minimizing the expected squared TD-error.

Consider what this update does when the TD error is positive: it changes
w to increase vw(St) and to decrease vw(St+1), whereas the TD update only
increases vw(St). To make this more clear, notice that (233) using tabular
function approximation can be written as:

v(St)← v(St) + αδt (234)

v(St+1)← v(St+1)− αγδt. (235)

This alternate algorithm is not residual gradient (Baird, 1995), but is similar.8

8Residual gradient takes the gradient of the mean squared Bellman error, E[δt]2, rather
than the mean squared TD error, E[δ2t ]. However, in doing so, it requires double sampling to
get an unbiased gradient estimate (Baird, 1995).
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Just because we tried to derive the TD algorithm as the gradient of a loss
function and obtained a different algorithm does not mean that the TD algorithm
is not a gradient algorithm—it just means it is not the (stochastic) gradient of
L as we defined it. However, it can be shown that the TD algorithm is not a
stochastic gradient algorithm for any objective function. If it were, then the
expected TD update must be the gradient of a loss function (the gradient of an
objective function). That is,

E

[
δt
∂vw(St)

∂w

]
, (236)

would be the gradient of a function. We can show that this is not the case: (236)
is not the gradient of any loss function (with continuous second derivatives).
More precisely, recall that for any function L that has continuous second partial
derivatives at w, the Hessian, ∂2L(w)/∂w2, must be symmetric (see Schwarz’s
theorem). If (236) were the gradient of the function, then its derivative would
be the Hessian. Rather than compute the complete derivative, let us compute
what ∂2/∂wi∂wj would be for the loss function—that is, the partial derivative
with respect to wi of the jth element of (236). This term is:

∂

∂wi
δt
∂vw(St)

∂wj
=δt

∂2vw(St)

∂wi∂wj
+
∂vw(St)

∂wj

∂

∂wi
(Rt + γvw(St+1)− v(St)) (237)

= δt
∂2vw(St)

∂wi∂wj︸ ︷︷ ︸
(a)

+
∂vw(St)

∂wj

(
γ
∂vw(St+1)

∂wi
− ∂v(St)

∂wi

)
︸ ︷︷ ︸

(b)

. (238)

Notice that, although the term (a) is symmetric–it is the same if i and j are
flipped, assuming that vw has continuous second derivatives, the term (b) is not
symmetric—flipping i and j does change its value. To see why, consider using
tabular function approximation and the case where wj is the weight for St and
wi is the weight for St+1, and St 6= St+1—the (b) term will not necessarily be
zero, but if wj were the weight for St+1, then this term would be zero. Hence, the
derivative of the expected TD update is not symmetric, and so the TD update
cannot be a stochastic gradient update for a loss function that has continuous
second partial derivatives.

Despite the TD algorithm not being a gradient algorithm, it does have
desirable convergence properties. When using a tabular representation for
the value function approximation, TD converges with probability one to vπ

given standard assumptions and decaying step sizes (Dayan and Sejnowski, 1994;
Jaakkola et al., 1994), and it converges in mean to vπ if the step size is sufficiently
small (Sutton, 1988b). When using linear function approximation—when vw(s)
can be written as vw(s) = wᵀφ(s) for some function π : S → Rn (for some n)—
TD converges with probability one to some weight vector, w∞, given standard
assumptions (Tsitsiklis and Van Roy, 1997). If there exists a weight vector such
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that vw = vπ, then vw∞ = vπ—TD will converge to weights that cause vw to be
vπ. If, however, there is no weight vector w such that vw = vπ (if the state-value
function cannot be precisely represented given the class of functions that can
be produced by vw for various w), then the weight vector that TD converges to
(with probability one) is not necessarily the “best” possible weight vector, w∗:

w∗ ∈ arg min
w

E[(vw(St)− vπ(St))
2]. (239)

However, w∞ satisfies the following inequality that ensures that the weights
that TD converges to with probability 1 will not be “too far” away from these
optimal weights (Tsitsiklis and Van Roy, 1997, Theorem 1):

E[(vw∞(St)− vπ(St))
2] ≤ 1

1− γ
E[(vw∗(St)− vπ(St))

2]. (240)

When using non-linear function approximation, TD can diverge.
What makes for a better target, the Monte-Carlo return, Gt, or the target

used by TD, Rt + γv(St+1)? Each is an estimator of vπ(St). The mean squared
error (MSE) is a common measurement of how “bad” an estimator is. Let a
random variable, X, be an estimator of θ ∈ R. The MSE of X is defined as:

MSE(X) := E[(X − θ)2]. (241)

The MSE can be decomposed into two components: the squared bias and the
variance:

MSE(X) = Bias(X)2 + Var(X), (242)

where Bias(X) = E[X − θ] and Var(X) is the variance of X. Consider again the
two possible targets, each of which is an estimator of vπ—which is a “better”
estimator?

The Monte-Carlo return is unbiased, and so it has zero bias. However, it
often has high variance because it depends on all of the rewards that occur
during an episode. The TD target can be biased if v 6= vπ, since it replaces all
of the rewards in the Monte Carlo return, except for the first, with a biased
estimate, v(St+1) (this is biased because v 6= vπ). However, it can have much
lower variance because it only looks forward a single time-step: both Rt and
St+1 (the only random terms in the TD target) can be computed after a single
time step. Hence, TD and Monte Carlo are on opposite extremes: the Monte
Carlo target has high variance but no bias, and the TD target has low variance
but high bias. Later we will discuss ways to create estimators that can provide a
better trade-off of bias and variance in order to obtain targets that are “better”
estimates of vπ.

7.1 Function Approximation

Before continuing, it is worth discussing function approximation in more detail.
First, notice that we say that vw is a linear function approximator if it is a
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linear function of w. This does not mean that vw must be a linear function of
the states. Furthermore, we typically write linear function approximators as:

vw(s) = wᵀφ(s), (243)

where φ : S → Rn maps states to vectors of features.
One possible choice for φ is the polynomial basis, which assumes that s is

real-valued (it can be extended to the multivariate polynomial basis, in which
case s is a real vector). Most bases have a parameter that we call the order,
which controls how many features will be produced. The kth order polynomial
basis is:

φ(s) =


1
s
s2

...
sk

 . (244)

By the Stone-Weierstrass Theorem, any continuous function can be approximated
to any desired level of accuracy given a high enough order.

The Fourier basis for value function approximation is a common linear
function approximator that works very well for most of the standard benchmark
RL problems. The paper presenting the Fourier basis (Konidaris et al., 2011b)
should be an easy read at this point, and can be found here. Please read it.
Note that the states should be normalized prior to applying the multivariate
Fourier basis.

7.2 Maximum Likelihood Model of an MDP versus Tem-
poral Difference Learning

If we have data regarding many transitions, (s, a, r, s′), we can use this data to
estimate p and dR. Notice that we can do this regardless of how this data is
generated—by running complete episodes, by randomly sampling s, etc. For
now, we assume that a is sampled according to π. One common estimator is
the maximum likelihood model—the estimates of p and dR that maximize the
probability that we would see the data we have. The maximum likelihood model
for an MDP with finite states and actions is exactly what one might expect.
That is:

P̂ (s, a, s′) =
#(s, a, s′)

#(s, a)
(245)

R̂(s, a) = mean(r|s, a), (246)

where #(s, a, s′) is the number of occurrences of (s, a, s′) in our data, #(s, a) is
the number of occurrences of (s, a), and mean(r|s, a) is the average value of r in
the samples where action a is taken in state s.

Once we have our estimates, P̂ and R̂, we could use dynamic programming
evaluation methods to solve for what vπ would be if these were the true transition
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function and reward function. An interesting question is then: how does this
value function estimate compare to what TD would produce if it were run on the
same data over and over until convergence? Perhaps surprisingly, TD converges
to exactly this same value function estimate (if every state is observed at least
once or more). So, one might view TD as being an efficient way to compute the
value function that would result if we built the maximum likelihood model and
then solved for the value function for π.

In practice, TD will be far more useful. Notice that estimating the model
requires storing at least |S|2|A| numbers, while TD only requires storing |S|
numbers. Also, estimating p (and R) is difficult when the states are continuous,
while estimating value functions using function approximators (like neural net-
works) is straightforward. This is because p is a distribution, and so estimating
p is more than just regression—it requires density estimation.

8 Sarsa: Using TD for Control

Idea: We can use TD to estimate qπ, and simultaneously change π to be (nearly)
greedy with respect to qπ. First, we must determine how to use TD to estimate
the action-value function rather than the state-value function. The tabular TD
update for q given a transition (s, a, r, s′, a′) is:

q(s, a)← q(s, a) + α(r + γq(s′, a′)− q(s, a)), (247)

and the TD update for qw using arbitrary function approximation is:

w ← w + α(r + γqw(s′, a′)− qw(s, a))
∂qw(s, a)

∂w
. (248)

We refer to the term r+ γq(s′, a′)− q(s, a) as the TD error. However, if someone
refers to the TD error, they typically mean the TD error using the state-value
function.

In terms of the TD error (using the action value function), and using random
variables for states, actions, and rewards, we can write the TD update using
arbitrary function approximation as:

δt = Rt + γqw(St+1, At+1)− qw(St, At) (249)

wt+1 ← wt + αδt
∂qw(St, At)

∂w
. (250)

One can view the TD update for the action-value function as being equivalent
to the TD update for the state-value function on a different MDP where the
state is augmented to include the action chosen according to the policy being
evaluated. That is, consider an MDP M . We can construct a new MDP, M ′,
the states of which are x = (s, a), where s is a state in M and a is an action in
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M . The transition function for M ′ causes s to transition as in M , and selects
actions a according to the policy, π, that is to be evaluated. The actions in M ′

are irrelevant—we assume that |A| = 1 so that there is only one action. If we
apply TD to estimate v(x) for this new MDP (there is only one policy, so we
omit the policy-superscript), we obtain:

v(x) =E[Gt|Xt = x] (251)

[for M ] =E[Gt|St = s,At = a] (252)

[for M ] =qπ(s, a). (253)

where Xt is the state of M ′ at time t. Furthermore, writing out the TD update
for M ′ in terms of states, x, we obtain the TD update for q in (247). Hence,
applying TD to learn the action-value function is equivalent to applying TD to
learn the state-value function for a different MDP, and thus it inherits exactly
the same convergence properties.

We can now use the TD algorithm to estimate qπ, and we can then act
greedily with respect to qπ. This can be viewed as a sort of approximate form of
value iteration, or a generalized policy iteration algorithm. This algorithm is
called Sarsa because the data used for an update is (s, a, r, s′, a′). Pseudocode
for tabular Sarsa is presented in Algorithm 9, and Algorithm 10 presents Sarsa
using arbitrary function approximation. Note: you do not need to store an
estimate for q(s∞, a)—we know that it is zero, and there is no need to learn this
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value.

Algorithm 9: Tabular Sarsa

1 Initialize q(s, a) arbitrarily;
2 for each episode do
3 s ∼ d0;
4 Choose a from s using a policy derived from q (e.g., ε-greedy or

softmax);
5 for each time step, until s is the terminal absorbing state do
6 Take action a and observe r and s′;
7 Choose a′ from s′ using a policy derived from q;
8 q(s, a)← q(s, a) + α(r + γq(s′, a′)− q(s, a));
9 s← s′;

10 a← a′;

Algorithm 10: Sarsa

1 Initialize w arbitrarily;
2 for each episode do
3 s ∼ d0;
4 Choose a from s using a policy derived from q (e.g., ε-greedy or

softmax);
5 for each time step, until s is the terminal absorbing state do
6 Take action a and observe r and s′;
7 Choose a′ from s′ using a policy derived from q;

8 w ← w + α(r + γqw(s′, a′)− qw(s, a))∂qw(s,a)
∂w ;

9 s← s′;
10 a← a′;

For Sarsa to be guaranteed to converge almost surely to the optimal action-
value function, we require the normal assumptions (finite states, finite actions,
bounded rewards, γ ∈ [0, 1), step sizes decayed appropriately), as well as two
additional assumptions. First, all state action pairs must be visited infinitely
often. Second, the policy must converge in the limit to a greedy policy (e.g.,
εt = 1

t ). These two additional assumptions are sometimes called the GLIE
assumption: greedy in the limit with infinite exploration.

Question 27. What happens if actions are chosen greedily with respect to
q rather than nearly greedily?

Answer27.Theagentcangetstuckassumingthatsomeactionsareworse
thantheoneitiscurrentlytaking.Itwillnotretrytheseotheractions,and
soitcannotlearnthattheseotheractionsareactuallybetter.
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Question 28. What happens if the q estimate is initialized optimistically
(too large)? What if it is optimized pessimistically? What if ε = 0 in these
two cases?

Answer28.Optimisticinitializationresultsinexploration.Theagent
triesoneactionandfindsthatitisworsethanexpected.Thenexttimeit
visitsthesamestate,itwilltryadifferentaction.Theestimatesofaction
valuesslowly(assumingasmallstepsize)comedowntotheircorrectvalues.
OftenSarsausingε=0canworkquitewellwhenthevaluefunctionis
initializedoptimistically.Theoppositehappenswhenthevaluefunction
ispessimistic—theagentfixatesonthefirstactionitchoseandexplores
little.Ingeneral,youareencouragedtouseoptimisticinitializationofthe
valuefunction.However,donotgooverboard—youshouldtrytokeepyour
initializationclosetothemagnitudeyouexpectofthetruevaluefunction(do
notinitializetheq-functionto10,000forallsandaforthe687-Gridworld.

We refer to Sarsa as an on-policy algorithm. This is because it estimates
the q-function for the current policy at each time step. Next we will consider a
similar algorithm that estimates the q-function for a policy that differs from the
one currently being executed.

9 Q-Learning: Off-Policy TD-Control

While the Sarsa update can be viewed as changing the Bellman equation into
an update rule, Q-learning can be viewed as changing the Bellman optimality
equation into an update rule. The Q-learning update based on a transition
(s, a, r, s′) is (Watkins, 1989):

q(s, a) = q(s, a) + α(r + γ max
a′∈A

q(s′, a′)− q(s, a)), (254)

or with arbitrary function approximation:

w = w + α(r + γ max
a′∈A

qw(s′, a′)− qw(s, a))
∂qw(s, a)

∂w
. (255)

Thus, whereas Sarsa changes q towards an estimate of qπ at each step (where
π is the policy generating actions), Q-learning changes q towards an estimate of
q∗ at each step, regardless of which policy is used to generate actions. In this
sense it is off-policy—it estimates q∗ regardless of the policy used to generate data.
Notice also that Q-learning can update as soon as St+1 is sampled—before At+1

is sampled, while Sarsa must wait until At+1 was sampled. Q-learning converges
to q∗ under the standard assumptions if all (s, a) pairs are seen infinitely often.
This means that Q-learning does not require the GLIE assumption—the sampling
policy does not need to become greedy in the limit.
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Because Q-learning does not require At+1 to update, its pseudocode is not
just Sarsa with a modified q-update. Pseudocode for Q-learning is provided in
Algorithms 11 and 12

Algorithm 11: Tabular Q-Learning

1 Initialize q(s, a) arbitrarily;
2 for each episode do
3 s ∼ d0;
4 for each time step, until s is the terminal absorbing state do
5 Choose a from s using a policy derived from q;
6 Take action a and observe r and s′;
7 q(s, a)← q(s, a) + α(r + γmaxa′∈A q(s

′, a′)− q(s, a));
8 s← s′;

Algorithm 12: Q-Learning

1 Initialize w arbitrarily;
2 for each episode do
3 s ∼ d0;
4 for each time step, until s is the terminal absorbing state do
5 Choose a from s using a policy derived from q;
6 Take action a and observe r and s′;

7 w ← w + α(r + γmaxa′∈A qw(s′, a′)− qw(s, a))∂qw(s,a)
∂w ;

8 s← s′;

The convergence properties of TD, Sasra, and Q-Learning are presented in
Table 1.
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10 High-Confidence Policy Improvement

As you’ve seen from the homework assignments, RL algorithms usually don’t
work when you first try to use them. It takes a lot of tuning before they produce
decent performance. When you are first tuning the algorithm, you are deploying
the algorithm to the environment, and it is producing poor performance, even
diverging. For real-world applications, this would mean deploying an agent that
produces policies that are often worse than an initial policy. That is fine for
video games—we can lose as many games of Pacman as we want with little cost.
However, that is not fine for real-world applications where deploying a bad policy
can be costly or dangerous. So, how then can we deploy RL algorithms to any
real-world problem?

Let’s begin to answer this by studying a simplified setting: batch policy
improvement. In this setting we assume that we have collected n trajectories of
data from running some current policy (or some sequence of past policies). For
simplicity here, let’s assume that there is a single current policy, πb, which we
will call the behavior policy. From running n trajectories we obtain data D =
{H1, H2, . . . ,Hn}—a set of n histories. Here each Hi = (Si0, A

i
0, R

i
0, S

i
1, A

i
1, . . . ).

That is, we use superscripts to indicate which episode a state, action, or reward
is from. Given the data D, we want to find a new policy π that is as good as
possible. That is, we want to maximize J(π), where π is computed from the
data D.

This batch setting models many real problems, where some current solution is
being used, and we would like to use an RL algorithm to improve the policy. What
properties would we want of an RL algorithm before we would be comfortable
applying it to a real problem? First, we know that designing reward functions
is challenging, and so we would want to ensure that the reward function aligns
with our goals. For now, let’s assume that this is the case. Next, it might be
that expected return is not what we want to optimize, since we might care about
the variance of returns as well. We can discuss this later, as it is a current area
of research (for example, we can get guarantees on the expected return given
that we only consider returns less than some constant, but we do not yet know
how to get guarantees on the CVaR of returns). For now, let’s assume that the
expected return does capture the quantity we care about.

In this case, we might be comfortable using an RL algorithm that guaranteed
that J(π) ≥ J(πb). Unfortunately, this is not possible to guarantee. The data
that we collected could be a random fluke that causes us to draw incorrect
conclusions about the performance of π or πb—in our gridworld, the agent’s
“attempt” actions might have just happened to always fail, causing the agent to
have incorrect beliefs about what the actions do. The core problem here is that
the available data is random. Hence, rather than guaranteeing improvement
with certainty, we will guarantee improvement with high probability:

Pr(J(π) ≥ J(πb)) ≥ 1− δ, (256)

where δ is some small probability that the user of the batch RL algorithm will
get to select. The above equation can be confusing—what term is random inside
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of the probability? Why is this probability not necessarily zero or one depending
on which policy is better? The random term here is π, since π is computed from
the data D. To make this explicit, let D be the set of all possible data sets, and
let our algorithm be a function a : D → Π. Hence, a(D) is the solution returned
by our algorithm when run on data D. We can now write the guarantee that we
want as:

Pr(J(a(D)) ≥ J(πb)) ≥ 1− δ, (257)

where now it is clear that the source of randomness is the data set, D.
Unfortunately, this too is impossible! What happens if I give you two

trajectories from some stochastic MDP. No algorithm can have any hope of
giving any high-probability guarantees given so little data. The fix to this is to
allow the algorithm to say “I can’t do that.” More formally, we say that the
algorithm returns “No Solution Found” (NSF). In reality, this would correspond
to saying: “keep running πb, because I am not able to improve performance with
high-probability given the data that I have.” To make this fit with our expression
above, we define J(NSF) ≥ πb so that the algorithm can always return NSF.

Finally, to simplify our math, let’s replace J(πb) with some user-selected
constant. This constant could be a high-confidence upper bound on J(πb),
it could be the observed performance of πb in the past, it could be a 10%
improvement on the observed performance of πb, or it could be 80% of the
performance of πb. This gives our final goal—to create an algorithm a that
guarantees that:

Pr(J(a(D)) ≥ c) ≥ 1− δ, (258)

where the user of the algorithm selects c and δ.
Note that with the value c here, we must define J(NSF) ≥ c for it to be

possible to create such an algorithm a. This is to ensure that, when it has
insufficient data (or if it is tasked with the impossible, due to c being larger than
the expected return of any policy), the algorithm can return NSF.

Notice also that there is a naive solution: have the algorithm a always output
NSF. This is because (258) is a safety constraint, it is not the primary objective.
The primary objective remains unchanged: maximize the expected discounted
return. (258) is merely a constraint that we must guarantee we satisfy while
trying to maximize expected return.

Consider how we might create an algorithm a that satisfies (258). At some
point it will consider returning a policy π. However, it must determine whether
it has high-confidence that J(π) ≥ c. Forgetting high-confidence for a moment,
this means we at least need to be able to estimate J(π). Normally we would do
this by running the policy π, but here we aren’t allowed to do that. That would
correspond to running some policy that has no safety guarantees, which could
be dangerous or costly. Instead, we need a way to estimate J(π) using the data
D, generated by running the policy πb. This is what we will present next. Once
we have that method, we will discuss how we can obtain confidence intervals
around this estimate, which will eventually allow us to create our algorithm a
that satisfies (258).
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10.1 Off-Policy Policy Evaluation

The goal in off-policy policy evaluation (OPE) is to estimate J(π) given data D
generated by πb 6= π. In this area, the policy π is typically denoted by πe, and
called the evaluation policy. Recall that πb is called the behavior policy.

First, notice that we can view policies as distributions over trajectories, H.
With slightly sloppy notation, we can write H ∼ πe or H ∼ πb to denote a
trajectory sampled from running πe or πb. Also, let g(H) :=

∑∞
t=0 γ

tRt. We
want to estimate E[g(H)|H ∼ πe] given our data, which contains trajectories
H ∼ πb. We will use an approach called importance sampling. First, let’s review
importance sampling in general (not in the context of RL).

Let p and q be two distributions and f be some function. Our goal is to
estimate E[f(X)|X ∼ p] given samples of X ∼ q. At a high-level, we will take a
weighted average of the observed values of f(x). That is, for each sample, x, we
ask “would this have been more likely under the distribution p?” If so, we will
give it a large weight (a weight bigger than one) to pretend that we saw that
sample more often. If not (if the sample would have been more likely under q
than under p), we give it a weight smaller than one to pretend that we saw that
sample less often.

More precisely, the importance sampling estimator is:

IS(x, p, q) =
p(x)

q(x)
f(x). (259)

Recall that supp(p) = {x : p(x) > 0}. For the importance sampling estimator
to be unbiased, we need some assumptions related to the support of p and q.
For example:

Theorem 9. If supp(p) ⊆ supp(q), then

E[IS(X, p, q)|X ∼ q] = E[f(X)|X ∼ p]. (260)

Proof.

E[IS(X, p, q)|X ∼ q] =E

[
p(X)

q(X)
f(X)

∣∣∣∣X ∼ q] (261)

=
∑

x∈supp(q)

q(x)
p(X)

q(X)
f(X) (262)

=
∑

x∈supp(q)

p(x)f(x) (263)

=
∑

x∈supp(q)∩supp(p)

p(x)f(x) +
∑

x∈supp(q)\supp(p)

p(x)f(x).

(264)

Notice that the second summation only includes values x that are not in supp(p),
meaning samples such that p(x) = 0. Hence, this second term is zero. For the

81



first term, notice that by our assumption supp(p) ⊆ supp(q). Hence, supp(q) ∩
supp(p) = supp(p). So:

E[IS(X, p, q)|X ∼ q] =
∑

x∈supp(p)

p(x)f(x) (265)

=E[f(X)|X ∼ p]. (266)

Note: if the support assumption is not ensured, one can (in some cases)
ensure that the bias is strictly positive or negative (Thomas et al., 2015b). Also,
the support assumption can be weakened. The current assumption means that
q(x) = 0 implies p(x) = 0. This can be weakened to only require q(x)f(x) = 0
to imply that p(x) = 0.

To apply this for OPE we will use X ← H, f ← g, p ← πe, and q ← πb.
Hence, the IS estimator for OPE is:

IS(H,πe, πb) =
πe(H)

πb(H)
g(H). (267)

Since this estimator is unbiased we have from Theorem 9 that if supp(πe) ⊆
supp(πb), then

E [IS(H,πe, πb)|H ∼ πb] =E[g(H)|H ∼ πe] (268)

=J(πe). (269)

That is, the importance sampling estimator is an unbiased estimator of the
performance of πe.

Given our entire dataset D, we define:

IS(D,πe, πb) =
1

n

n∑
i=1

IS(Hi, πe, πb). (270)

That is, the IS estimate from the entire dataset is the average IS estimate from
each trajectory.

Although we do not show it here, the importance sampling estimator is also a
strongly consistent estimator of J(πe), meaning that in the limit as the amount

of data goes to infinity, IS(D,πe, πb)
a.s.−→ J(πe).

However, how can we compute the importance sampling estimator? It
included the term πe(H), which really means Pr(H|πe). This probably depends
on the transition and reward functions, which we assume are unknown. (Precup,
2000) showed that we can compute the importance sampling estimator without
knowing the transition and reward functions because these terms cancel out
when computing the ratio πe(H)/πb(H).
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That is:

πe(H)

πb(H)
=

Pr(H|πe)
Pr(H|πb)

(271)

=
d0(S0)πe(S0, A0)P (S0, A0, S1)dR(S0, A0, S1, R0)πe(S1, A1)P (S1, A1, S2) . . .

d0(S0)πb(S0, A0)P (S0, A0, S1)dR(S0, A0, S1, R0)πb(S1, A1)P (S1, A1, S2) . . .
.

(272)

Notice that all of the terms in the numerator and denominator are the same
except for the policy-terms, and so all of the terms but the policy-terms cancel
out to give:

πe(H)

πb(H)
=
πe(S0, A0)πe(S1, A1)πe(S2, A2) · · ·
πb(S0, A0)πb(S1, A1)πb(S2, A2) · · ·

(273)

=

L−1∏
t=0

πe(St, At)

πb(St, At)
. (274)

We refer to the term above as an importance weight. Hence, the IS estimator
can be written as:

IS(H,πe, πb) =

(
L−1∏
t=0

πe(St, At)

πb(St, At)

)
L−1∑
t=0

γtRt. (275)

We refer to the right hand side of the above equation as an importance weighted
return,

The IS estimator for an entire dataset is simply the average IS estimate from
each trajectory:

IS(D,πe, πb) =
1

n

n∑
i=1

IS(Hi, πe, πb). (276)

Notice that the IS estimator can have high variance. If H happens to be a
trajectory that is more likely under πe, for example, if each action is twice as
likely under πe, then the importance weight can be as large as 2L—exponential
in the horizon. In practice, often importance weights are near zero, with
massive importance weights occurring occasionally such that, in expectation, the
estimator is correct. Reducing the variance of importance sampling estimators
is an active area of research (Jiang and Li, 2015).

Here we discuss one straightforward improvement. Rather than use impor-
tance sampling to estimate the expected return, let us use importance sampling
to estimate E[Rt|πe]. This means defining f(H) = Rt instead of using g for f .
This importance sampling estimator is:L−1∏

j=0

πe(Sj , Aj)

πb(Sj , Aj)

Rt. (277)
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However, notice that the actions taken after Rt occurs do not influence Rt. As a
result, the product over time in the importance weight can stop at time t, giving: t∏

j=0

πe(Sj , Aj)

πb(Sj , Aj)

Rt. (278)

Now, the get an estimate of E[g(H)|H ∼ πe], we need to take the discounted sum
of the per-reward estimates. This estimator is called the per-decision importance
sampling (PDIS) estimator:

PDIS(H,πe, πb) =

L−1∑
t=0

γt

 t∏
j=0

πe(Sj , Aj)

πb(Sj , Aj)

Rt. (279)

Similarly:

PDIS(D,πe, πb) =
1

n

n∑
i=1

PDIS(Hi, πe, πb). (280)

Both IS and PDIS give unbiased and strongly consistent estimates of J(πe)
(Thomas, 2009). For further reading on other importance sampling estimators, I
encourage you to read about weighted importance sampling estimators, discussed
in my dissertation (Thomas, 2009).

10.2 High-Confidence Off-Policy Evaluation (HCOPE)

It’s not enough for us to estimate the performance of a new policy, as these
estimates are not always perfectly correct. To trust our estimates of J(πe),
we need a confidence interval around our prediction, or at least one side of a
confidence interval. That is, we want a value B such that:

Pr(J(πe) ≥ B) ≥ 1− δ, (281)

where δ is some small probability. To obtain such a confidence interval, one
might use Hoeffding’s inequality (Hoeffding, 1963), a simplified form of which is:

Theorem 10 (Variant of Hoeffding’s Inequality). If X1, . . . , Xn are n i.i.d. ran-
dom variables and Pr(Xi ∈ [a, b]) = 1, then

Pr

(
E[X1] ≥ 1

n

n∑
i=1

Xi − (b− a)

√
ln(1/δ)

2n

)
≥ 1− δ. (282)

However, recall that the range of the importance sampling estimates can grow
exponentially with the horizon of the MDP, meaning that (b− a) will be large,
making our high-confidence lower bound on J(πe) a loose bound. Although
there exist better concentration inequalities for obtaining high-confidence lower
bounds (Thomas et al., 2015b; Maurer and Pontil, 2009; Anderson, 1969), in
practice we often use a variant of Student’s t-test, which makes a reasonable but
false assumption:
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Theorem 11. If X1, . . . , Xn are n i.i.d. random variables and
∑n
i=1Xi is

normally distributed, then:

Pr

E[X1] ≥ 1

n

n∑
i=1

Xi −

√
1

n−1

∑n
i=1

(
Xi − X̄

)2
√
n

t1−δ,n−1

 ≥ 1− δ, (283)

where X̄ = 1
n

∑n
i=1Xi and t1−δ,ν is the 100(1 − δ) percentile of the Student

t-distribution with ν degrees of freedom, i.e., tinv(1− δ, ν) in Matlab.

Student’s t-test assumes that X̄ is normally distributed, which typically is
not true. However, by the central limit theorem, as n→∞, it becomes normally
distributed regardless of the distribution of Xi. Often this happens quickly,
and so Student’s t-test tends to hold with probability approximated 1− δ if n
is reasonably large. Here the definition of “reasonably large” depends on how
non-normal the distribution of Xi is. In practice, I recommend that you use
Student’s t-test for obtaining confidence intervals, as it provides a nice trade-off
of tightness, reasonable assumptions, and computational efficiency.

We use Hoeffding’s inequaliy or Student’s t-test to obtain a high-confidence
lower bound on J(πe) by applying them with Xi = PDIS(Hi, πe, πb). Since these
importance sampling estimates are unbiased estimators of J(πe), we obtain (for
Student’s t-test):

Pr

(
J(πe) ≥ PDIS(D,πe, πb)−

σ̂√
n
t1−δ,n−1

)
≥ 1− δ, (284)

where σ̂ is the sample standard deviation:

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(
PDIS(Hi, πe, πb)− PDIS

)2
, (285)

where PDIS = 1
n

∑n
i=1 PDIS(Hi, πe, πb).

10.3 High-Confidence Policy Improvement

We now have the necessary components to create our batch RL algorithm that
ensures that Pr(J(a(D)) ≥ c) ≥ 1− δ. An outline of the algorithm is presented
in Figure 13.

At a high level, this algorithm partitions the available data into two sets, Dc

(called the candidate data) and Ds (called the safety data). One might put half
of the data in each set, 60% in Dc and 40% in Ds, or even 80% in Dc and 20%
in Ds, though I recommend not placing less data in Dc. The candidate data is
then used to pick a single solution, θc, called the candidate solution, that the
algorithm considers returning. This candidate solution is then given to the safety
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Figure 13: Diagram of high-confidence policy improvement algorithm.

test, which uses the held-out data, Ds, to check whether θc is safe to return. If
it is, it returns θc, otherwise it returns NSF (No Solution Found).

As we provide more detail, let us begin with the safety test. Regardless of
how θc is computed, we can use an HCOPE method to get a high-confidence
lower bound on J(θc). If this high-confidence lower bound is at least c, then we
return θc, otherwise we return NSF. That is, if

PDIS(Ds, πe, πb)−
σ̂s√
|Ds|

t1−δ,|Ds|−1︸ ︷︷ ︸
B

≥ c, (286)

then return θc, otherwise return NSF, where we write σ̂s to denote that the
sample standard deviation is computed here using Ds and we denote a term by
B to refer to later. When will we make an error? We will only make an error
if J(πe) < c (the policy is actually not good enough to return) and B > c (we
would return the policy). However, by transitivity this means that B ≥ J(πe),
which from (284) we know will happen with probability at most δ. Hence, the
probability we make a mistake is at most δ, and so we have ensured that (258)
holds.

Now consider candidate selection. We could choose the candidate solution
that we predict will perform best:

θc ∈ arg max
θ

PDIS(Dc, θ, πb). (287)

This will not work well, because the policy that we predict will perform the best is
not necessarily one that is likely to pass the safety test. For example, this policy
is often one with such high-variance PDIS estimates that the confidence interval
from Student’s t-test will be too wide to guarantee performance imporvement
with high probability. The fix is to constrain the search to solutions that are
predicted to pass the safety test:

θc ∈ arg max
θ

PDIS(Dc, θ, πb) (288)

s.t. θ predicted to pass the safety test. (289)

How should we go about predicting which solutions will pass the safety test?
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Let us begin by plugging in the actual safety test:

θc ∈ arg max
θ

PDIS(Dc, θ, πb) (290)

s.t. PDIS(Ds, πe, πb)−
σ̂s√
|Ds|

t1−δ,|Ds|−1 ≥ c. (291)

Using the actual safety test like this would result in solutions often passing the
safety test – in fact, they would pass the safety test too often. Essentially, the
candidate selection mechanism is cheating by looking at the data that will be
used in the safety test, and then over-fitting to this data. Technically, this results
in the random variables provided to Student’s t-test (or Hoeffding’s inequality)
not being statistically independent.

So, within the candidate selection mechanism we must predict the outcome
of the safety test without looking at the safety data. We can look at the number
of episodes in the safety set, |Ds|, though we should not look at the contents of
the data. So, we can use:

θc ∈ arg max
θ

PDIS(Dc, θ, πb) (292)

s.t. PDIS(Dc, πe, πb)−
σ̂c√
|Ds|

t1−δ,|Ds|−1 ≥ c. (293)

Here we have replaced the PDIS estimate (and its sample standard deviation)
with the estimates from the candidate data, but will still use the size of the safety
data set when computing other terms. This will work in some cases, but it can
result in the candidate selection mechanism over-fitting to the candidate data.
This results in it often predicting that solutions will pass the safety test when
in reality they will not. The fix is a hack—to double the confidence interval in
candidate selection in order to increase the chance that the solution will actually
pass the safety test. This gives us the actual expression used for finding θc:

θc ∈ arg max
θ

PDIS(Dc, θ, πb) (294)

s.t. PDIS(Dc, πe, πb)− 2
σ̂c√
|Ds|

t1−δ,|Ds|−1 ≥ c. (295)

To summarize the algorithm: split D into Dc and Ds. Use Dc to select θc
according to (294). Next, run the safety test. That is, if (286) holds, return θc,
and otherwise return NSF.

The search for the candidate objective function can be performed using the
optimization method of your choice, for example CMA-ES with some variant of
a barrier function for the constraint.

For further details regarding high-confidence policy improvement algorithms
(including alternate importance sampling estimators, concentration inequalities,
and other improvements) see the relevant literature (Thomas et al., 2015b,c;
Thomas, 2009).
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11 TD(λ)

Notice that, like dynamic programming policy evaluation, TD is slow. Consider
using TD to estimate the value function for a policy on 687-Gridworld, starting
with initial estimates v(s) = 0, and if the first episode happens to reach the
terminal state without entering the water state. After his first episode, the only
state with non-zero value estimate will be the state that transitioned to the goal.
In a sense, the reward at the goal has only propagated backwards a single time
step. By contrast, if we updated using the Monte Carlo target, every state along
the path to the goal would have had its value updated.

As an intuitive example, imagine that you received an extra $1,000 in your
paycheck one week. If this was unexpected, you might get a positive TD-error.
The Sarsa and TD algorithms attribute this TD-error to the most recent state
and action: they declare that whatever actions you took just before receiving
the check were responsible for the TD-error. This seems a bit absurd: it was
likely a combination of actions over the past week or two that resulted in this
TD-error. The Monte Carlo algorithm has a similar flaw: if γ ≈ 1, it will assign
credit to the states and actions from the distant past. That is, it will conclude
that the action value for eating a sandwich five years before should be increased.

In this section we consider trying to find a mix between Monte Carlo Methods
and TD methods to try to get the best of both of these approaches. This
algorithm, called TD(λ) assigns a “credit” to each state or state-action pair.
This credit is discounted over time, and the updates to states are weighted by
this credit. We will present this algorithm from two different points of view: the
forwards view and the backwards view, and we will will show that these two
views are approximately equivalent.

The key to mixing Monte Carlo methods with temporal difference methods
is the n-step return. We sometimes refer to n-step returns as i-step returns. The
n-step return is a target that could be used in place of the Monte Carlo target
or TD target. Formally, the n-step return is:

G
(n)
t =

(
n−1∑
k=0

γkRt+k

)
+ γnv(St+n). (296)

Notice that G
(1)
t is the TD target, and is sometimes called GTD

t , or the TD

return, and that G
(∞)
t is the Monte Carlo return, Gt, and sometimes also called

GMC
t . Notice that longer returns (larger n) results in higher variance in the

target, but lower bias, as discussed previously. We might try to select a value for
n that works well for our problem. Intuitively, the n-step return assigns credit
to all of the n most recent states (to see this, consider again what would happen
when running TD on 687-Gridworld starting with the initial value function equal
to zero everywhere, but using n-step returns rather than Monte Carlo returns or
TD returns).

Instead of simply selecting one n, we will take a weighted average of all of
the different n-step returns. We call this new return a complex return because
it combines different length returns. We also choose a weighting that depends
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on a parameter λ ∈ [0, 1]. We refer to this weighted return as the λ-return, and
define it as:

Gλt := (1− λ)

∞∑
i=0

λiG
(i+1)
t . (297)

Notice that if λ = 0 the λ-return is the TD return. In the limit as λ→ 1, the
λ-return is the Monte Carlo return. When λ = 1, Gλt as defined above is not
necessarily defined, since it could become infinity times zero. Hence we explicitly
re-define Gλt to be the limit as λ→ 1, i.e., the Monte Carlo return.

To better understand what the λ-return is doing, consider the weights that
would be placed on the different length returns for an MDP with finite horizon,
L = 10. The weight placed on the 1-step return would be (1− λ), the weight on
the 2-step return would be (1− λ)λ, the weight on the 3-step return would be
(1− λ)λ2, . . . , the weight on the 10-step return would be (1− λ)λ9, the weight
on the 11-step return would be (1− λ)λ10, etc. Notice that the 10-step return is
the Monte Carlo return, since the horizon is L = 10, which means that S10 = s∞
and so Rt = 0 for t > 10. Shorter returns may also be the Monte Carlo return if
the agent happened to enter s∞ earlier, but we know that at some point, before
the L-step return, the return from any state will be the Monte Carlo return.
Hence, the λ-return can be written as:

Gλt :=(1− λ)

∞∑
i=0

λiG
(i+1)
t (298)

=(1− λ)

(
L−2∑
i=0

λiG
(i+1)
t

)
+ (1− λ)

∞∑
i=L−1

λiGMC
t (299)

=(1− λ)

(
L−2∑
i=0

λiG
(i+1)
t

)
+ (1− λ)

( ∞∑
i=L−1

λi

)
GMC
t . (300)

That is, all of the weight placed on returns of length at least L is placed on the
Monte-Carlo return. So, although the weights are generally decreasing as the
return length increases, a large weight is often placed on the Monte Carlo return.
Furthermore, since the first weight is (1− λ), as λ→ 1 the sum of the first L
weights decreases, and so the weight on the Monte Carlo term increases.

A common question is: why this geometric series of weights? Is the choice
of weighting used in the λ-return in some way a statistically principled choice?
The original reason for this weighting scheme is that it will make our subsequent
math work out (more specifically, it is not clear how to make a “backwards
view” with other weighting schemes—in the next lecture we will describe what
this backwards view is). Konidaris et al. (2011a) investigated conditions under
which the λ-return is statistically principled. Below we will review their findings
(not the alternative to the λ-return that they propose, but their analysis of the
λ-return). These findings show a set of conditions under which the λ-return
could be derived as a principled estimator of vπ(s). Other conditions may exist
under which the λ-return is a reasonable weighting scheme, but this is the only
example that I am aware of today.
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A common point of confusion here is about whether the returns come from
the same episode. They do. We are consider an agent that is currently at St,
the current time step is t, and we are deciding what target the agent should
use—what value it should change its estimate of vπ(St) to be closer to. For now,
we are ignoring the fact that the agent must wait until the end of an episode
to compute some of these longer returns, and asking: if we had all of the data
from now until the end of the episode, what should our target be? One answer

is the TD target, G
(1)
t , while another is the Monte-Carlo target, Gt. The one

we’re considering here is the λ-return, which blends together targets between
the Monte-Carlo and TD targets. Also, note that each of these targets is an
estimator of vπ(St).

Theorem 12. If St = st and

1. The i-step returns are all statistically independent,

2. The i-step returns are all normally distributed,

3. The variance of the i-step returns grows with i according to: Var(G
(i)
t ) =

β/λi, for some constant β,

4. E[G
(i)
t ] = vπ(St) for all i, i.e., the i-step returns are all unbiased estimators

of vπ(st),

then the maximum likelihood estimator of vπ(St) is the λ-return, Gλt .

Proof. Notice that here we are assuming that the state St = st has occurred,
and so st is not a random variable. Also, notice that we view all events after St
as remaining random—this includes Rt.

The likelihood that vπ(st) = x given the estimators G
(1)
t , G

(2)
t , G

(3)
t , . . . is

L(x|G(1)
t , G

(2)
t , G

(3)
t , . . . ) = Pr

(
G

(1)
t , G

(2)
t , G

(3)
t , . . . ; vπ(st) = x

)
(301)

=

∞∏
i=1

Pr(G
(i)
t ; vπ(st) = x), (302)

by the assumption that the different length returns are independent, and where in
this proof, L denotes the likelihood function, not the horizon of an MDP. Notice
the use of semicolons here. Sometimes likelihood is written as L(θ|x) = Pr(X =
x|θ). However, we use the common alternative notation, L(θ|x) = Pr(X = x; θ),
since we view this as “the probability that X = x under the assumption that
the model parameter is θ”, rather than viewing this as a conditional probability.
That is, to condition on the event θ is shorthand for Θ = θ, which implies that
the model parameter is itself a random variable, Θ. In our case, for example,
vπ(st) is clearly not a random variable, and so we use the semicolon notation.
For example, you should not try to apply rules of conditional probabilities to

90

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Likelihood_function


Pr(G
(i)
t |vπ(st) = x), as this is not a conditional probability,9 and so we write

Pr(G
(i)
t ; vπ(St) = x) instead.

To find the maximum likelihood estimator, we must search for the value of x
that maximizes the likelihood:

arg max
x∈R

L(x|G(1)
t , G

(2)
t , G

(3)
t , . . . ) = arg max

x∈R

∞∏
i=1

Pr(G
(i)
t ; vπ(st) = x) (303)

= arg max
x∈R

ln

( ∞∏
i=1

Pr(G
(i)
t ; vπ(st) = x)

)
(304)

= arg max
x∈R

∞∑
i=1

ln
(

Pr(G
(i)
t ; vπ(st) = x)

)
(305)

(a)
= arg max

x∈R

∞∑
i=1

ln

(
1√

2πβ/λi
exp
−(G

(i)
t − x)2

2β/λi

)
(306)

= arg max
x∈R

∞∑
i=1

ln

(
1√

2πβ/λi

)
+ ln

(
exp
−(G

(i)
t − x)2

2β/λi

)
(307)

(b)
= arg max

x∈R

∞∑
i=1

ln

(
exp
−(G

(i)
t − x)2

2β/λi

)
(308)

= arg max
x∈R

∞∑
i=1

−(G
(i)
t − x)2

2β/λi
, (309)

where (a) comes from the assumptions that each G
(i)
t is normally distributed

with mean vπ(St) and variance β/λi and (b) holds because the dropped term is
not a function of x, and so does not impact the result (due to the arg maxx∈R).

9You can view this as a conditional probability by defining vπ(st) to be the value of some
random variable, say Θ, and then assuming that Θ = vπ(st) always. So, the conditional
probability perspective isn’t wrong, it’s just unnecessarily confusing.
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Solving for the critical points, we have that any critical point must satisfy:

∂

∂x

∞∑
i=1

−(G
(i)
t − x)2

2β/λi
= 0 (310)

⇐⇒
∞∑
i=1

∂

∂x

−λi(G(i)
t − x)2

2β
= 0 (311)

⇐⇒
∞∑
i=1

λi(G
(i)
t − x)

β
= 0 (312)

⇐⇒
∞∑
i=1

λiG
(i)
t =

∞∑
i=1

λix (313)

⇐⇒
∞∑
i=1

λiG
(i)
t =

λ

1− λ
x (314)

⇐⇒x =
1− λ
λ

∞∑
i=1

λiG
(i)
t (315)

⇐⇒x =
1− λ
λ

∞∑
i=0

λi+1G
(i+1)
t (316)

⇐⇒x = (1− λ)

∞∑
i=0

λiG
(i+1)
t (317)

⇐⇒x = Gλt . (318)

Notice that the conditions required by Theorem 12 are egregious. The i-
step returns are not statistically independent (the 98-step and 99-step returns
with small γ are nearly identical), they often are not normally distributed, the
variance does not grow proportional to 1/λi (particularly for longer returns, the
discounting makes returns almost identical, and thus they have almost identical
variance), and only the Monte-Carlo return is unbiased (the bias of the TD
return was one of the main motivations for creating the λ-return in the first
place!). So, right now you might be thinking “this seems like a very bad estimator
for us to use!” Perhaps, and there is research into producing better estimators
(Konidaris et al., 2011a; Thomas et al., 2015a; Thomas and Brunskill, 2016).10

However, for now we will proceed using the λ-return. Note that the λ-return
is the current standard in reinforcement learning research, despite its lack of a
principled derivation.

10Because it is not clear how to create backwards views for these more advanced estimators,
they are not practical for use in place of the λ-return. Making these estimators practical would
be a significant advancement. Since they cannot replace the λ-return (because they do not
have a backwards form), these latter papers considered a setting where they are applicable:
off-policy policy evaluation. Hence, the latter two papers begin targeting this alternate problem,
but their real underlying motivation was an effort to improve and replace the λ-return.
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11.1 λ-Return Algorithm

We can use the λ-return as a target to obtain a policy evaluation algorithm. The
resulting update is:

v(St)← v(St) + α(Gλt − v(St)). (319)

This algorithm is called the forwards view because, when updating v(St), we look
forward in time to see what states and rewards occur in the future. Also, after
updating v(s), we never look at v(s) again until it is visited another time. The
drawback of the forward view is that we must wait until the end of an episode in
order to compute the update to v(St). We therefore call this algorithm offline,
as opposed to online algorithms, which update at each time step.

12 Backwards View of TD(λ)

In the backwards view, at time t the agent looks back to all of the states that have
occurred up until time t, and determines how these previous states should be
updated based on the newly observed state and reward. We store an additional
variable for each state, called an eligibility trace. We write et(s) to denote the
eligibility of state s at time t. We sometimes refer to eligibility traces as e-traces.
An e-trace quantifies how much v(s) should be updated if there is a TD error at
the current time step, t. At each time step, all e-traces will be decayed by γλ,
and the e-trace for the current state is incremented. That is:

et(s) =

{
γλet−1(s) if s 6= St

γλet−1(s) + 1 otherwise.
(320)

This type of e-trace is called an accumulating trace because the traces can
accumulate to be larger than one. Other alternatives exist, like replacing traces,
wherein the eligibility of the current state is set to one rather than incremented
by one. We will focus on accumulating traces.

Note: the eligibility traces start equal to zero for all states and should be
reset to zero at the start of every episode.

The TD(λ) algorithm updates all states at each time step in proportion to
their eligibility:

δt =Rt + γv(St+1)− v(St) (321)

∀s ∈ S, e(s) =γλe(s) (322)

e(St) =e(St) + 1 (323)

∀s ∈ S, v(s) =v(s) + αδte(s). (324)

At each time step, this algorithm looks backwards and asks “which states should
have their values updated due to the current TD error?” Notice that if λ = 0,
this algorithm is clearly identical to TD. Perhaps less obviously, if λ = 1, this
algorithm is equivalent to the Monte Carlo algorithm in (207).
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The forwards and backwards updates are (approximately) equivalent. That
is, if we start with the same value function, after running a complete episode
using the update in (319) and the updates in (321), the resulting value function
estimates will be (approximately) equal. To see this, we begin by establishing
some notation.

First, recall that
δt = Rt + γvt(St+1)− vt(St), (325)

where vt denotes the value function estimate at time t. Let Is,St = 1 if St = s
and Is,St = 0 otherwise. With this indicator function, we can write an expression
for the eligibility trace at time t that is not recurrent:

et(s) =

t∑
k=0

(γλ)t−kIs,Sk . (326)

Unlike (320), which computed the eligiblities recurrently, this equation looks
back from time t at all previous time steps, k, and adds the contribution to the
e-trace at time t that is due to the state at time k. If the state at time k is not
s, then there is no contribution from time k to the eligibility of state s at time
t. If the state at time k was s, then at time t this contributes (γλ)t−k to the
eligibility of state s at time t.

Next, let ∆vFt (s) denote the update at time t to vt(s) according to the
forward view. That is,

∆vFt (s) = α(Gλt − vt(St)), (327)

if St = s, and ∆vFt (s) = 0 otherwise. We do not express this by including a Is,St
term on the right side in order to simplify the use of this term later. Similarly,
let ∆vBt (s) denote the update at time t to vt(s) according to the backwards
view:

∆vBt (s) = αδtet(s). (328)

In Theorem 13 we show that the forwards and backwards updates result in
the roughly same change to the value function at the end of an episode. After
the proof we discuss the step that makes this equivalence approximate.

Theorem 13. For all s ∈ S,

L∑
t=0

∆vBt (s) ≈
L∑
t=0

∆vFt (s)Is,St . (329)
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Proof. We begin with the left side:

L∑
t=0

∆vBt (s)
(a)
=

L∑
t=0

αδtet(s) (330)

(b)
=

L∑
t=0

αδt

t∑
k=0

(γλ)t−kIs,Sk (331)

(c)
=

L∑
t=0

α

t∑
k=0

(γλ)t−kIs,Skδt (332)

(d)
=

L∑
k=0

α

k∑
t=0

(γλ)k−tIs,Stδk, (333)

where (a) comes from (328), (b) comes from (326), (c) comes from moving
the δt term inside the sum over k, and (d) comes from swapping the variable
names t and k (this is a name change only - no terms have changed). Notice

that
∑n
i=0

∑i
j=0 f(i, j) =

∑n
j=0

∑n
i=j f(i, j), since all of the same pairs of i and

j are included. Using this property, we reverse the order of the sums to obtain:

L∑
t=0

∆vBt (s) =

L∑
t=0

α

L∑
k=t

(γλ)k−tIs,Stδk (334)

(a)
=

L∑
t=0

αIs,St
L∑
k=t

(γλ)k−tδk. (335)

where (a) comes from moving the Is,St term outside of the sum over k, since it
does not depend on k. Thus, on one line, we have that:

L∑
t=0

∆vBt (s) =

L∑
t=0

αIs,St
L∑
k=t

(γλ)k−tδk. (336)

We now turn to the right hand side of (329), and consider the update at a
single time step:

∆vFt (St) = α(Gλt − vt(St)). (337)

Dividing both sides be α, we obtain:

1

α
∆vFt (St) =Gλt − vt(St) (338)

= − vt(St) + (1− λ)λ0(Rt + γvt(St+1)) (339)

+ (1− λ)λ1(Rt + γRt+1 + γ2vt(St+2)) (340)

+ (1− λ)λ1(Rt + γRt+1 + γ2Rt+2 + γ3vt(St+3))
(341)

... (342)
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Consider all of the Rt terms:

∞∑
i=0

(1− λ)λiRt =
1− λ
1− λ

Rt (343)

=Rt. (344)

Now consider all of the Rt+1 terms:

∞∑
i=1

(1− λ)λiγRt+1 =(1− λ)(γλ)

∞∑
i=0

λiRt+1 (345)

=(γλ)Rt+1. (346)

In general, all of the Rt+k terms combine to (γλ)kRt+k. We now rewrite (342),
but combining all of the Rt terms, Rt+1 terms, etc.

1

α
∆vFt (St) =− vt(St) (347)

+Rt + (1− λ)γvt(St+1) (348)

+ (γλ)Rt+1 + (1− λ)(γλ)γvt(St+2) (349)

+ (γλ)2Rt+2 + (1− λ)(γλ)2γvt(St+3) (350)

... (351)

Pulling out a (γλ)i from each row and expanding the (1− λ) term, we obtain:

1

α
∆vFt (St) =− vt(St) (352)

+ (γλ)0 (Rt + γvt(St+1)− γλvt(St+1)) (353)

+ (γλ)1 (Rt+1 + γvt(St+2)− γλvt(St+2)) (354)

+ (γλ)2 (Rt+2 + γvt(St+3)− γλvt(St+3)) (355)

... (356)

Shifting the right-most vt terms all down one line, and plugging the −vt(St)
from (352) into (353), we obtain:

1

α
∆vFt (St) =(γλ)0 (Rt + γvt(St+1)− vt(St)) (357)

+ (γλ)1 (Rt+1 + γvt(St+2)− vt(St+1)) (358)

+ (γλ)2 (Rt+2 + γvt(St+3)− vt(St+2)) (359)

... (360)

Consider the term Rt+k + γvt(St+k+1)− vt(St+k). This term resembles the TD-
error that occurs k steps in the future from time t, that is δt+k. However, it is not
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precisely δt+k, since δt+k (when computed using the backwards algorithm—the
way we defined TD-errors) will use vt+k when computing δt+k, not vt. That is,
this is the TD-error k steps in the future if we were to use our value function
from time t to compute the TD error. If the step size is small, then the change
to the value function should not have been significant within an episode, and so
Rt+k + γvt(St+k+1)− vt(St+k) ≈ δt+k. Using this approximation, we obtain:

1

α
∆vFt (St) ≈

∞∑
k=0

(γλ)kδt+k (361)

=

∞∑
k=t

(γλ)k−tδk (362)

=

L∑
k=t

(γλ)k−tδk, (363)

since δk = 0 if k > L. So, returning to the right side of (329),

L∑
t=0

∆vFt (St)Is,St ≈
L∑
t=0

α

L∑
k=t

(γλ)k−tδkIs,St (364)

=

L∑
t=0

αIs,St
L∑
k=t

(γλ)k−tδk, (365)

which is the same as the left side, as expressed in (336).

12.1 True Online Temporal Difference Learning

The equivalence of the forwards and backwards views of TD(λ) is only ap-
proximate. Seijen and Sutton (2014) showed how the TD(λ) algorithm can
be modified so that the modified backwards view is actually equivalent to the
forwards view (Van Seijen et al., 2016). This true online TD(λ) algorithm is
only designed for the tabular and linear function approximation settings—it is
not applicable with non-linear function approximation. In practice, true online
TD(λ) is more robust to the step size parameter than ordinary TD(λ) (with an
improperly tuned step size, α, this can appear to be faster learning). The same
goes for true online Sarsa(λ) (the control form of true online TD(λ)).

12.2 Sarsa(λ) and Q(λ)

We can use TD(λ) for control, just as we used TD to create the Sarsa and
Q-learning algorithms. The resulting algorithms are called Sarsa(λ) and Q(λ),
respectively. Pseudocode for Sarsa(λ) is provided in Algorithm 13, and pseu-
docode for Q(λ) is provided in Algorithm 14. In both algorithms, e is the vector
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of eligibility traces—one real-valued trace per weight.

Algorithm 13: Sarsa(λ)

1 Initialize w arbitrarily;
2 for each episode do
3 s ∼ d0;
4 e← 0;
5 Choose a from s using a policy derived from q (e.g., ε-greedy or

softmax);
6 for each time step, until s is the terminal absorbing state do
7 Take action a and observe r and s′;
8 Choose a′ from s′ using a policy derived from q;

9 e← γλe+ ∂qw(s,a)
∂w ;

10 δ ← r + γqw(s′, a′)− qw(s, a);
11 w ← w + αδe;
12 s← s′;
13 a← a′;

Algorithm 14: Q(λ)

1 Initialize w arbitrarily;
2 for each episode do
3 s ∼ d0;
4 e← 0;
5 for each time step, until s is the terminal absorbing state do
6 Choose a from s using a policy derived from q;
7 Take action a and observe r and s′;

8 e← γλe+ ∂qw(s,a)
∂w ;

9 δ ← r + γmaxa′∈A qw(s′, a′)− qw(s, a);
10 w ← w + αδe;
11 s← s′;

Question 29. If we store one weight per state-action pair (i.e., if we use
a tabular representation) and always sample actions from a fixed policy, π,
that does not depend on qw, confirm that the Sarsa(λ) algorithm is equivalent
to TD(λ) for estimating the action-value function.

There are other Q(λ) variants—particularly ones that use different eligibility
traces, like replacing traces. The one that we present here is the most simple, and
perhaps the most common. If someone refers to Q-learning, they are typically
referring to this variant of the Q(λ) algorithm.
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12.3 Policy Gradient Algorithms

Policy gradient is not just one algorithm—it is a class of algorithms. Many policy
gradient algorithms are actor-critics, but not all. Similarly, actor-critic is not a
single algorithm, but a class of algorithms, and many (but not all) actor-critics
are policy gradient algorithms.

For example (referencing algorithms we will describe later), our simple actor-
critic is an actor-critic, but is not a policy gradient algorithm. REINFORCE
(Williams, 1992) is a policy gradient algorithm, but it doesn’t have a critic and
therefore is not an actor-critic. So, although most policy gradient algorithms
will also be actor-critics, and most actor-critic algorithms are policy gradient
algorithms, these two terms are not interchangeable.

The idea underlying policy gradient algorithms is that we can use a parame-
terized policy, with parameters θ ∈ Rn, we can define an objective function:

J(θ) = E [G|θ] , (366)

and then we can perform gradient ascent to search for policy parameters that
maximize the expected discounted return:

θ ← θ + α∇J(θ). (367)

Policy gradient methods have several benefits over value function based meth-
ods like Sarsa and Q-learning. First, policy gradient methods work well with
continuous actions (we can easily parameterize a continuous distribution), while
Q-learning and Sarsa often do not (and solving for the action that maximizes
q(s, a) when a is continuous can be computationally expensive) (Baird and Klopf,
1993). Second, since they are (stochastic) gradient algorithms, policy gradient
algorithms tend to have convergence guarantees when value-function based meth-
ods do not (e.g., using non-linear policy parameterizations is not a problem for
policy gradient methods). Furthermore, whereas value-based methods approx-
imately optimize an objective (minimizing some notion of expected Bellman
error), this objective is merely a surrogate for the primary objective: maximizing
expected return. Policy gradient methods take a more direct approach and
directly maximize the expected return.

Notice however, that Q-learning and Sarsa are global algorithms in that they
are guaranteed to converge to globally optimal policies (when using a tabular
representation), whereas gradient methods can often become stuck in local
minima. This common argument is flawed: when using tabular representations
for finite MDPs, the objective function has no local optima (Thomas, 2014).
The proof presented in this citation is not complete because it does not address
the fact that global optima also do not exist, since weights will tend to ±∞. A
complete proof showing convergence to an optimal policy is in-progress.

The crucial question that we will address in future lectures is: how can we
estimate ∇J(θ) when we do not know the transition or reward function?
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12.4 Policy Gradient Theorem

How can we efficiently compute ∇J(θ)? One option is to use finite difference
methods, which approximate the gradients of functions by evaluating them at
different points. However, these algorithms do not take advantage of the known
structure of the problem: that the objective function corresponds to expected
returns for an MDP. One might also use automatic differentiation tools, but
these require knowledge of the transition function and reward function.

The policy gradient theorem gives an analytic expression for ∇J(θ) that
consists of terms that are known or which can be approximated. Here we will
follow the presentation of Sutton et al. (2000). The policy gradient theorem
states:

Theorem 14 (Policy Gradient Theorem). If ∂π(s,a,θ)
∂θ exists for all s, a, and

θ, then for all finite finite MDPs with bounded rewards, γ ∈ [0, 1), and unique
deterministic initial state s0,

∇J(θ) =
∑
s∈S

dθ(s)
∑
a∈A

qπ(s, a)
∂π(s, a, θ)

∂θ
, (368)

where dθ(s) =
∑∞
t=0 γ

t Pr(St = s|θ).

Although we present the policy gradient theorem here for finite MDPs,
extensions hold for MDPs with continuous states and/or actions, and even
hybrid (mixtures of discrete and continuous) states and actions. Extensions to
MDPs without unique deterministic initial states, and to the average reward
setting also exist. Recall that

∂ ln(f(x))

∂x
=

1

f(x)

∂f(x)

∂x
, (369)

and so
∂ ln(π(s, a, θ))

∂θ
=

1

π(s, a, θ)

∂π(s, a, θ)

∂θ
. (370)

Thus, we can rewrite (368) as:

∇J(θ) =
∑
s∈S

dθ(s)
∑
a∈A

π(s, a, θ)qπ(s, a)
∂ ln (π(s, a, θ))

∂θ
. (371)

Also, if we were to view dθ as a distribution over the states (it is not, as we will
discuss shortly), then we could write the policy gradient theorem as:

∇J(θ) = E

[
qπ(S,A)

∂ ln(π(S,A, θ))

∂θ

∣∣∣∣θ] , (372)

where S ∼ dθ and A ∼ π(S, ·, θ).
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To obtain an intuitive understanding of (368), recall that ∂f(x,y)
∂y is the

direction of change to y taht most quickly increases f(x, y). That is, it is the
direction of steepest ascent of f(x, ·) at y. So, if we consider each term:

∇J(θ) =
∑
s∈S

dθ(s)︸ ︷︷ ︸
average over states

∑
a∈A

π(s, a, θ)︸ ︷︷ ︸
average over actions

qπ(s, a)︸ ︷︷ ︸
how good is a in s?

∂ ln(π(s, a, θ))

∂θ︸ ︷︷ ︸
How to change θ to make a more likely in s

.

(373)
Consider dθ in more detail. This term is sometimes called the discounted

state distribution. However, notice that it is not a probability distribution. Since∑∞
t=0 γ

t = 1
1−γ , we could make dθ into a distribution by multiplying it by 1− γ.

Intuitively, what dθ does is it averages over state distributions at different times,
giving less weight to later state distributions. So, J(θ) favors changes to the
policy that increase the expected return at earlier time steps.

The policy gradient theorem can be written as:

∇J(θ) ∝ E

[ ∞∑
t=0

γtqπ(St, At)
∂ ln(π(St, At, θ))

∂θ

∣∣∣∣∣θ
]
, (374)

where here states and actions are generated by running the policy with parameters
θ—not by sampling from (1− γ)dθ.

In practice, most algorithms ignore the γt term preceding qπ(St, At) in (374).
For further discussion of this term (and why it is usually ignored), see the work
of Thomas and Barto (2012); Thomas (2014).

12.5 Proof of the Policy Gradient Theorem

In this section we may switch freely between using π and θ to denote a policy.
Writing π emphasizes parameters. A more precise notation might be to always
write π(·, ·, θ), but this is too verbose. So, for example, we may switch between
writing qπ and qθ to both denote the action-value function when when using the
parameterized policy π, with parameters θ. We will tend towards using the θ
notation to make it clear which terms depend on the policy parameters. Note
that, since S0 = s always,

J(θ) =E [G|θ] (375)

=vθ(s0). (376)

So, to obtain an expression for the policy gradient we will obtain an expression
for the derivative of the value of a state with respect to the policy parameters.
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We begin by showing this for all states, not just s0. That is, for all states s ∈ S:

∂vθ(s)

∂θ
(377)

=
∂

∂θ

∑
a∈A

π(s, a, θ)qθ(s, a) (378)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + π(s, a, θ)

∂qθ(s, a)

∂θ
(379)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) +

∑
a∈A

π(s, a, θ)
∂

∂θ

∑
s′∈S

P (s, a, s′)
(
R(s, a) + γvθ(s′)

)
(380)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + γ

∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∂vθ(s′)

∂θ
(381)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + γ

∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∂

∂θ

(∑
a′∈A

π(s′, a′, θ)qθ(s′, a′)

)
(382)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + γ

∑
s′∈S

Pr(St+1 = s′|St = s, θ)

(∑
a′∈A

∂π(s′, a′, θ)

∂θ
qθ(s′, a′) + π(s′, a′, θ)

∂qθ(s′, a′)

∂θ

)
(383)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + γ

∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

∂π(s′, a′, θ)

∂θ
qθ(s′, a′)

(384)

+ γ
∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

π(s′, a′, θ)
∂qθ(s′, a′)

∂θ
(385)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + γ

∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

∂π(s′, a′, θ)

∂θ
qθ(s′, a′)

(386)

+ γ
∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

π(s′, a′, θ)
∂

∂θ

(∑
s′′∈S

P (s′, a′, s′′)(R(s′, a′) + γvθ(s′′))

)
(387)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a) + γ

∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

∂π(s′, a′, θ)

∂θ
qθ(s′, a′)

(388)

+ γ
∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

π(s′, a′, θ)
∑
s′′∈S

P (s′, a′, s′′)γ
∂vθ(s′′)

∂θ

(389)

=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a)︸ ︷︷ ︸

first term

+ γ
∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

∂π(s′, a′, θ)

∂θ
qθ(s′, a′)︸ ︷︷ ︸

second term

(390)

+ γ
∑
s′′∈S

Pr(St+2 = s′′|St = s, θ)γ
∂vθ(s′′)

∂θ
. (391)

102



Notice what we have been doing: we are expanding the state value function
by looking forward one time step, and writing the value function in terms of
the value of the next state, and then repeating this process. Above we have
“unravelled” two times, resulting in two terms, marked in the final expression. If
we were to unravel the expression one more time, by expanding ∂vθ(s′′)/∂θ and
then differentiating, we would obtain:

∂vθ(s)

∂θ
=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a)︸ ︷︷ ︸

first term

+ γ
∑
s′∈S

Pr(St+1 = s′|St = s, θ)
∑
a′∈A

∂π(s′, a′, θ)

∂θ
qθ(s′, a′)︸ ︷︷ ︸

second term

(392)

+ γ2
∑
s′′∈S

Pr(St+2 = s′′|St = s, θ)
∑
a′′∈A

∂π(s′′, a′′, θ)

∂θ
qθ(s′′, a′′)︸ ︷︷ ︸

third term

(393)

+ γ2
∑
s′′′∈S

Pr(St+r = s′′′|St = s, θ)γ
∂vθ(s′′′)

∂θ
. (394)

Notice that in each term the symbol used for the state and action does not
matter, and we can write x for the state and a for the action (we also replace the
final term with . . . to denote that we could continue to unravel the expression):

∂vθ(s)

∂θ
=
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a)︸ ︷︷ ︸

first term

+ γ
∑
x∈S

Pr(St+1 = x|St = s, θ)
∑
a∈A

∂π(x, a, θ)

∂θ
qθ(x, a)︸ ︷︷ ︸

second term

(395)

+ γ2
∑
x∈S

Pr(St+2 = x|St = s, θ)
∑
a∈A

∂π(x, a, θ)

∂θ
qθ(x, a)︸ ︷︷ ︸

third term

+ . . . (396)

We now index each term by k, with the first term being k = 0, the second k = 1,
etc., which results in the expression:

∂vθ(s)

∂θ
=

∞∑
k=0

∑
x∈S

Pr(St+k = x|St = s, θ)
∑
a∈A

γk
∂π(x, a, θ)

∂θ
qθ(x, a). (397)

Notice that we have modified the first term by including a sum over states. This is
not a change because when k = 0, the only state, x, where Pr(St+0 = x|St = s, θ)
is not zero will be when x = s (at which point this probability is one).

Notice that, in the notation used by Sutton et al. (2000), Pr(St+k = x|St =
s, θ) is denoted by Pr(s→ x, k, π).

With this expression for the value derivative of the value of any state with
respect to the policy parameters, we turn to computing the policy gradient in
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the start-state setting:

∇J(θ) =
∂

∂θ
J(θ) (398)

=
∂

∂θ
E [G|θ] (399)

=
∂

∂θ
E [Gt|St = s0, θ] (400)

=
∂

∂θ
vθ(s0) (401)

=

∞∑
k=0

∑
x∈S

Pr(St+k = x|St = s0, θ)
∑
a∈A

γk
∂π(x, a, θ)

∂θ
qθ(x, a) (402)

=
∑
x∈S

∞∑
k=0

γk Pr(St+k = x|St = s0, θ)︸ ︷︷ ︸
=dθ(x)

∑
a∈A

∂π(x, a, θ)

∂θ
qθ(x, a) (403)

=
∑
s∈S

dθ(s)
∑
a∈A

∂π(s, a, θ)

∂θ
qθ(s, a), (404)

where the last term comes from replacing the symbol x with the symbol s. This
completes the proof of the policy gradient theorem.

12.6 REINFORCE

The REINFORCE algorithm (Williams, 1992) uses unbiased estimates of the
policy gradient to perform stochastic gradient ascent on J . To obtain stochastic
gradient estimates, notice that the policy gradient can be written as:

∇J(θ) ∝ E

[
γtqθ(St, At)

∂ lnπ(St, At, θ)

∂θ

∣∣∣∣θ] , (405)

where ∝ is due to the dropped missing (1 − γ) term necessary to make dθ

a distribution, and where St and At are sampled according to the on-policy
distribution (by running the policy with parameters θ and observing the resulting
states and actions), and where t is uniformly distributed from 0 to L − 1.
Alternatively, we can avoid the uniform distribution of t by summing over time
steps in the episode:

∇J(θ) ∝ E

[
L∑
t=0

γtqθ(St, At)
∂ lnπ(St, At, θ)

∂θ

∣∣∣∣∣θ
]
. (406)

We can obtain unbiased estimates of this gradient by sampling running an
episode to obtain samples of St and At, and using Gt as an unbiased estimate of
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qθ(St, At). In Algorithm 15 we present the unbiased REINFORCE algorithm—
true stochastic gradient ascent on J .

Algorithm 15: Stochastic Gradient Ascent on J (REINFORCE)

1 Initialize θ arbitrarily;
2 for each episode do
3 Generate an episode S0, A0, R0, S1, A1, R1, . . . , SL−1, AL−1, RL−1

using policy parameters θ.;

4 ∇̂J(θ) =
∑L−1
t=0 γtGt

∂ ln(π(St,At,θ))
∂θ ;

5 θ ← θ + α∇̂J(θ);

Question 30. Consider the REINFORCE algorithm presented on page 328
of the second edition of Sutton and Barto’s book (Sutton and Barto, 2018).
Compare their algorithm to the one presented above. Notice that they are
not equivalent. Are they both true stochastic gradient ascent algorithms? Is
one not?

Answer30.Thealgorithmwehavepresentedisatruestochasticgradient
ascentalgorithm.ThealgorithmSuttonandBartopresentedisapprox-
imatelystochasticgradientascent.Itisonlyapproximatelystochastic
gradientascentbecausetheychangetheparametersateachtimestepof
theepisode.So,(usingtheirnotation)the∇lnπ(At|St,θ)termintheir
updatewillbecomputedusingparametersθ,forwhichGisnotanunbi-
asedestimatorofq

θ
(St,At),sinceGwasproducedusingpreviouspolicy

parameters.NoticethatWilliams(1992)explicitlystates,justpreviousto
hisequation11,that“Attheconclusionofeachepisode,eachparameter
wijisincrementedby[...],”andsoitispropertoviewREINFORCEas
updatingattheendofepisodes,notduringepisodes.

In practice, the γt term appearing in the REINFORCE pseudocode is ig-
nored. This term came from the discounted state distribution, and results
in a discounting of the updates that degrades performance empirically. This
theory surrounding the removal of this γt term has been discussed by Thomas
(2014)—at present, it is not known whether this algorithm without the γt term
is even a true stochastic gradient function (just for a different objective). Still,
in your implementations, you should likely drop this γt term.

Since REINFORCE is using a Monte Carlo estimator, Gt, of qθ(St, At), it
has high variance. Consider how we might reduce the variance of this update.
One approach is to use a control variate. Consider a general problem unrelated
to reinforcement learning: estimating µ = E[X] for some random variable X.
Consider doing so given a single sample, X. The obvious estimator of µ is
m̂u = X. This estimator is unbiased: E[µ̂] = E[X] = µ, and has variance
Var(µ̂) = Var(X).
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Now consider estimating µ given a single sample, X, as well as a sample,
Y of another variable whose expectation, E[Y ] is known. Can we somehow
create an estimator of µ that is better? One approach is to use the estimator
µ̂ = X − Y + E[Y ]. This estimator is still unbiased:

E[µ̂] =E[X − Y + E[Y ]] (407)

=E[X]−E[Y ] + E[Y ] (408)

=E[X] (409)

=µ. (410)

However, its variance is:

Var(µ̂) = Var(X − Y + E[Y ]) (411)

= Var(X − Y ) (412)

= Var(X) + Var(Y )− 2 Cov(X,Y ). (413)

This variance is lower than the variance of the original estimator when:

Var(X) + Var(Y )− 2 Cov(X,Y ) < Var(X), (414)

or equivalently, when

Var(Y ) < 2 Cov(X,Y ). (415)

We refer to Y as a control variate.
So, if Y is similar to X—if X and Y have positive covariance, then subtracting

Y from X can reduce the variance of the estimate. However, even if Y and X
have positive covariance, if Y is very noisy, the additional variance introduced
by adding Y can result in a net increase in variance. So, Y helps if it is low
variance, yet similar to X. In some cases, Y might be an estimate of a random
process X, built from a model that has error (see the discussion of the doubly
robust estimator in the appendix of the paper by Thomas and Brunskill (2016)).
This provides a way to use a model that has error to reduce the variance of
Monte Carlo estimates while preserving the unbiased nature of the estimate. In
more general cases, if you know something about the randomness in X, but you
don’t know X precisely, you can subtract off your random estimate, Y , of X,
and add back in the expected value of the amount that you are subtracting off,
and this will often reduce variance.

Consider again the REINFORCE update. We will insert a control variate to
get the update:

θ ← θ + α

L−1∑
t=0

γt(Gt − b(St))
∂ ln(π(St, At, θ))

∂θ
, (416)

where b : S → R is any function of the state. To see this in the form of a control
variate, we can rewrite it as:

θ ← θ + α

L−1∑
t=0

γtGt
∂ ln(π(St, At, θ))

∂θ︸ ︷︷ ︸
X

−α
L−1∑
t=0

γtb(St)
∂ ln(π(St, At, θ))

∂θ︸ ︷︷ ︸
Y

, (417)
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where X is our unbiased gradient estimate (ignoring the (1− γ) normalization
term) and Y is the control variate for this estimate. The E[Y ] term is not present
because, in this case, it is always zero (regardless of the choice of b). That is:

E

[
α

L−1∑
t=0

γtb(St)
∂ ln(π(St, At, θ))

∂θ

∣∣∣∣∣θ
]

=α

L−1∑
t=0

γtE

[
b(St)

∂ ln(π(St, At, θ))

∂θ

∣∣∣∣θ]
(418)

=α

L−1∑
t=0

γt
∑
s∈S

Pr(St = s|θ)
∑
a∈A

Pr(At = a|St = s, θ)b(s)
∂ ln(π(s, a, θ))

∂θ

(419)

=α

L−1∑
t=0

γt
∑
s∈S

Pr(St = s|θ)b(s)
∑
a∈A

π(s, a, θ)
∂ ln(π(s, a, θ))

∂θ

(420)

=α

L−1∑
t=0

γt
∑
s∈S

Pr(St = s|θ)b(s)
∑
a∈A

∂π(s, a, θ)

∂θ

(421)

=α

L−1∑
t=0

γt
∑
s∈S

Pr(St = s|θ)b(s) ∂
∂θ

∑
a∈A

π(s, a, θ)

(422)

=α

L−1∑
t=0

γt
∑
s∈S

Pr(St = s|θ)b(s) ∂
∂θ

1 (423)

=α

L−1∑
t=0

γt
∑
s∈S

Pr(St = s|θ)b(s)0 (424)

=0. (425)

So, inserting the b(s) control variate in (416) did not change the expected
value of the update—we still obtain unbiased estimates of the policy gradient.
This raises the question: what should we use for b? A common choice is the
state-value function: vθ. This is because we expect vθ(St) to be similar to Gt,
and thus the covariance term when computing the benefit of the control variate
to be positive. Hereafter we will use the state-value function as the baseline.
Bhatnagar et al. (2009, Lemma 2) showed that the optimal baseline in the
average-reward setting is the state-value function, while Weaver and Tao (2001)
showed that the optimal constant (state-independent) baseline is the average
reward. The optimal baseline (minimal-variance baseline) in the discounted
start-state setting is not exactly the state-value function, but something similar
Greensmith et al. (2004); Wu et al. (2018).

We can estimate the baseline using the TD(λ) algorithm to obtain Algorithm
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16.

Algorithm 16: Stochastic Gradient Ascent on J (REINFORCE) in-
cluding a baseline (control variate). Here α and β are step sizes.

1 Initialize θ and w arbitrarily;
2 for each episode do
3 Generate an episode S0, A0, R0, S1, A1, R1, . . . , SL−1, AL−1, RL−1

using policy parameters θ.;

4 ∇̂J(θ) = 0;
5 e← 0;
6 for t = 0 to L− 1 do

7 ∇̂J(θ) = ∇̂J(θ) + γt(Gt − vw(St))
∂ ln(π(St,At,θ))

∂θ ;

8 e← γλe+ ∂vw(St)
∂w ;

9 δ ← Rt + γvw(St+1)− vw(St);
10 w ← w + αδe;

11 θ ← θ + β∇̂J(θ);

As in the REINFORCE algorithm without the baseline, you should ignore
the γt term in the policy update. Also notice that the update using vw(St) as
the baseline occurs before w is updated based on data that occurred after St.
This is to ensure that w is not changed based on At, which would in turn make
vw(St) depend on At, and thus would result in the control variate (baseline) not
being mean-zero.

Although REINFORCE with the baseline term is an improvement upon
REINFORCE, it still uses a Monte Carlo return, Gt. If we are willing to introduce
bias into our gradient estimates in an effort to reduce their variance, then we
can replace the Monte Carlo return, Gt, with the TD return, Rt + γvw(St+1).
This results in the update to the gradient estimate:

∇̂J(θ) = ∇̂J(θ) + γt(Rt + γvw(St+1)− vw(St))
∂ ln(π(St, At, θ))

∂θ
. (426)

If we further reverse the order of the updates so that the TD-error is computed
before the gradient estimate is updated, and if we introduce bias by updating
the policy parameters at every time step (as Sutton and Barto did in their
REINFORCE update), we obtain an Actor-Critic that follows biased estimates
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of the gradient, as presented in Algorithm 17.

Algorithm 17: Basic Actor-Critic

1 Initialize θ and w arbitrarily;
2 for each episode do
3 s ∼ d0;
4 e← 0;
5 for each time step, until s is the terminal absorbing state do

/* Act using the actor */
6 a ∼ π(s, ·);
7 Take action a and observe r and s′;

/* Critic update using TD(λ) */

8 e← γλe+ ∂vw(s)
∂w ;

9 δ ← r + γvw(s′)− vw(s);
10 w ← w + αδe;

/* Actor update */

11 θ ← θ + αγtδ ∂ ln(π(s,a,θ))
∂θ ;

/* Prepare for next episode */
12 s← s′;

As in the previous algorithms, the γt term in the actor update should not be
included in real implementations (Thomas, 2014). Another way to see why this
basic actor-critic uses a reasonable update is to consider what would happen if δ
were to use vπ rather than an estimate thereof. Specifically, recall from question
24 that E[δt|St = s,At = a, θ] = qθ(s, a) − vθ(s). Thus, if vw = vπ, then the
basic actor-critic’s update would be, in expectation:

θ ← θ + αγtE

[
(qθ(St, At)− vθ(St))

∂ ln(π(St, At, θ))

∂θ

∣∣∣∣θ] , (427)

which is the policy gradient (with vθ(St) as a baseline, and if we ignore the fact
that changing θ within an episode will change the state distribution).

The basic actor-critic presented above has also been presented with eligiblity
traces added to the actor. To the best of my knowledge, there is no principled
reason to do so. I believe that this change is similar in effect to modifying
the objective function to emphasize obtaining a good policy for states that
occur later in an episode, but at this point this is an educated guess. Still, this
alternate actor-critic algorithm performs remarkably well. Pseudocode for this
actor-critic algorithm, with the pesky γt term also removed (this algorithm is so
unprincipled, there’s no need to pretend we’re going for unbiased estimates or a
real gradient algorithm—we’re going for good performance here) is provided in
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Algorithm 18.

Algorithm 18: Actor-Critic that looks like a policy gradient algorithm
if you squint hard enough (ACTLLAPGAIYSHE)

1 Initialize θ and w arbitrarily;
2 for each episode do
3 s ∼ d0;
4 ev ← 0;
5 eθ ← 0;
6 for each time step, until s is the terminal absorbing state do

/* Act using the actor */
7 a ∼ π(s, ·);
8 Take action a and observe r and s′;

/* Critic update using TD(λ) */

9 ev ← γλev + ∂vw(s)
∂w ;

10 δ ← r + γvw(s′)− vw(s);
11 w ← w + αδev;

/* Actor update */

12 eθ ← γλeθ + ∂ ln(π(s,a,θ))
∂θ ;

13 θ ← θ + βδeθ;
/* Prepare for next episode */

14 s← s′;

To be clear, Algorithm 18 is not a true policy gradient algorithm because:

1. It ignores the γt term that came from the discounted state “distribution”.

2. It includes eligiblity traces in the actor update (I am unaware of any
analysis of what these traces do theoretically).

3. It uses a value function estimate in place of the true value function.

4. The policy parameters are updated at every time step, and so the resulting
state distribution is not dθ or the on-policy state distribution for any
particular policy—it comes from running a mixture of policies.

Still, this algorithm is often referred to as a policy gradient algorithm. This
same algorithm (with the γt terms implemented via the variable I), appears on
page 332 of the second edition of Sutton and Barto’s book (Sutton and Barto,
2018).

Note: Assume that the softmax policy’s weights take the form of a vector,
and that the weights for action 1 are followed by the weights for action 2, the
weights for action 2 are followed by the weights for action 3, etc. The derivative
of the natural log of this softmax policy is:
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∂ lnπ(s, ak, θ)

∂θ
=



−π(s, a1, θ)φ(s)
−π(s, a2, θ)φ(s)

...
[1− π(s, ak, θ)]φ(s)

...
−π(s, an, θ)φ(s)


.

Note that each line represents |φ(s)| elements of the vector. This results in a
vector of length n(|φ(s)|) (where n = |A|).

13 Natural Gradient

Natural gradients were popularized by Amari in 1998 in two papers (Amari,
1998; Amari and Douglas, 1998). He argued that, when optimizing a function
f(x), where x is a vector, you may not want to assume that x lies in Euclidean
space. If you want to measure distances differently between inputs, x, natural
gradients give you a way to do so. Specifically, if the distance between x and
x+∆ is

√
∆ᵀG(x)∆, where G(x) is a positive definite matrix, then the direction

of steepest ascent is G(x)−1∇f(x). This direction is called the natural gradient,

and is often denoted by ∇̃f(x). Note that G(x) can be a function of x—we can
measure distances differently around different points, x.

This raises the question: what should G(x) be? If the function being
optimized is a loss function of a parameterized distribution, e.g., f(dθ), where f is
the loss or objective function and d is a parameterized distribution, parameterized
by vector θ, then Amari argued that the Fisher information matrix (FIM), F (θ),
of the parameterized distribution d is a good choice for G. The FIM is defined
as:

F (θ) =
∑
x

dθ(x)
∂dθ(x)

∂θ

∂dθ(x)

∂θ

ᵀ

, (428)

where dθ(x) denotes the probability of event x under the distribution with
parameters θ (e.g., θ could be the mean and variance of a normal distribution).

I do not know who was first to show it, but it has been shown that the Fisher
information matrix results in using a second order Taylor approximation of the
KL-divergence as the notion of squared distance. A review of these results so
far can be found in the introduction to my paper (Thomas et al., 2016), and
the appendix includes a derivation of the Fisher information matrix from KL
divergence. The introduction to another of my papers (not the remainder of the
paper) (Thomas et al., 2018) also provides a clear example of why the “invariance
to reprameterization” or “covariance” property of natural gradient algorithms is
desirable.

After Amari introduced the idea of natural gradients, Kakade (2002) showed
how it could be used for reinforcement learning. Specifically, he showed that,
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when using compatible function approximation (this is also not covered in the
class notes, but first appears in the paper by Sutton et al. (2000)), the natural

gradient is ∇̃J(θ) = w.
That is, if you solve for weights w that are a local minimizer of the loss

function:

L(w) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a, θ) (qπ(s, a)− qw(s, a))
2
, (429)

where

qw(s, a) = wᵀ ∂ ln(π(s, a, θ))

∂θ
, (430)

then the natural gradient is w.
Kakade did not promote a particular algorithm, but soon after many natural

actor-critic algorithms were created. These algorithms use different policy-
evaluation algorithms and baselines to estimate qπ(s, a) with qw(s, a), and then
use the update w ← w + αw. Popular examples include Morimura’s linear time
NTD algorithm (Morimura et al., 2005), which was later reinvented separately
(with slight tweaks) by Degris et al. (2012, INAC) and Thomas and Barto (2012,
NAC-S) (neither of us knew of Morimura’s work at the time). Perhaps the
most popular natural actor-critic was that of (Peters and Schaal, 2008), previous
variants of which they published earlier (Peters and Schaal, 2006), and which
uses least squares temporal difference (LSTD), discussed in the last homework
assignment, to approximate the value function.11 Average-reward natural actor-
critic algorithms were also created (Bhatnagar et al., 2009), and the TRPO
algorithm is a natural actor-critic (the “trust region” part denotes that the
step size is measured in terms of the KL-divergence between the policy before
and after the step, but the direction of the step is just the natural gradient)
(Schulman et al., 2015). The idea of natural gradients has also been applied to
value function based methods, resulting in natural variants of q-learning and
Sarsa (Choi and Van Roy, 2006; Dabney and Thomas, 2014).

On the theory side, shortly after the derivation of natural gradients for RL
by Kakade, Bagnell and Schneider (2003) showed that the Kakade’s guess as to
what the Fisher information matrix should be is correct. The Fisher information
matrix is defined for parameterized distributions, and a policy is one distribution
per state. Kakade averaged these Fisher information matrices, weighted by the
state distribution dπ. Bagnell showed that this is the Fisher information matrix
that you get if you view policies as distributions over trajectories, and also proved
that natural gradient ascent using the Fisher information matrix is invariant to
reparameterization. A connection between natural gradient methods and mirror
descent (a convex optimization algorithm) has also been established (Thomas
et al., 2013; Raskutti and Mukherjee, 2015). For a discussion of the relation to
Newton’s method, see the works of Furmston et al. (2016) and Martens (2014).

11If you implement their algorithm, note that one version of the paper has an error in the
pseudocode (I believe v and w are reversed), and be sure to clear the eligibility trace vector
between episodes. You can also use WIS-LSTD (Mahmood et al., 2014) in place of LSTD to
better handle the off-policy nature of old data.
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14 Other Topics

In this lecture we very briefly discussed other topics in reinforcement learning.
We began by watching the first 14 minutes of this fantastic TED talk by Gero
Miesenboeck, which describes work by Claridge-Chang et al. (2009).

14.1 Hierarchical Reinforcement Learning

For many problems, learning at the level of primitive actions is not sufficient.
A human brain implementing ε-greedy Q-learning would never learn to play
chess if the primitive actions correspond to muscle twitches. Some learning must
occur at a higher level—at the level of deciding which skills to apply next. Here
skills might correspond to picking up an object, standing up, changing lanes
while driving, etc. Hierarchical reinforcement learning (HRL) aims to create
RL agents that learn a hierarchy of reusable skills, while also learning when
these skills should be applied. For the chess example, we might want to learn a
skill to grasp an object, a skill to move our arm to a position, a skill that uses
these two to move a particular piece, and then a policy that uses all of these
skills to play chess. This top-level policy would be learning (and exploring) at
the level of moves in a game of chess rather than muscle twitches. Although
there are several different frameworks for HRL, one of the most popular is the
options framework, introduced by Sutton et al. (1999). If you plan on studying
reinforcement learning in the future, you should absolutely read their paper in
detail.

An open problem in reinforcement learning is determining automatically
which skills are worth learning. Should a baby learn a skill to balance a book
on its head while standing on one foot during a solar eclipse? Or, would it be
more useful for it to learn a skill to walk? How can an RL agent autonomously
determine that the skill to walk is useful, while the other is not?

Several heuristic solutions to this problem have been proposed, with notable
examples including the work by Simsek and Barto (2008) and Machado et al.
(2017). A perhaps more principled approach, which involves solving for the
gradient of the expected return with respect to parameterized skills, was proposed
recently by Bacon et al. (2017).

14.2 Experience Replay

Q-learning only uses samples once. This is wasteful because some experiences
may be rare or costly to obtain. Lin and Mitchell (1992) suggested that an agent
might store “experiences” as tuples, (s, a, r, s′), which can then be repeatedly
presented to a learning algorithm as if the agent experiences these experiences
again. This experience replay can improve the data efficiency of algorithms
(make them learn faster) and help to avoid forgetting. Forgetting occurs when
an agent uses function approximation, and some states occur infrequently. If
updates to one state change the value for other states (due to the use of function
approximation), the updates to infrequent states may be small in comparison to
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the updates that occur as a side-effect of updates for other more frequent states.
Thus, and agent can forget what it has learned about states (or state-action
pairs) if they are not revisited sufficiently often. Experience replay helps to
mitigate this forgetting.

However, experience replay in its standard form is not compatible with
eligiblity traces, and so usually experience replay is only used when λ = 0. This
is not necessarily desirable—the DQN algorithm’s lack of eligibility traces is not
a feature, but an unfortunate consequence of using experience replay (Mnih et al.,
2015). Papers have begun to address the question of how to perform experience
replay in a principled manner with λ-returns (Daley and Amato, 2019).

14.3 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) involves a set of agents acting in
the same environment, where the actions of one agent can impact the states and
rewards as seen by other agents. Research has studied both cooperative problems,
wherein all of the agents obtain the same rewards, and thus work together, as
well as more game theoretic problems wherein the agents obtain different rewards,
and so some agents might actively work to decrease the expected return for other
agents so as to increse their own expected returns. For a review of MARL, see
the work of Busoniu et al. (2008).

A common concept in MARL research, and multi-objective machine learning
research in general, is the idea of a the Pareto frontier. A solution θ, is on the
Pareto frontier for a multi-objective problem if there does not exist another
solution θ′, that causes any of the objectives to increase without decreasing at
least one of the other objectives (assuming that larger values are better for all
objectives). Formally, if f1, . . . , fn are n objective functions, then the Pareto
frontier is the set

P :=
{
θ ∈ Θ : ∀θ′ ∈ Θ,

(
∃i ∈ {1, . . . , n}, fi(θ′) > fi(θ) =⇒ ∃j ∈ {1, . . . , n}, fj(θ′) < fj(θ)

)}
.

(431)
Solutions on the Pareto frontier provide a balance between the different objectives,
and an algorithm should ideally return a solution on the Pareto frontier since
any other solution could be improved with respect to at least one objective
function without hindering performance with respect to any of the other objective
functions. In the context of MARL, the Pareto frontier is a set of joint-policies
(a set, where each element contains a policy for all of the agents), such that
increasing the expected return for one agent necessarily means that another
agent’s expected return must decrease. Some MARL research deals with the
question of solving for this Pareto frontier (Pirotta et al., 2014).

14.4 Reinforcement Learning Theory

An RL algorithm is said to be Probably Approximately Correct in Markov Decision
Processes (PAC-MDP) if, with probability at least 1− δ, after executing a fixed
number of time steps less than some polynomial function of |S|, |A|, 1/δ, and
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1/(1− γ), it returns a policy whose expected return is within ε of J(π∗). The
sample complexity of an algorithm is this polynomial function. For discussion of
PAC-MDP algorithms, see the works of Kearns and Singh (2002), Kakade (2003),
and Strehl et al. (2006). Other researchers focus on other theoretical notions
of data efficiency, including regret (Azar et al., 2017). Although the algorithms
that are backed by strong theory in terms of regret and PAC bounds might
seem like obvious choices to use in practice, they tend to perform extremely
poorly relative to the algorithms mentioned previously when applied to typical
problems. An active area of research is the push to make PAC and low-regret
algorithms practical (Osband et al., 2016).

14.5 Deep Reinforcement Learning

Deep learning and reinforcement learning are largely orthogonal questions. Deep
learning provides a function approximator, and reinforcement learning algorithms
describe how to train the weights of an arbitrary function approximator for
sequential decision problems (MDPs). That is, deep networks are, from the
point of view of reinforcement learning algorithms, simply a non-linear function
approximator.

However, there are some special considerations that become important when
using deep neural networks to estimate value functions or represent policies. For
example, the large number of weights means that linear time algorithms are
particularly important. For example, the NAC-LSTD algorithm (Peters and
Schaal, 2008), although useful for problems using linear function approximation
with a small number of features, is completely impractical for policies with
millions of weights due to its quadratic to cubic per-time-step time complexity
(as a function of the number of parameters of the policy). Furthermore, the high
computation time associated with training deep neural networks has resulted in
increased interest in methods for parallization (Mnih et al., 2016).

Also, a notable paper worth reading is that of Mnih et al. (2015), and the
follow-up papers by Liang et al. (2016) (which shows that the same results are
obtainable using linear function approximation), and Such et al. (2017) (which
shows that random search outperforms RL algorithms like DQN for playing
Atari 2600 games).
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