
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

November 2016 

Specification and Analysis of Resource Utilization Policies for Specification and Analysis of Resource Utilization Policies for 

Human-Intensive Systems Human-Intensive Systems 

Seung Yeob Shin 
University of Massachusetts - Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Shin, Seung Yeob, "Specification and Analysis of Resource Utilization Policies for Human-Intensive 
Systems" (2016). Doctoral Dissertations. 805. 
https://scholarworks.umass.edu/dissertations_2/805 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/805?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


SPECIFICATION AND ANALYSIS OF RESOURCE UTILIZATION
POLICIES FOR HUMAN-INTENSIVE SYSTEMS

A Dissertation Presented

by

SEUNG YEOB SHIN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2016

Computer Science



c© Copyright by Seung Yeob Shin 2016

All Rights Reserved



SPECIFICATION AND ANALYSIS OF RESOURCE UTILIZATION
POLICIES FOR HUMAN-INTENSIVE SYSTEMS

A Dissertation Presented

by

SEUNG YEOB SHIN

Approved as to style and content by:

Leon J. Osterweil, Co-chair

Yuriy Brun, Co-chair

Lori A. Clarke, Member

George S. Avrunin, Member

Hari Balasubramanian, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences



DEDICATION

To my family



ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisors: Leon

J. Osterweil and Yuriy Brun. I am so fortunate to have had the excellent experience of

benefiting from their advisorship concerning my graduate study and life. I have reached

this point because of their encouragement, patience, advice, and all other support. I cannot

imagine having better advisors and mentors for my graduate study.

I would also like to thank my committee members: Lori A. Clarke, George S. Avrunin,

and Hari Balasubramanian. In addition, I am also grateful to my domain expert, Philip

L. Henneman. Their valuable constructive feedback helped me improve the quality of my

dissertation. I appreciate having the great opportunity to collaborate with these amazing

researchers.

I also thank all members of the LASER lab at UMass Amherst. I really enjoyed working

at the lab because of their efforts to a create friendly working environment. I especially

thank Heather Conboy for her help in analyzing and extending the legacy source codes

developed in the LASER lab.

I am grateful to all my friends in Amherst. I was able to enjoy life in Amherst because

of them. The moments that we shared together are unforgettable and an exciting chapter

in my life. I would like to especially thank David Nielsen for his support and advice about

living in the USA.

Lastly, but most importantly, I would like to thank my family for all their love. My

family has been encouraging, supportive and shown belief in me. I never would have been

able to complete my thesis without their support. I’m especially thankful to my wife, Joo

Yeon Ryu. I would not be the person I am today without your love. I love you.

v



ABSTRACT

SPECIFICATION AND ANALYSIS OF RESOURCE UTILIZATION
POLICIES FOR HUMAN-INTENSIVE SYSTEMS

SEPTEMBER 2016

SEUNG YEOB SHIN

B.Sc., SOGANG UNIVERSITY, KOREA

M.Sc., POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, KOREA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Leon J. Osterweil and Professor Yuriy Brun

Contemporary systems often require the effective support of many types of resources,

each governed by complex utilization policies. Sound management of these resources

plays a key role in assuring that these systems achieve their key goals. To help system

developers make sound resource management decisions, I provide a resource utilization

policy specification and analysis framework for (1) specifying very diverse kinds of resources

and their potentially complex resource utilization policies, (2) dynamically evaluating

the policies’ effects on the outcomes achieved by systems utilizing the resources, and

(3) formally verifying various kinds of properties of these systems.

Resource utilization policies range from simple, e.g., first-in-first-out, to extremely

complex, responding to changes in system environment, state, and stimuli. Further, policies

may at times conflict with each other, requiring conflict resolution strategies that add extra
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complexity. Prior specification approaches rely on relatively simple resource models that

prevent the specification of complex utilization and conflict resolution policies. My approach

(1) separates resource utilization policy concerns from resource characteristic and request

specifications, (2) creates an expressive specification notation for constraint policies, and

(3) creates a resource constraint conflict resolution capability. My approach enables creating

specifications of policies that are sufficiently precise and detailed to support static and

dynamic analyses of how these policies affect the properties of systems constrained or

governed by these policies.

I provide a process- and resource-aware discrete-event simulator for simulating system

executions that adhere to policies of resource utilization. The simulator integrates the

existing JSim simulation engine with a separate resource management system. The separate

architectural component makes it easy to keep track of resource utilization traces during a

simulation run. My simulation framework facilitates considerable flexibility in the evaluation

of diverse resource management decisions and powerful dynamic analyses.

Dynamic verification through simulation is inherently limited because of the impos-

sibility of exhaustive simulation of all scenarios. I complement this approach with static

verification. Prior static resource analysis has supported the verification only of relatively

simple resource utilization policies. My research utilizes powerful model checking tech-

niques, building on the existing FLAVERS model checking tool, to verify properties of

complex systems that are also verified to conform to complex resource utilization policies.

My research demonstrates how to use systems such as FLAVERS to verify adherence

to complex resource utilization policies as well as overall system properties, such as the

absence of resource leak and resource deadlock.

I evaluated my approach working with a hospital emergency department domain expert,

using detailed, expert-developed models of the processes and resource utilization policies of

an emergency department. In doing this, my research demonstrates how my framework can

be effective in guiding the domain expert towards making sound decisions about policies for
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the management of hospital resources, while also providing rigorously-based assurances

that the guidance is reliable and well-founded.

My research makes the following contributions: (1) a specification language for resources

and resource utilization policies for human-intensive systems, (2) a process- and resource-

aware discrete-event simulation engine that creates simulations that adhere to the resource

utilization policies, allowing for the dynamic evaluation of resource utilization policies,

(3) a process- and resource-aware model checking technique that formally verifies system

properties and adherence to resource utilization policies, and (4) validated and verified

specifications of an emergency department healthcare system, demonstrating the utility of

my approach.
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CHAPTER 1

INTRODUCTION

Human-intensive systems, where human, software, and hardware resources must be

synergistically integrated to perform key functions, play an important role in our society.

Because access to these resources is usually limited both by their small quantity and by

restrictions on their availability, contention for them is often a serious problem. The

problem is addressed by creating policies that are driven by system goals, regulations, or the

need to satisfy the interests of different stakeholders. Resource utilization policies usually

significantly impact system behaviors and results. Resource utilization policies range from

simple, e.g., sickest patient first, to extremely complex, responding to changes in system’s

environment, state, and stimuli. Thus, for example, a hospital’s staffing policy influences

staff workload, costs, quality of patient care, etc. Therefore, resource utilization policies

should be thoroughly evaluated and rigorously analyzed.

In addition to the inherent complexity of some policies, an additional major challenge

in analyzing resource utilization policies is that policies can conflict with each other. This

conflict may postpone system execution, or may even cause significant damage to the system

such as creating a life-threatening situation in a hospital. Ideally, such conflicts should be

anticipated so that if they arise, smooth operation of the system can nevertheless continue.

However, as system size and complexity grow, policies tend to grow as well, both in number

and in complexity. This increases the likelihood of conflicts and the difficulty of anticipating

and resolving all of them. Therefore, evaluation and analysis of resource utilization policies

have become even more challenging.
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1.1 Motivating Example

Even though my research is designed to be generally applicable for human-intensive

systems, this work focuses on a specific healthcare domain for exposition and evaluation -

patient care processes in a hospital emergency department (ED). The patient care system

integrates various kinds of resources and their utilization policies. Aspects of the system

relevant for critical care require careful analysis of resource utilization policies before

executing the policies in a real-world setting. In the worst case, inadequate analysis of

resource utilization policies may result in life-threatening situations in a hospital ED.

Assuring sound management of the diverse kinds of human and other resources in a

hospital ED is complex and made more so by the need for policies that must be sufficiently

flexible to deal with many different kinds of circumstances. Thus, for example, nurses

may perform technicians’ activities such as Electrocardiogram (EKG) testing in crowded

situations to alleviate the heavy workload on technicians, whereas these activities are

performed only by technicians under normal circumstances. In addition, hospital staff can

care for patients only during their shift hours. However, their shift hours may be changed

if the hospital decides to make scheduling policy changes, for example to prepare for

an increased incidence of accidents during a vacation season. Therefore, these dynamic

changes in resources’ system participation must be carefully considered to assure efficient

and effective resource management.

In addition, the participation in patient care by hospital staff is restricted by various

resource utilization policies that often conflict with each other. For instance, a patient in a

hospital ED should be cared for by the same doctor and nurse while the patient stays in the

ED. Under unusual circumstances, however, a hospital may allow violation of this policy

to improve efficiency in patient care. For instance, if a highly-skilled nurse is too busy to

care for his non-severe patients, he may be allowed to delegate his work (e.g., monitoring or

discharge) to another nurse even though this delegation policy conflicts with the same nurse

policy. Similarly, policies that define the work hours of shifts may also lead to conflicts with

2



the same doctor policy, for example when a patient is unable be discharged until after the

end of the shift of the admitting doctor. To address this policy conflict, hospitals necessarily

incorporate a handoff policy requiring that a departing doctor hands over her patients to

an incoming doctor. This handoff policy becomes even more complex when taking into

account a doctor’s workload, length of patient stay (LOS), and other patient care quality

measurements.

Suboptimal policies for resolving hospital resource management conflicts can result

in such problems as overcrowding, inefficient staff utilization, very long LOS, and other

medical or financial problems. To address these problems, hospitals are always seeking

better resource utilization policies. I believe my approach supports such efforts by facil-

itating (1) the exploration of various changes in resource utilization policies through the

concentration of resource utilization policy issues into a separate component containing

all resource allocation and conflict resolution specifications, (2) the use of discrete-event

simulation to evaluate the effects of diverse alternative resource utilization policies, and

(3) the verification of the adherence of these simulations to specified resource utilization

and conflict resolution policies.

1.2 Contributions

My research provides a framework consisting of resource utilization policy specification

and analysis for human-intensive systems. This framework extends an iterative process

improvement framework [4, 10, 51] by focusing on resource utilization improvement. The

specification approach describes resources and their interactions in a system formally

according to separated resource concerns such as resource characteristics, resource request

and resource utilization policy concerns. My approach separates resource utilization policy

concerns from other resource characteristics and resource request concerns. My approach

provides three types of policy specifications: permission constraint policies to restrict the

capability support of a resource, conflict resolution policies to resolve a conflict between
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multiple resource utilization policies, and scheduling policies to define precedence among

requests or resources. For analysis, my research develops a process- and resource-aware

discrete-event simulator that adheres to the resource utilization policy specification to support

dynamic analysis of the effects of diverse resource utilization policies. In addition, my

approach provides a process- and resource-aware model checking technique that supports

static analysis of resource utilization policies in a system. For example, my static resource

analyzer guarantees the absence of violations of resource utilization policies as well as other

general resource utilization properties related to resource capacity, deadlock and leak.

My research makes the following main contributions:

• Precise specification language for resources and resource utilization policies (permis-

sion constraints, conflict resolutions, and schedules)

• Process- and resource-aware discrete-event simulations that adhere to the resource

utilization policy specifications

• Process- and resource-aware model checking that verifies system properties and

adherence to resource utilization policies

• Elaborated patient care process models based on real-world data and the domain

expert’s knowledge

• A case study applying my approach to validate and verify patient care processes in a

hospital ED
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CHAPTER 2

RESOURCE MANAGEMENT ISSUES

This chapter describes challenges in making efficient and effective resource management

decisions. I categorize the issues into the three concerns: resource characterization, resource

request specification, and resource utilization policy definition.

2.1 Resource Characteristics

Characterizing resources is an essential basis for resource management. In previous

work [59], I showed that resources can be considered to be objects that are instances of

well-defined types. In this dissertation, I have extended the facilities for resource definition

in ways that are detailed in the following section of this dissertation, responding to new

challenges in addressing ED process details. As noted in [51], I identify the following issues

in defining resource types:

• Resource diversity: The range of resources to define is unusually broad, encompass-

ing all kinds of hardware, software, and human resources. For instance, the resources

in a hospital system include doctors, porters, EHRs, CT scanners, beds, and blood. I

treat all as objects of types having internal state, and defined in terms of their abstract

interfaces. Thus I define categories of resources such as doctors and infusion pumps to

be types, characterized primarily by the capabilities that they offer and their attribute

sets. Individual doctors and infusion pumps are defined as objects of these types,

differentiated from each other primarily by the values of their attributes.

• Resource attributes: Resource attributes are used to characterize objects sufficiently

well to support intelligent decision-making about their suitability for satisfying re-
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quests. Thus all resources have a Capacity attribute. Human resources typically

have such attributes as name, age, title, and education. Hardware resource attributes

can include model number, serial number, date purchased, and power requirements.

Software resource attributes often include programming language, operating system

requirements, size, and speed.

• Resource capabilities: The abstract interface to a resource consists primarily of a

set of capabilities, each of which corresponds to a specification of a kind of task that

this resource can be counted upon to be able to perform. Thus, for example, a nurse

resource should have the inject medication capability, and an Electronic Healthcare

Record (EHR) should have the get most recent Electrocardiogram capability.

• Dynamic characteristics: In the work described in this dissertation, I addressed the

new challenge of recognizing that resource characteristics and capabilities change

dynamically over time and with changes in system environment. Thus, while [51]

addressed the need for the values of a resource’s attributes (e.g., location, availability,

and even skill levels) to change over time, in this new work I address the need

for the set of capabilities offered by a resource to also change over time for various

reasons such as breaks, lunches, power outages, network unavailability, and cool-down

periods.

2.2 Resource Requests

Characterizing the need for a resource is no less essential to effective resource manage-

ment. Again, earlier work [59] characterized a need for a resource as an object, defined

principally as a set of attributes. The principal attribute is the type of capability being re-

quested. But in the work described in this dissertation I have added rigor in the specification

of some additional attributes. Thus, for example, I have added the purpose attribute, to

support reservation of resources. I observe that hospital resources such as beds, doctors, and

nurses may sometimes need to be reserved in advance to minimize delay in providing care
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for an incoming patient. Such resources are expected then to be allocated only when the

patient actually arrives, but might also be preempted to meet a greater need, as determined by

some defined policy (to be discussed shortly). The purpose attribute supports differentiation

between reservation and allocation.

Other attributes are intended to provide help in handling resource contention, a central

problem in resource management. Because operating efficiency demands that systems not

be resourced too generously, there will be simultaneous requests for identical or similar

capabilities. In some cases an exact resource instance (e.g. the same doctor who performed

the most recent procedure) is required, but in other cases substitutions are acceptable. When

a requested resource is not immediately available, there are circumstances under which the

requestor is willing to wait, and some where waiting is intolerable. Accordingly, a resource

request object can specify whether substitutions are acceptable or not, and whether the

request is a blocking request or not. Other such attribute specifications are incorporated into

my request language.

2.3 Resource Utilization Policies

The matching of resource requests to resource specifications is typically governed by

policies that may be diverse, complex, and even inconsistent with each other. Policy diversity

results from the need to address the desires and constraints of many different stakeholders.

Attempting to meet all of these needs in turn leads to policies each of which can be intricate,

complex, and varying over time. The growth in the number of such policies then leads to

the possibility that some will come into conflict with each other, perhaps only under some

circumstances, and at different times.

For instance, a hospital ED allows the use of hallway beds only when the ED is crowded,

most of its main beds are occupied, and the patients waiting for bed placement are not

severely ill. This policy references different characterizations of the system environment

(level of ED crowding, level of main ED bed utilization, acuity level of patients awaiting
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admission, etc.), but any of these characterizations might change with changing circumstance.

Thus, for example, in an emergency situation, a different level of acuity might be used to

determine the suitability of a waiting patient for admission to a hallway bed.

Ultimately, the principal goal of all of these notations is to support defining policies

whose application resolves resource contention problems. Policies that resolve resource

contention problems greatly affect the behavior of systems, and the more critical the system,

the more vital it is to have effective resource contention policies. Such policies can resolve

problems in variety of ways, for example by prioritizing and sequencing competing resource

requests, or by identifying alternatives to requested resources, For instance, a policy might

specify that a nurse can be allowed to perform a doctor’s task such as prescribing medication,

but only under stringently restricted circumstances. Or the policy might instead mandate

that the prescribing task must simply wait for the availability of a doctor. That policy, on the

other hand, might cause the violation of other policies, however, such as a policy that might

limit the amount of time that the prescribing task can be allowed to wait. In case of such

policy conflicts it is important that the resolution of such conflicts also be precisely defined.

Thus it is easy to see that it can be difficult to define policies precisely and completely,

but that precision and completeness are essential in order to support the need both to be sure

that policies are enforced correctly, and also to detect the possibility of policy conflicts, and

the satisfactory resolution of such conflicts. The next chapter of this dissertation describes

my approach to supporting such specifications.
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CHAPTER 3

RESOURCE MODELING

This chapter describes my specification approach which describes resources and resource

utilization policies in human-intensive systems. My specification approach has been inspired

by the resource specification approach developed by Raunak [50]. Raunak provides a

resource specification method according to resource requests and characteristics. However,

his approach has limitations in specifying complex resource utilization policies. To be

specific, specifying a constraint policy is difficult if the constraint policy is related to

multiple resources, requests and other contexts. In addition, he does not support any cases

of conflict resolutions.

Resource utilization policies influence the utilization of resources in systems and are

derived from business goals, regulations, or other agreements among stakeholders. For

example, in hospitals, staff members are available to participate in patient care only during

their shift hours. A shift scheduling policy is designed to meet a variety of needs such as

maximizing profits, providing high quality patient care, accommodating preferences of staff

members’ working hours, adhering to labor regulations, and so on. Resource utilization

policies are often related to a system’s aspects such as time, resources, activities and artifacts.

To improve the specification and analysis capabilities of resource utilization policies, my

specification approach to resources and resource utilization policies is orthogonal to, and

separate from, other specifications such as activity and data flow specifications. I provide a

set of resource specifications consisting of resource characteristics, requests and utilization

policies.
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Figure 3.1. The structure of resource characteristics describes the static relations of the
entities that define a resource type. Cardinality 1..n denotes one or n numbers. Cardinality
0..∗ represents zero or more.

To describe the rest of this chapter - resource characteristics, resource requests, and

resource utilization policies - I use some basic notations. Let P be a process of interest.

Let AP represents the set of all different activities of process P. An activity A ∈ AP is an

atomic activity that requires a set of resource objects to be performed. Let SP be the set of

all possible system states of process P. A specific system state S ∈ SP is characterized by

the information of time, activities’ execution states (e.g., see the states of steps in [72]), and

artifact (or data) values associated with each activity. I assume that each state is discretized

by time. States related to resources are not included in S ∈ SP which are defined in the

remaining sections.

3.1 Resource Characteristics

Resource characteristics are separately specified from other resource concerns such as

requests and resource utilization policies. Figure 3.1 describes the structure of resource

characteristics. As can be seen in Figure 3.1, a resource type is modeled as the composition

of a set of attribute declarations and a set of capabilities. Attribute declarations of a resource

type describe the common nature across resource objects of the same type, and its capability

set is the set of services that a resource object of the type can provide to perform activities.
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Definition 1 and Definition 2 show the rigorous definitions of an attribute declaration and a

capability, respectively.

Definition 1 (Attribute declaration). An attribute declaration, AD, is a 2-tuple (IDAD,VAD),

where

• IDAD is the string identifier representing the attribute name of AD.

• VAD is the set of elements that represents the attribute values of AD.

Attributes such as the resource’s age, experience, job title, and skill are used in charac-

terizing individual resource objects. Then, an attribute declaration defines the name of an

attribute and the possible values of the attribute. A resource type includes a set of attribute

declarations. Given Definition 1, let ADP be the set of all attribute declarations of all

resource types used in process P.

Definition 2 (Capability). A capability, C, is a service that a resource object is able to

provide in performing an activity A ∈ AP.

A resource type also includes a set of capabilities - the services that a resource object

of the type is able to provide in performing activities. For instance, suppose P is a patient

care process in a hospital ED. Then, AP includes activities to care for patients. Capabilities

needed to support the patient care activities might include prescribing medications, ordering

tests, assigning bed-placement priorities, and other capabilities of hospital resources. Given

Definition 2, let CA be the set of elements representing resource capabilities required by

activity A ∈ AP to be performed. Then, let CP be the set of all capabilities required by all

activities in AP such that CP =
⋃

A∈AP
CA.

Other particularly important attributes are the capacity attributes used to determine the

ability to take on new allocations of a resource object. As can be seen in Figure 3.1, each

resource type includes four capacity attribute declarations such as Maximum Reservation

Capacity, Current Reservation Level, Maximum Assignment Capacity, and Current
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Assignment level. I define the capacity attribute declarations in Definition 3 where N

refers to the set of all natural numbers.

Definition 3 (Capacity attribute declaration). ADP has four distinguished elements: (CPMR,N),

(CPCR,N), (CPMA,N), and (CPCA,N), where

• (CPMR,N) is the attribute declaration of maximum reservation capacity.

• (CPCR,N) is the attribute declaration of current reservation level.

• (CPMA,N) is the attribute declaration of maximum assignment capacity.

• (CPCA,N) is the attribute declaration of current assignment level.

A resource object then has four distinguished capacity attributes according to the capacity

attribute declarations in Definition 3 The maximum reservation capacity of a resource object

quantifies the maximum amount of effort that the resource object can provide to handle

reservation requests at any given time. The resource manager will not reserve an additional

activity to the resource object if it determines that the sum of the current reservation level

and the reservation effort-needed required by the new activity will exceed the resource

object’s maximum reservation capacity. The reservation effort-needed for a capability

support defines the amount of effort that a resource object must reserve in order to be able to

provide the capability at some future time. Similarly, the attributes of maximum assignment

capacity, current assignment level, and assignment effort-needed of a resource object are

used for assignment requests. I define the effort-needed attribute declarations in Definition 4.

Definition 4 (Effort-needed attribute declaration). ADP has 2×|CP| distinguished elements:

(EFRE,C,N) and (EFAE,C,N) for all C ∈ CP, where

• (EFRE,C,N) is an attribute declaration of reservation effort-needed for C.

• (EFAE,C,N) is an attribute declaration of assignment effort-needed for C.

Given the above definitions, I define a resource type in Definition 5 that classifies a set

of resource objects sharing the resource characteristics of attributes and capabilities.
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Resource type : MD

Attribute
declarations

Characteristics (name,String), (shiftStart,Time), (shiftEnd,Time)
Capacity (CPMR,N), (CPCR,N), (CPMA,N), (CPCA,N)
Effort-needed (EFRE,MDTreat,N), (EFAE,MDTreat,N)

Capabilities {MDTreat}

Figure 3.2. An example of doctor resource type MD for the process of treating patients.

Definition 5 (Resource type). A resource type, T, associated with process P is a 2-tuple

(ADT ,CT), where

• ADT is the set of all attribute declarations of T such that ADT ⊆ ADP.

- (CPMR,N),(CPCR,N),(CPMA,N),(CPCA,N) ∈ ADT .

• CT is the set of all capabilities provided by T such that CT ⊆ CP.

- for each C ∈ CT , (EFRE,C,N),(EFAE,C,N) ∈ ADT .

For instance, Figure 3.2 shows an example of doctor type MD. MD has (name,String)

attribute declaration to specify an MD doctor object’s name. MD also has the work shift,

specified by (shiftStart,Time) and (shiftEnd,Time) attribute declarations for specifying the

only times when a resource object of the type can be allocated to an activity. MD provides

MDTreat capability to care for patients. As can be seen in Definition 5, MD includes

the capacity attribute declarations and effort-needed attribute declarations for MDTreat

capability. Given Definition 5, let TP be the set of all resource types associated with P such

that for all T ∈ TP, ADT ⊆ ADP and CT ⊆ CP. Then, Definition 6 and Definition 7 define a

resource object and its state, respectively.

Definition 6 (Resource object). A resource object of type T ∈TP, RT , is a 2-tuple (AFRT ,CRT ),

where

• AFRT is the set of functions associated with ADT , {AAD,RT | AD ∈ ADT}, whose

domains and codomains are specified in the following:

13



MD resource object Attribute values

md0
name = DA, shiftStart = 00 : 00, shiftEnd = 08 : 00
CPMR = 4, CPCR = 2, CPMA = 1, CPCA = 0
EFRE,MDTreat = 1, EFAE,MDTreat = 1

md1
name = DB, shiftStart = 00 : 00, shiftEnd = 08 : 00
CPMR = 4, CPCR = 4, CPMA = 1, CPCA = 1
EFRE,MDTreat = 1, EFAE,MDTreat = 1

md2
name = DC, shiftStart = 08 : 00, shiftEnd = 16 : 00
CPMR = 4, CPCR = 0, CPMA = 1, CPCA = 0
EFRE,MDTreat = 1, EFAE,MDTreat = 1

md3
name = DD, shiftStart = 08 : 00, shiftEnd = 16 : 00
CPMR = 4, CPCR = 0, CPMA = 1, CPCA = 0
EFRE,MDTreat = 1, EFAE,MDTreat = 1

md4
name = DE, shiftStart = 16 : 00, shiftEnd = 24 : 00
CPMR = 4, CPCR = 0, CPMA = 1, CPCA = 0
EFRE,MDTreat = 1, EFAE,MDTreat = 1

md5
name = DF, shiftStart = 16 : 00, shiftEnd = 24 : 00
CPMR = 4, CPCR = 0, CPMA = 1, CPCA = 0
EFRE,MDTreat = 1, EFAE,MDTreat = 1

Figure 3.3. Example states of six resource objects of MD type working during different
shifts at a system state of a patient care process in a hospital ED.

- AAD,RT is an attribute function, AAD,RT : SP→ VAD,

• CRT is the set of all capabilities provided by RT such that CRT = CT .

Given Definition 6, let RT be the set of resource objects of T type. Then, let RP be the

set of all resource objects used in process P such that RP =
⋃

T∈TP
RT .

Definition 7 (Resource state). AS(R,S) is the state of resource object R ∈ RP at state

S ∈ SP, where

• AS(R,S) = {(A ,A(S)) | A ∈ AFR}.

Figure 3.3 shows the states of six resource objects of MD type at a system state S ∈ SP

assuming P refers to a patient care process in a hospital ED. The six doctors work in pairs
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Figure 3.4. The structure of a resource request describes the static relations of the entities
that define a resource request.

on three different shifts. md0 and md1 work from 00 : 00 to 08 : 00. md2 and md3 work

from 08 : 00 to 16 : 00. md4 and md5 work from 16 : 00 to 24 : 00. Maximum reservation

capacity CPMR = 4 means that a doctor is allowed to be responsible for the treatment of up

to four patients since EFRE,MDTreat = 1. On the other hand, maximum assignment capacity

CPMA = 1 means that a doctor can be delivering service to only one patient at a time because

EFAE,MDTreat = 1. In this example, doctor md0 has been reserved to care for two patients (see

CPCR = 2) and the doctor is not actually caring for any patients at state S (see CPCA = 0).

However, doctor md1 has already been reserved to care for four patients, so md1 is not able

to see new patients until she discharges her patients (i.e., released from her patients). At

state S, md1 is actually caring for one patient (see CPCA = 1).

3.2 Resource Requests

A resource model includes specifications of resource requests. Each activity in a

system generates a separate request for each resource object it needs. My resource request

specification restricts a valid set of resource objects which provide the capabilities necessary

to perform activities. For example, in a hospital, performing an EKG or drawing blood

is restricted to nurses or technicians who provide these required capabilities. However,
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technicians are not allowed to assess patients. In addition, even though resource objects

provide the same requested capability, candidate resource objects to perform activities

are further restricted according to the request context such as request time and sender

information. For example, day shift doctors are not considered as candidates to care for

patients during night shifts.

Figure 3.4 shows the static relation of my resource request specification entities. A

resource request is either a Reservation or an Assignment request based on the purpose of

the request. Sender activity information is required to define a resource request to identify

the context information such as what other resource objects are requested and which artifacts

are used by the sender activity. Both reservation and assignment requests ask for a resource

object that performs a particular Capability. Which resource object is returned depends

on the dynamic state of the process. For example, a doctor may be assigned to draw a

patient’s blood, but only when all nurses are fully assigned, and only when the blood draw

task is considered to require a small amount of effort and a low skill level. My specification

approach separates out these dynamic state concerns to specify resource utilization policies.

Resource requests query a resource object through a capability. A Non-Blocking request

from an activity requires immediate notification from a resource manager if the request is

not able to be handled at that time. On the other hand, a Blocking request from an activity

is a request that blocks the execution of the activity until the request is handled by a resource

manager.

To define a resource request, I assume that each A ∈ AP generates unique requests for

exposition. Duplicated requests to allocate multiple resources can be easily distinguished by

using unique request identifiers during the implementation phase. I define a resource request

in Definition 8.

Definition 8 (Resource request). A resource request, Q, is defined as a 4-tuple (Qpurpose,

Qsender, Qcapability, Qtype), where

• Qpurpose is a request purpose of Q, either reservation or assignment.
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Purpose Sender Capability Type

reservation Treat MDTreat blocking
reservation Treat RNTreat blocking
assignment Triage Triage blocking
assignment Register Register blocking
assignment PlaceInBed PlaceInBed blocking
assignment RNAssess RNTreat blocking
assignment MDAssess MDTreat blocking

Figure 3.5. Examples of resource requests from patient care activities in a hospital ED.

• Qsender is a request sender activity of Q such that Qsender ∈ AP.

• Qcapability is a requested capability of Q such that Qcapability ∈ CA, A = Qsender.

• Qtype is a query type of Q, either blocking or nonblocking.

Given Definition 8, let QA be the set of resource requests from activity A ∈AP. Then, let

QP be the set of all possible requests that process P may generate such that QP =
⋃

A∈AP
QA.

Figure 3.5 shows some example specifications of resource requests from patient care

activities in a hospital ED. For instance, when a new patient presents in an ED, Treat activity

first reserves (reservation) a doctor who provides MDTreat capability to care for the patient.

The request working as blocking means that the new patient must wait until a doctor has

been reserved for the patient.

At some state S ∈ SP, let AS be the set of activities that are ready and waiting to get

started. Then, let QS be the set of resource requests from AS where they are not handled

yet such that QS =
⋃

A∈AS
QA. Among the resource requests in QS, a resource request

Q ∈ QS might be handled by a resource object R ∈ RP where Qcapability ∈ CR through

either reservation or assignment allocation based on query purpose Qpurpose. However, the

information about resources and requests is not sufficient to model real-world resource

allocation because there are too many possible allocations to specify resource utilization in
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Figure 3.6. The structure of the resource utilization policy specification describes the static
relations between the policy’s entities.

a real-world system. Feasible resource allocations are subject to capacity constraints and

various resource utilization policies.

3.3 Resource Utilization Policies

Human-intensive systems incorporate diverse kinds of resource utilization policies.

These resource utilization policies are related to many aspects in systems such as activities,

artifacts, requests and resources. I separate resource utilization policy concerns from oth-

ers such as resource characteristics and requests. Figure 3.6 shows that my specification

approach provides facilities for the specification of three different kinds of resource uti-

lization policies, namely permission constraint policies (Permission), scheduling policies

(Schedule), and conflict resolution policies (Conflict Resolution).

3.3.1 Permission Constraint Policy

A Permission constraint policy specifies the permissibility of a Resource to handle

a Request as restricted by a specified Guard condition. Definition 9 defines a permission

constraint policy. I define a permission constraint policy in Definition 9.

Definition 9 (Permission constraint policy). A permission constraint policy, PC, is defined

as a 3-tuple (QPC,RPC,GPC), where
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Permission constraint policy (QPC,RPC,GPC)

SameMD (QMDTreat,RMD,GSameMD)
ShiftMD (QMDTreat,RMD,GShiftMD)

Figure 3.7. Examples of permission constraint policies in a patient care process in a hospital
ED.

• QPC is the set of all requests restricted by PC.

• RPC is the set of all resource objects restricted by PC.

• GPC : SP×QPC×RPC→{true, false} is a function that defines the guard of PC. GPC

is evaluated to be true only if R ∈ RPC can handle Q ∈ QPC at S ∈ SP. Otherwise,

G(PC) is evaluated to be false.

Given Definition 9, let PCP be the set of all permission constraint policies restricting

the utilization of all resource objects in process P. Satisfaction of a permission constraint

policy PC ∈ PCP is determined by the guard of PC. For example, the SameMD and ShiftMD

permission constraint policies can be specified as shown in Figure 3.7. QMDTreat refers to the

set of resource requests requiring MDTreat capability in a patient care process of a hospital

ED. Thus, QC = {Q | Q ∈QP; Qcapability = C}. The SameMD permission constraint policy

is used to determine which MD resource object in RMD is available to handle a request

requiring the MDTreat capability in QMDTreat. Similarly, the ShiftMD permission constraint

policy is used to define the MD resource object’s shift, namely the hours during which an

MD resource object in RMD is allowed to handle a request in QMDTreat. A guard function is

represented as a boolean expression that is evaluated to be true only when a resource object

can handle a request. For instance, I specify GShiftMD as t >= r.shiftStart&&t < r.shiftEnd

where r is one of the MD resource objects (RMD), md0, md1, md2 or other resource objects

in Figure 3.3. The Boolean expression is evaluated to be true only when an MD resource

object r is working on her shift when a request for MDTreat capability happens at time t.
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To handle a request Q ∈QPC, the set of permission constraint policies, PCQ = {PC |

PC ∈ PCP; Q ∈ QPC}, restricts the set of specific resource objects that satisfies all the

guards of permission constraint policies. These resource objects are named as candidate

resource objects. Let CANS,Q,PC be the set of resource objects which can handle a request

Q ∈ QPC at a state S ∈ SP while satisfying PC ∈ PCQ such that CANS,Q,PC = {R | R ∈

RPC; GPC(S,Q,R) = true}. Then, let the set of candidate resource objects to handle a

request Q at state S, CANS,Q, be CANS,Q =
⋂

PC∈PCQ
CANS,Q,PC.

3.3.2 Scheduling Policy

The next policy specification approach, the Schedule policy, supports the specification

of Contention and Selection policies. Contention policies specify precedence among

requests. Specifically, I support specification of built-in policies such as random, first-in

first-out (FIFO), last-in first-out (LIFO), and priority-based as well as custom-built policies

that can be built based on the use of dynamic system state variables, such as patient load.

In a hospital ED, for instance, when multiple patient care activities for different patients

require the service of more doctors than are currently available for allocation, an appropriate

scheduling policy is necessary to resolve the contention problem among the requests for the

services of all doctor resources. I define a contention policy in Definition 10.

Definition 10 (Contention policy). A contention policy, CT, is defined as 2-tuple (QCT ,CF CT),

where

• QCT is the set of all resource requests scheduled by CT that may cause a contention

problem among the requests.

• CF CT : SP×P (QCT) 7→QCT is a partial function defining a contention policy that

selects a request to be handled at a state. CF CT is undefined for an empty set of

requests at a state. P (QCT) refers to the power set of QCT .

As can be seen in Figure 3.8, the sickest patient first policy is a contention policy that

is often used in a hospital ED, specifying that a doctor cares for patients according to the
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Contention policy: SPF (sickest patient first policy)
(QMDTreat,CF SPF)

Figure 3.8. An example of a contention policy in a hospital ED. This example includes only
the key features specifications.

urgency of their need. CF SPF selects the urgent request from a set of requests for MDTreat

capability from multiple patient care activities according to associated patient record data

such as the patient’s acuity level. The effects of the contention policy should be carefully

evaluated, however, as enforcing it rigorously can result in the needs of very sick patients

causing resource starvation of non-acutely ill patients who might then fail to receive timely

treatment. Simulation studies should facilitate such evaluations. Given Definition 10, let

CTP be the set of all contention policies scheduling all resource requests used in process P.

A Selection policy complements a Contention policy, supporting specification of

precedence among the resource objects capable of handling a resource request. If there are

many candidate resource objects able to handle a given request, an effective selection policy

can lead to more efficient and effective utilization of those resources. For instance, when

a new patient arrives in an ED, there are usually more than two doctors who can assess

the patient. An appropriate workload policy can do much to balance the workloads of the

different doctors. I provide built-in selection policies such as random, least recently used

(LRU) and most recently used (MRU), as well as custom policies that can be defined based

on the use of system dynamic state variables. Thus, for example, a least utilized resource

first policy might be used to balance the workloads of hospital staff members. I define a

selection policy in Definition 11.

Definition 11 (Selection policy). A selection policy, SL, is defined as 3-tuple (QSL,RSL,SF SL),

where

• QSL is the set of all resource requests constrained by SL.

• RSL is the set of resource objects which can handle a request in QSL.
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Selection policy: LU, (least utilized first policy)
(QMDTreat,RMDTreat,SF LU)

Figure 3.9. An example of a selection policy in a hospital ED. This example includes only
the key features specifications.

• SF SL : SP×QSL×P (QSL) 7→ RSL is a partial function that selects a resource object

at a system state to handle a request. SF SL is undefined for a selection from an empty

set of resource requests at a system state. P (QSL) refers to the power set of QSL.

A selection policy, SL ∈ SLP, selects a resource object R ∈ RSL based on a system state

S ∈ SP and a resource request Q ∈ QSL. Given Definition 11, let SLP be the set of all

selection policies selecting resource objects for all resource requests used in process P.

Figure 3.9 shows the least utilization first policy. SF LU selects a resource object in

RMDTreat which provides MDTreat capability to handle a resource request in QMDTreat based

on utilization levels of the resource objects. The resource utilization level is calculated

based on information about dynamic system state variables such as the system’s execution

duration and resource allocation periods.

While a set of candidate resource objects CANS,Q for a request Q ∈QP at a state S ∈ SP

satisfies all the permission constraint policies related to Q, some resource objects may not

able to handle request Q at system state S because of their capacity constraints. Thus,

let AVLS,Q be the set of resource objects that are available to handle the request Q at the

state S such that AVLS,Q ⊆ CANS,Q. Then, the selection policy associated with Q selects a

resource object from AVLS,Q. In Figure 3.3, for example, md0 and md1 resource objects

are candidates to handle a request for MDTreat capability. However, only md0 is available

to handle the request because md1 will violate its capacity constraint (see CPMA = 1 and

CPCA = 1) if it handles the request.

Given the above definitions, valid resource allocations are determined by the following

iterative steps: (1) select a request Q ∈QS by considering a contention policy CT ∈ CTP
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related to the request Q, (2) determine the set of candidate resource objects CANS,Q restricted

by the associated permission constraint policies, (3) select the set of available resource

objects AVLS,Q from CANS,Q considering the capacity constraints of the candidate resource

objects, (4) select a resource object from the set of available resource objects AVLS,Q by

using the associated selection policy SL ∈ SLP. However, enforcing multiple permission

constraint policies may create a conflict condition in which there are no candidate resource

objects that can handle request Q at state S, CANS,Q = ∅, satisfying all the permission

constraint policies. I address the conflict condition through conflict resolution policies.

3.3.3 Conflict Resolution Policy

Conflict resolution policies specify how to deal with other policies that may come into

conflict with each other. For the circumstances under which two or more policies cannot

be enforced at the same time, I provide capabilities for specifying Conflict Resolution

policies. I provide two kinds of conflict resolution policies: a Priority conflict resolution

policy and a Case conflict resolution policy.

3.3.3.1 Priority Conflict Resolution

A Priority conflict resolution policy specifies precedence among multiple sets of

permission constraint policies. A system first enforces a high priority set of permission

constraint policies; however, if a conflict condition occurs while forcing the permission

constraint policies, the system enforces a low priority set of permission constraint policies

to continue system services. Definition 12 defines this priority conflict resolution policy.

Definition 12 (Priority conflict resolution policy). A priority conflict resolution policy, PR,

is defined as 2-tuple (QPR,PRpriority), where

• QPR is the set of all resource requests restricted by PR.
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Priority conflict resolution policy: HandoffMD
(QMDTreat,({ShiftMD,SameMD},{ShiftMD}))

Figure 3.10. An example of priority conflict resolution policy in a hospital ED. This
example include only the key features specifications.

• PRpriority = (PCPR,1,PCPR,2, ...,PCPR,nPR). PCPR,i is an ith set of permission con-

straint policies of PR. PCPR,i has higher priority than PCPR,j if i < j. nPR is the

number of sets of permission constraint policies of PR.

For instance, in a hospital ED, how doctors hand off patients at the end of their shifts

can be defined using the priority conflict resolution policy in Figure 3.10. This conflict

resolution policy, (QMDTreat,({ShiftMD,SameMD},{ShiftMD})), specifies that enforcing

both the ShiftMD and SameMD permission constraint policies has higher priority than

enforcing only the ShiftMD permission constraint policy. In other words, this states that

the need to satisfy both ShiftMD and SameMD is considered first in allocating resource

objects. However, if no resource objects are able to satisfy all the permission constraint

policies, the permission constraint policy ShiftMD is applied next in considering possible

resource allocations. In Figure 3.3, for instance, if md0 ends her shift at 8PM, then md0 is

not able to care for her patients after 8PM because doing so would violate the ShiftMD policy.

According to the above priority specification, however, another doctor, either md2 or md3,

is then permitted to provide care for the patients of md0, assuming these other doctors are

on shift in the ED (i.e. assigning them must still satisfy the ShiftMD permission constraint

policy). After resolving such a conflict condition, the system returns to full enforcement of

all policies for subsequent resource allocation requests. Thus, for example, either md2 or

md3 (whoever has taken the handoff) is obliged to satisfy the same doctor policy until her

shift ends. Given Definition 12, let PRP be the set of all priority conflict resolution policies

enforced in process P.
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This kind of conflict resolution specification offers broad applicability. I note, for

example, that the use of more highly skilled medical providers is generally preferred because

it typically results in the provision of higher quality patient care. But less skilled providers

may be allocated to certain tasks instead in order to improve the overall efficiency of the

healthcare system in providing patient care in various kinds of complex situations. Moreover,

as described in Section 1.1, in a particularly overcrowded ED, nurses may perform technician

tasks such as taking EKGs. Conversely, even though nurses may be the preferred providers

of certain kinds of patient care, a technician-use policy might dictate that technicians be

allowed to provide these specified kinds of care to certain classes of patients when nurses

are not available, perhaps due to nurse workload limitation policies. Similarly, the above

priority policy allows the delegation of a doctor’s work to another doctor when the first

doctor’s shift ends.

3.3.3.2 Case Conflict Resolution

In addition to a Priority conflict resolution policy, I provide another form of speci-

fication for conflict resolution, namely a Case conflict resolution policy. While a priority

conflict resolution policy seems more suitable for specifying relatively straightforward

conflict resolution, a case conflict resolution policy seems more suitable for complex conflict

resolution situations. A case conflict resolution policy resolves a specific case of a conflict

situation by a resolution action. Definition 13 defines a case conflict resolution policy.

Definition 13 (Case conflict resolution policy). A case conflict resolution policy, CR, is

defined as 2-tuple (QCR,CRconflict,PCCR,resolution), where

• QCR is the set of resource requests restricted by CR.

• CRconflict = (PCCR,true,PCCR,false) describes a specific conflict case.

- PCCR,true is the set of permission constraint policies that are satisfied when a

conflict occurs.
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Case conflict resolution policy: FTB (fast-track bed utilization)
(QPlaceInFastBed,({EmptyBed},{InFastTrack,FastTrackOpen}),{EmptyBed})

Figure 3.11. An example of a case conflict resolution policy in a hospital ED. This example
includes only the key features specifications.

- PCCR,false is the set of permission constraint policies that are not satisfied when

a conflict occurs.

• PCCR,resolution is the set of permission constraint policies to resolve the specific conflict

case, CRconflict.

As an example, consider the FTB (fast-track bed utilization) policy in Figure 3.11. Many

hospital EDs offer their patients care in two separate locations with separate facilities and

use somewhat different processes. These are often referred to as the main-track (for seriously

ill patients) and the fast-track (for all other patients). These are operated separately in order

to improve their overall efficiency and quality in providing ED patient care. While the

main-track operates 24 hours of every day, the fast-track is often closed during periods of

slack demand, such as late at night, in order to save money. If the locations of the two

tracks are not far from each other, hospitals often, especially during periods of heavy load,

find it useful to utilize fast-track beds for both main-track and fast-track patients, even if

the fast-track is closed. This policy can be be defined clearly and concisely using the case

conflict resolution policy, FTB. I do this by building upon some permission constraint

policies and combining them using the case conflict resolution policy specification approach.

Thus, I use the EmptyBed permission constraint policy, which enforces that a bed must not

already be occupied in order for it to be used to care for a new patient. I use the InFastTrack

permission constraint policy, which specifies that only fast-track patients are allowed to use

beds in the fast-track. I use the FastTrackOpen permission constraint policy, which specifies

the times during which the fast-track is open and closed. Given these three permission

constraint policies, I can specify the typical use of a fast-track ED bed when it is allocated to
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accept a new fast-track patient in an open fast-track to be: only when a bed is not occupied

(EmptyBed satisfied), the bed and patient are located in the fast-track (InFastTrack satisfied),

and the fast-track is open (FastTrackOpen satisfied).

But a case conflict resolution policy specification can, in addition, support the specifica-

tion of the previously described conditions under which a fast-track bed can be allocated for

main-track use even when the fast-track is closed. This conflict situation as described in

Figure 3.11, is defined as ({EmptyBed},{InFastTrack,FastTrackOpen}), which defines the

situation in which a bed is not occupied, a patient is not located in the fast-track, and the

fast-track is closed. It then specifies the conflict resolution as described by {EmptyBed},

which specifies that it is allowable to enforce only the EmptyBed policy to resolve the

conflict situation (note that another schedule policy might be defined to enforce a preference

for using a main-track bed over a fast-track bed, when both are available). Therefore, this

conflict resolution policy specifies a flexible management of hospital bed resources by

utilizing fast-track beds when the fast-track is closed. Given Definition 13, let CRP be the

set of all case conflict resolution policies enforced in process P.
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CHAPTER 4

DYNAMIC ANALYSIS THROUGH PROCESS- AND
RESOURCE-AWARE DISCRETE-EVENT SIMULATION

This chapter describes a process- and resource-aware discrete-event simulator that

dynamically analyze systems to evaluate diverse resource decisions that impact bottleneck,

performance and other quality measures of the systems. Utilizing this framework, I am able

to schedule resources to satisfy scheduling objectives and constraints.

4.1 Platform for Process- and Resource-Aware Discrete-Event Simu-

lation

My approach relies on the existence of a precise, well-defined system process model.

For the ED domain, this means a detailed model of the process by which patients are treated

in an ED. I used the Little-JIL language [72] to specify this model. This section describes

background information of Little-JIL which are relevant to my approach.

4.1.1 Little-JIL: Process Modeling

Little-JIL process definitions are based on the notion of functional decomposition of a

high-level process into a hierarchy of activities. Little-JIL has well-defined semantics based

on finite state machine (FSM) definitions, and is supported by a tool suite that includes

a graphical editor that renders process definitions as visualizations (Figure 4.1 shows an

example of such a visualization).

The central semantic element of a Little-JIL definition is the activity. Activities are

connected by edges to parents (above) and children (below), with edges also specifying the
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Figure 4.1. The Little-JIL definition of the patient testing process, which is part of the care
an acuity-level-four patient undergoes in an ED

flow of arguments between parents and children. Parent activities both define scopes, and

also specify the flow of control between children. The legend in Figure 4.1 indicates three

different control flow possibilities: sequential (children performed in left-to-right order),

parallel (children performed in any order, possibly concurrently), and choice (only one of

the children selected for performance). Each activity also incorporates a specification of

needed resources (e.g., doctor, nurse, x-ray machine) to be allocated at run time. Note that

these specifications can set up contentions that can further constrain execution order, for

example, by enabling or disabling concurrent execution.
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My ED process model was developed based on the advice of a domain expert with

extensive experience as an emergency physician and ED manager at the Baystate Medical

Center, in Springfield, MA, USA. The full ED process model definition contains 178 activi-

ties, and is publicly available at http://people.cs.umass.edu/˜shin/ed/. Figure 4.1

illustrates one small part of this process definition, namely the patient testing process for

an acuity-level-four patient. Figure 4.1 specifies that AL4Test is a parallel activity, which

means a lab test process, AL4LabProc, can be performed in parallel with the other tests,

although contention for needed resources (in this case the MD) may make concurrency

impossible. As the Figure 4.1 legend notes, activities may have prerequisites that may be

used by my simulations to specify the relative frequency with which exceptions should be

thrown, or which of the alternatives specified as the children of a choice activity is the one

that should be selected. For example, the pre-requisite on AL4LabProc means that 92% of

acuity-level-four patients require the lab test. For the other tests, a nurse checks a patient’s

EKG first, RNECG, and then a doctor checks the EKG result, MDCkECG, because AL4ECGProc

controls its child activities sequentially. After the EKG, a nurse gives medication to the

patient, RNMedHi, and the patient is then transferred to either the CT or the x-ray room. This

behavior is represented by the AL4XrayOrCTOrNothing choice activity, only one of whose

child activities will be executed, with the choice made by the agent who performs the parent

activity.

I used Little-JIL to define my ED process because Little-JIL makes it easy to define and

represent visually some challenging, yet critical, features of the process. For example:

• Allowing For Process Variation: The Little-JIL choice activity makes it easy to

show that patients can arrive either by ambulance, when they are immediately placed

in a bed, or using their own transportation, with bed-placement based on classification

into one of six acuity levels. The choice activity also facilitates showing the different

treatment processes for the different levels.
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• Supporting Human Decision Making: The choice activity also facilitates showing

where humans are free to choose among alternatives. Thus, for example, the choice

activity in Figure 4.1 modeled the doctor’s ability to choose either a CT or an X-Ray

for the patient. The choice activity also concisely and precisely defined the way

patients are given a bed-placement triage level between 1 and 5, and how this triage

level is then used to determine if a bed is to be allocated now or deferred.

• Concurrency: Some activities in some of the treatment processes can be performed in

parallel, and, indeed, further concurrency arises because the entire treatment process

is performed once for each patient in the ED. This can create contention for resources

such as MDs, RNs, and X-Ray machines, and makes the clear and precise specification

of the exact nature of the concurrency particularly important. The Little-JIL parallel

activity facilitates specifying this concurrency, and supports a clear visual depiction

of that seems readily accessible to ED domain experts.

• Exception Management: It is common for non-normative situations to arise in

EDs. For example, the lack of needed resources (e.g., beds, nurses) may necessitate

changes in treatment sequences or substitution of resources, and treatment procedures

that prove ineffective may necessitate new diagnostic procedures and diagnoses.

The Little-JIL exception management facilities, featuring scoped handling of typed

exceptions has proven particularly effective in defining clearly and precisely even

difficult exception management scenarios [33].

4.2 Process- and Resource-Aware Discrete-Event Simulator

My process- and resource-aware discrete-event simulator simulates processes whose

activities are modeled in Little-JIL, and whose resources are modeled in my resource

modeling approach. To this end, I have extended JSim [52], an existing discrete-event

simulator of Little-JIL processes. My extensions include support for (1) resource objects,

(2) the two-phase resource reservation and allocation, (3) permission constraint policies,

31
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Legend 

Figure 4.2. A view of the process- and resource-aware simulator that integrates JSim and
Resource Manager.

(4) conflict resolution policies, and (5) contention policies to select preferred requests,

selection policy constrains to select preferred resources. These extensions enable the

simulator to support such scenarios as (1) allowing doctors to have varying shift constraints,

(2) enforcing the same doctor always handles a given patient, unless the doctor’s shift ends,

at which point the patient is handed off to a new doctor, (3) enabling a variety of scheduling

policies, such as handing the sickest patient first, or using the least utilized resource first.

Additionally I have redesigned the simulator’s architecture to improve the separation of

concerns and localization of key aspects of the system.

Figure 4.2 shows the extended JSim architecture that integrates Resource Manager

component. The architecture separates the activity issues from resource concerns, which

makes it easy to keep track of resource allocations, utilizations, waiting times, and other

properties that other simulators have difficulty reporting (see Section 7). In addition,

extended JSIM treats resource policies as a separate concern, which eases changing them,

facilitating experimentation with different resource allocation strategies.

The Little-JIL Interpreter is an abstract representation of a number of JSim

components not related to resource management. The activity coordination artifact

represents the Little-JIL activity definition. The agent behavior artifact specifies details

(such as speed and cost) of the way in which resource objects provide their capabilities.

The discrete event is an event arrival stream that triggers the execution of process
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Figure 4.3. A resource manager architecture that enforces the specified resource utilization
policies while allocating resources.

activities. During simulation, activities first allocate and then release resources by sending

requests to Resource Manager, which enforces the policies associated with each request

and determines which resources satisfy the request, and responds with either a satisfactory

resource, or a message that the needed resource is unavailable.

4.2.1 Resource Manager Architecture

Given the formal specifications of resource characteristics, requests and utilization

policies, I develop the architecture of the resource manager. This section explains the

architecture by focusing on the policy enforcement of resource allocation.

Figure 4.3 shows the architecture of the resource manager. While executing a sys-

tem, Request Handler inserts the number of requests that have arrived into Outstanding

Request Pool. For instance, the requests for multiple patients who are waiting to be
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seen by a doctor are located in Outstanding Request Pool. Request Scheduler se-

lects a request based on a contention policy specification such as the sickest patient first

policy, then passes it to Allocation Manager for matching a resource instance to the re-

quest. Such resource specifications are managed by Resource Specification Manager.

Specifications of resource characteristics and utilization policies are located in Resource

Specifications and Policy Specifications repositories, respectively. Based on the

information of the selected request, Allocation Manager gathers related permission con-

straint policies from the Resource Specification Manager and resource instances from

the Resource State Manager. Resource State Manager keeps the dynamic state in-

formation of the resource manager, such as the internal states of each resource instance

and resource allocation traces. Policy Selector then selects a set of permission con-

straint policies to be evaluated based on the priority relations among policies. Permission

Evaluator evaluates the selected permission constraint policies to decide a set of candidate

resource instances for the selected request. For example, only doctors who are working

their shifts are considered as candidates to care for a patient. If there are no candidate

resource instances because of violation of the evaluated permission constraint policies,

Conflict Resolver considers this case as a conflict among the permission constraint poli-

cies. Conflict Resolver resolves this conflicted situation based on a conflict resolution

specification. If Permission Evaluator creates a set of candidate resource instances,

Allocation Manager adjusts the candidates based on the resource capacity constraint.

For instance, if a candidate doctor is caring for other patients at this point, Allocation

Manager excludes the doctor from the set of candidate resource instances. Last, Resource

Selector selects a resource instance among the available candidates according to the

selection policy related to the request.
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<step name="RNECG"> <started> <complete>
<triangular min="233" mode="313" max="472" />

</complete> </started> </step>

<step name="MDCkECG"> <started> <complete>
<triangular min="11" mode="36" max="88" />

</complete> </started> </step>

<step name="RNMedHi"> <started> <complete>
<triangular min="181" mode="448" max="856" />

</complete> </started> </step>

Figure 4.4. These time distributions of steps are modeled from data of Baystate Medical
Center, in Springfield, MA, USA. Second time unit is used in triangular distribution.

4.2.2 Specification of Simulation

A simulation run consisted of specifications of process activities, artifact flows, resources,

resource requests, and resource utilization policies (recall Chapter 3), as well as specifica-

tions of actual patient-care scenarios whose key variable components are: (1) rates of arrivals

of patients of different acuity levels over a 24-hour period and (2) activity performance

characteristics (such as the amount of time taken, the probability of exceptions, etc.) for each

resource object that might carry out each activity. The specifications used in my simulations

were based on observations taken at the Baystate Medical Center, in Springfield, MA, USA.

Each hourly patient arrival rate was modeled as a Poisson distribution around the observed

mean inter-arrival time. Resource quantities, characteristics, and constraints were modeled

after those considered typical at the Baystate Medical Center.

Estimates of the time required to perform each activity for each acuity level are specified

as triangular distributions based on data from the Baystate Medical Center. My medical

domain expert advised the use of the triangular distribution due to the small number of

observed time data. Figure 4.4 shows an example specifying the time distributions of three

leaf activities, RNECG, MDCkECG and RNMedHi, of the process shown in Figure 4.1. Thus,

for example, from the start of the RNECG activity the number of second until completion of
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the activity is calculated to occur using the triangular distribution, (min=233, mode=313,

max=472). My simulation specifications also support other distributions such as normal,

linear range, and fixed time distributions.

4.3 Constraint-Aware Resource Scheduling

My process- and resource-aware discrete-event simulation framework facilitates ana-

lyzing resource utilization and exploring diverse resource utilization policies through the

separation of resource concerns. Given the simulation framework, I develop a method

for scheduling resources in complex systems that integrate humans with diverse hardware

and software components, and for studying the impact of resource schedules on system

characteristics. The method uses discrete-event simulation and integer linear programming

(ILP), and relies on detailed models of the system’s processes, specifications of the capa-

bilities of the system’s resources, and constraints on the operations of the system and its

resources. For exposition, this section addresses staffing problem in a hospital ED because

of its particularly complex resource scheduling requirements.

4.3.1 Simulation-based Staffing Optimization

Simulation-based staffing algorithm dynamically estimates and controls utilization

within pre-specified limits by changing the utilization levels of multiple human resources

simultaneously in complex service systems, and linking the resulting estimates to an ILP

that incorporates realistic staffing and shift constraints. Specifically, my approach consists

of three steps.

In the first stage, I use my simulator to generate an ED simulation, initially assuming

an infinite supply of all necessary resources. As this ED simulation executed, however, the

simulator add and remove resources as required to sustain the utilization targets for each

hour in the simulated 24-hour day, while also considering such other specifications as time

varying patient arrivals, different processes for each acuity level, resource interactions, and
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other patient flow constraints. I call this the Staffing Demands Algorithm. The number of

replications of this simulation was determined by the desire to achieve a target confidence

interval (e.g., 95% confidence interval and a half-width within 2% of the mean of staff

utilization rates). After performing these simulation replications, I obtain the average

number of resources dk
b required in time interval b to maintain the utilization target. For my

case-study, b is the index for hour of the day, and k refers type of staff - in my case, either

MDs or RNs. The exact details of how dk
b is computed is provided in Section 4.3.1.1.

In the second stage, I use dk
b, b = (0,1),(1,2), ...,(23,0), as input to an ILP whose

purpose was to obtain the minimum cost staffing schedule. The decision variables of the ILP

determine the number of type k resources to be scheduled in hour b to assure that the number

is greater than or equal to dk
b. I also model some typical restrictions on shift lengths and

starting times, but also do studies where I model possible overlaps in shifts and differences

in shift lengths. The output of this second stage is xk
b, the number of resources of type k

that need to be scheduled in hour b to minimize the total cost of salaries while meeting the

required constraints. The details of the ILP are provided in Section 4.3.1.2.

In the third stage, the staff schedule computed from the second stage ILP is used to

specify the exact numbers of MD and RN resources available for each hour in the simulated

24-hour day. I then run simulations using these staffing levels, and the other modeling

information as described in Chapter 3 to determine operational characteristics such as

patients’ length of stay, waiting times, contribution margin, and the actual utilization levels

of the resources (which, depending on the staffing constraints, could differ from original

targets), the number of patient handoffs etc.

For my studies, I ran batteries of simulations based on many different hypotheses about

staff utilization, shift length variation, shift overlapping, etc. Each different hypothesis

required carrying out all three of the stages just described. Each produced operational

characteristics that I used to compare and evaluate the effects of these different choices of

staff utilization levels and scheduling approaches. The results are presented in Chapter 6.
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I now provide details of how I carry out each of these three stages in my simulation

approach.

4.3.1.1 Simulation-based Resource Requirement Determination

As the number of patient arrivals varies by the hour, the number of resources required

will also need to be varied so that the utilization of the resource remains within the pre-

specified utilization limits. The goal of the staffing demands algorithm is to dynamically

compute this distribution of required numbers of resources in the middle of a simulation

run. This approach allows the algorithm calculates the resource demands based on the

consideration of dynamic ED contexts such as patients’ arrivals/waits, utilization of other

resources (e.g., beds), interactions between resources, and other ED circumstances. In

addition, my algorithm can be executed on multiple resource types such as MD and RN at

the same time period during a simulation run.

Before I describe the algorithm, I distinguish between resource sets as follows. I assume

that there are some resources that are available for use during the entire duration of the bth

hour. In addition, there may also be other resources that may be used for some portion of

the hour, because they continue to be used to finish an activity that was begun during the

previous hour. For instance, if an MD’s shift ends before completing an x-ray check for

a patient, the MD will complete the x-ray check step thereby providing some amount of

MD resource during an hour that is beyond the MD’s original shift. Thus these additional

incremental amounts of resource availability must be added to the resource levels provided

by scheduled resources to accurately determine the levels of resources required for each

hour in the 24-hour day. When the MD completes the x-ray check step, the remaining steps

to care for the MD’s patients in beds are handed over to the other available MDs. This kind

of overtime work of a medical provider is frequently observed in real-world EDs. However,

my simulator does not supporting preemption. Which means that a handoff in the middle

of an activity execution is not supported. Due to this limitation, patient care steps in the
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ED model are decomposed enough to model atomic activities in patient care that spend

small amount of time to prevent extensive overtime work. The notations in the algorithm for

staffing demands are:

i time interval between resource adjustment

l lower utilization limit to trigger decrementation of the number of resources required

for this time interval, 0 < l≤ u

u upper utilization limit to trigger incrementation of the number of resources required

for this time interval, 0 < u≤ 1

b time block tuple (f , t) from time f to t where | t− f |= i

k resource type

rb sum of busy periods for resource r during time block b

dk
b staffing demand, the number of required staff, for resource r of type k during time

block b

Rk a set of resources of type k for which I want to determine required staffing levels

Rk
b a set of resources of type k that are used during time block b, Rk

b ⊆ Rk

Ak
b a set of resources of type k that are available to be assigned during time block b,

Ak
b ⊆ Rk

b, Ak
(0,i) = Rk where (0, i) is the first time block

Figure 4.5 describes the staffing demands algorithm. Rk
b is the set of used resources of

type k during time block b. Ak
b is the set of available resources of type k during time block

b which means that only resource r ∈ Ak
b is available to be assigned during time block b.

Further, Ak
b ⊆ Rk

b.

For example, Figure 4.6 shows the execution of the algorithm for a single instance. As

per lines 7-15 of the algorithm, the resource utilization during time block b = (t− i, t) is

calculated. Here, Rk
b = {r1,r2,r3} since resources r1, r2 and r3 are used from time t− i to t.

However, Ak
b = r2,r3 because resource r1 left at time c (some amount of resource utilization

in this time period was attributable to the overflow into this time period of some work begun

during the previous period). Therefore, r1 b = c− (t− i). After the algorithm calculates
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1 StaffingDemands,AvailableResources
2 calculateSaffingDemands (
3 double l, double u,
4 Time t, Time i,
5 ResourceType k) {
6
7 // calculate resource utilization
8 TimeBlock b = (t-i,t);
9 double denominator = 0;

10 double numerator = 0;
11 for (∀ Resource r : r ∈ Rk

b) {
12 denominator += (r ∈ Ak

b) ? i : rb;
13 numerator += rb;
14 }
15 double utilization=numerator/denominator;
16
17 // calculate staffing demands
18 StaffingDemands dk

b = 0;
19 if (utilization ≥ l &&
20 utilization ≤ u) {
21 dk

b = count(Ak
b);

22 } else {
23 double middle = (l+u)/2;
24 dk

b = round(numerator/(middle*i));
25 }
26
27 // select available resources
28 TimeBlock nb = (t,t+i);
29 AvailableResources Ak

nb = {};
30 while(count(Ak

nb) != dk
b) {

31 Resource r : r ∈ Rk;
32 Ak

nb = Ak
nb ∪ {r};

33 }
34
35 return dk

b,A
k
nb

36 }

Figure 4.5. Given the upper and lower utilization limits, the algorithm calculates how many
resources of type k are required during time block b = (t− i, t) and adjusts the number of
available resources of type k to be assigned for next time block nb = (t, t+ i).
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Figure 4.6. An instance of the algorithm execution for staffing demands: Rk
b = {r1,r2,r3},

Ak
b = {r2,r3}, dk

b = 3, Rk
nb = {r2,r3,r4,r5}, Ak

nb = {r3,r4,r5} where b = (t− i, t),nb =
(t, t+ i)

utilization at line 15, it determines how many resources are required to satisfy the desired

range of utilization levels l and u (lines 17-25). If the calculated utilization is between l and

u, it means that resources in Ak
b are utilized as expected. However, if utilization is outside

the limits l and u, the algorithm calculates staffing demands dk
b based on the mid-point of

the utilization range middle = (l+u)/2 and actual assigned sub-periods numerator during

time t− i to t.

In addition to calculating staffing demands dk
b, the algorithm adjusts the numbers of

resources Ak
nb for next time block, i.e., from t to t+ i (lines 27-33). The adjustment assumes

that there are no dramatic changes in patient arrivals in this next period. Therefore, I use dk
b

to decide the size of Ak
nb.

4.3.1.2 Staffing via Integer Linear Programming (ILP)

In this section, I present my ILP-based staffing approach, which minimizes total staff

salaries, while meeting (a) hourly constraints on staff numbers calculated by the previously-

described staffing demands algorithm, and (b) constraints on allowed shift lengths and shift

start times. The ILP-based staffing approach divides a day into several discrete time blocks

(each an hour in length in my case-study). The ILP parameters are listed below.

B a set of time blocks in a day

41



Lk a set of shift lengths for resource type k

Sk
b,l a set of time blocks in a shift for resource type k where shift starting time block b ∈ B,

shift length l ∈ Lk

dk
b staffing demands, the number of required resource, for resource type k during each

time block b ∈ B

pk
b,l a staffing pattern for resource type k of a hospital

1 if a shift begins a time block b ∈ B and its shift length is l ∈ L;

0 otherwise

ck staffing cost per hour for resource type k

For instance, Figure 4.7 shows the ILP parameter values needed to determine MD staffing

levels. Parameter B divides a day into twenty four time blocks. Parameter pMD
b,l establishes

three eight-hour, non-overlapping shifts a day for MDs. The staffing pattern parameter

pMD
b,l can encode any staffing patterns of various shift lengths and start times; however, this

section demonstrates only this three shifts of MD for exposition. MD staffing demand dMD
b

is assumed to have been derived using my previously-described simulation-based algorithm.

Alternatively, if an ED administration desires more flexibility to meet hourly variation in

demands, they may allow MDs and RNs to work a six, eight or twelve hour shift; further,

they may also allow shifts to start at any time. To accommodate this additional flexibility,

the ILP parameters for RN can be set as in Figure 4.8.

The decision variable in the ILP is xk
b,l,i, which determines the number of a particular

staff type (e.g., MD or RN) needed in each hour of a shift. The number of xk
b,l,i is equal to

| B | × | Lk | × | B | for all b, l, i combinations. I use the simplex method to solve the ILP,

NP-hard problem.

xk
b,l,i the number of staff k in time block i in a shift

the shift starts at a time block b and its length is l ∈ Lk
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B: {b0,b1,b2,b3,b4,b5, . . . ,b19,b20,b21,b22,b23}, bi = (i, i+1)
LMD: {8}

SMD
b,l : SMD

b0,8 = {b0,b1,b2,b3,b4,b5,b6,b7}, . . . ,
SMD

b23,8 = {b23,b0,b1,b2,b3,b4,b5,b6}

dMD
b :

0

1

2

3

4

5

6

7

8

9

10

b₀ b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ b₉ b₁₀ b₁₁ b₁₂ b₁₃ b₁₄ b₁₅ b₁₆ b₁₇ b₁₈ b₁₉ b₂₀ b₂₁ b₂₂ b₂₃ 

pMD
b,l : pMD

b7,8 = pMD
b15,8 = pMD

b23,8 = 1, ∀b ∈ B\{b7,b15,b23},pMD
b,8 = 0

cMD: USD188/hour

Figure 4.7. Parameter values for MD staffing. B: twenty four time blocks. LMD: 8-hour
shift length. SMD

b,l : time blocks in l length shift b. dMD
b : staffing demands per each time

blocks driven by 70%–80% utilization target. pMD
b,l : non-overlapped three, 8-hour shifts.

cMD: salary per hour.

The ILP-based staffing fulfills staffing demands dk
b, the minimum number of required

staff during each time block b. Equation (4.1) is the objective function of the ILP-based

staffing problem. The ILP objective function aims to minimize total staffing costs per day.

min ∑
b∈B

∑
l∈Lk

∑
i∈B

ck · xk
b,l,i (4.1)

The objective equation (4.1) is subject to the constraint equations (4.2), (4.3), and (4.4).

First, constraint equation (4.2) enforces that the number of scheduled staff k is always greater

than or equal to the number of required staff k for all time blocks while satisfying a given

staffing pattern. Second, constraint equation (4.3) states that the same number of staff k
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B: {b0,b1,b2,b3,b4,b5, . . . ,b19,b20,b21,b22,b23}, bi = (i, i+1)
LRN : {6,8,12}

SRN
b,l :

SRN
b0,6 = {b0,b1,b2,b3,b4,b5}, . . . ,

SRN
b23,6 = {b23,b0,b1,b2,b3,b4},

SRN
b0,8 = {b0,b1,b2,b3,b4,b5,b6,b7}, . . . ,

SRN
b23,8 = {b23,b0,b1,b2,b3,b4,b5,b6},

SRN
b0,12 = {b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11}, . . . ,

SRN
b23,12 = {b23,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10}

dRN
b :

0

5

10

15

20

25

b₀ b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ b₉ b₁₀ b₁₁ b₁₂ b₁₃ b₁₄ b₁₅ b₁₆ b₁₇ b₁₈ b₁₉ b₂₀ b₂₁ b₂₂ b₂₃ 

pRN
b,l : ∀b ∈ B,∀ l ∈ LRN ,pRN

b,l = 1

cMD: USD55/hour

Figure 4.8. Parameter values for RN staffing. B: twenty four time blocks. LRN : 6,8,12-hour
shift lengths. SRN

b,l : time blocks in l length shift b. dRN
b : staffing demands per each time

blocks driven by 60%–70% utilization target. pRN
b,l : three different shift lengths, and the

staffing pattern allows a shift to start at any time. cRN : salary per hour.

members are working in a shift. Last, constraint equation (4.4) assures that a staff k member

is working on only the staff’s shift.

∑
b∈B

∑
l∈Lk

pk
b,l · xk

b,l,i ≥ dk
i ,∀ i ∈ B (4.2)

xk
b,l,i = xk

b,l,j,∀ i ∈ Sk
b,l,∀ j ∈ Sk

b,l (4.3)
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

𝑥 7,8 ,8,𝑖
𝑀𝐷                9 9 9 9 9 9 9 9                   

𝑥 15,16 ,8,𝑖
𝑀𝐷                                8 8 8 8 8 8 8 8   

𝑥 23,0 ,8,𝑖
𝑀𝐷  8 8 8 8 8 8 8                                 8 

Figure 4.9. MD staffing solution of Figure 4.7. Three separate shifts, 7–14, 15–22 and 23–6.
Each shift has 9, 8 or 8 MDs.

xk
b,l,i = 0,∀ i ∈ B\Sk

b,l (4.4)

To illustrate how the ILP works, an MD staffing solution for Figure 4.7 is displayed in

Figure 4.9. There are three separate shifts, 7–14, 15–22 and 23–6. Each shift has 9, 8, or 8

MDs, respectively.

However, the RN staffing solution in Figure 4.10 looks very different from the MD

staffing in Figure 4.9. This is because the ILP parameters for RN staffing in Figure 4.8

allow three different shift lengths, and a shift can start at any time (i.e., overlap in shifts

are allowed). Therefore, RN staffing in Figure 4.10 very closely approximates actual RN

staffing demands dRN
b in Figure 4.8. I return to this key point while discussing the results of

actual simulations carried out as the third stage of my simulation-based staffing approach.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

𝑥 0,1 ,8,𝑖
𝑅𝑁  2 2 2 2 2 2 2 2                                 

𝑥 1,2 ,8,𝑖
𝑅𝑁    1 1 1 1 1 1 1 1                               

𝑥 7,8 ,6,𝑖
𝑅𝑁                3 3 3 3 3 3                       

𝑥 8,9 ,6,𝑖
𝑅𝑁                  4 4 4 4 4 4                     

𝑥 9,10 ,6,𝑖
𝑅𝑁                    3 3 3 3 3 3                   

𝑥 10,11 ,12,𝑖
𝑅𝑁                      4 4 4 4 4 4 4 4 4 4 4 4     

𝑥 11,12 ,6,𝑖
𝑅𝑁                        1 1 1 1 1 1               

𝑥 11,12 ,8,𝑖
𝑅𝑁                        3 3 3 3 3 3 3 3           

𝑥 12,13 ,12,𝑖
𝑅𝑁                          4 4 4 4 4 4 4 4 4 4 4 4 

𝑥 13,14 ,12,𝑖
𝑅𝑁  4                         4 4 4 4 4 4 4 4 4 4 4 

𝑥 14,15 ,6,𝑖
𝑅𝑁                              4 4 4 4 4 4         

𝑥 15,16 ,12,𝑖
𝑅𝑁  2 2 2                         2 2 2 2 2 2 2 2 2 

𝑥 19,20 ,12,𝑖
𝑅𝑁  3 3 3 3 3 3 3                         3 3 3 3 3 

𝑥 20,21 ,6,𝑖
𝑅𝑁  4 4                                     4 4 4 4 

𝑥 21,22 ,8,𝑖
𝑅𝑁  1 1 1 1 1                                 1 1 1 

𝑥 22,23 ,6,𝑖
𝑅𝑁  3 3 3 3                                     3 3 

Figure 4.10. RN staffing solution of Figure 4.8. Sixteen overlapped shifts. Shifts have
different lengths and start times. Total number of RNs 46 and RNs working hours 392.
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CHAPTER 5

STATIC ANALYSIS THROUGH PROCESS- AND
RESOURCE-AWARE MODEL CHECKING

My process- and resource-aware discrete-event simulation shows promising results

for the evaluation of diverse resource utilization policies in a flexible manner. However,

dynamic verifications via simulations are inherently unable to exhaustively execute all

possible simulation scenarios. To address this limitation, I develop a novel approach to

analyze resource utilization policies statically based on the use of an existing static analysis

technique.

Static analysis techniques, in general, investigate a system without performing actual

executions to verify whether a system holds a given property. Model checking is a static

analysis technology that has long been used in order to either demonstrate that all possible

executions of a program always adhere to specified properties, or to identify one or more

paths on which a property can be violated. In this past work, the properties were typically

event sequence specifications characterizing program functionality. In this current work, I

have used this technology to statically verify that all simulation executions always adhere to

resource utilization properties. I believe such verifications should increase the credibility of

the results of my simulation studies.

5.1 Resource-Aware Static Analysis

This section describes motivating examples that show the issues of omitting resource

concerns in static analysis and demonstrate how my resource-aware static analysis addresses

the issues. Each example includes a control flow graph. A node in the graph may require
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A 

B C 

D 

B 

C 

A,C,D 

Control flow Property FSM 
Resource requests: 
- B requires r  RB 
- C requires r  RC 

Resource objects: 
- RB = {} 
- RC = {rc1, rc2} 

Figure 5.1. An example that shows the difference in verification results between the analysis
technique C and R. C-the property does not hold. R-the property holds.

a resource object to be executed, and a property FSM that specifies the desired sequences

of execution events of the control flow. In a property FSM, a solid circle is an unaccepting

state while a double circle is an accepting state. For purposes of explanation in this section,

I assume there are two static analysis techniques named C and R:

C a static analysis technique that analyzes only a control flow and a property FSM

R a static analysis technique that analyzes a control flow with resource utilization and a

property FSM

Figure 5.1 shows an example that results in the different verification outputs depend on

the consideration of resource utilization in a static analysis. The control flow graph has two

feasible execution traces without considering resource utilization such as A,B,D and A,C,D.

Given the feasible traces, the trace A,B,D is not held by the property FSM. However, the

trace A,B,D is actually infeasible because B node requires r ∈ RB, but RB = {}. Therefore, C

technique analyzes the property does not hold; however, R technique analyzes the property

holds.

The example system in Figure 5.2 results in different verification outputs from Figure 5.1.

Using the analysis technique C, both traces A,B,D and A,C,D in the control flow graph

are held by the property FSM. However, this example system does not have any resource

48



A 

B C 

D 

A 

B,C 

D 

Control flow Property FSM 
Resource requests: 
- B requires r  RB 
- C requires r  RC 

Resource objects: 
- RB = {} 
- RC = {} 

Figure 5.2. An example that shows the different verification results between the analysis
technique C and R. C-the property holds. R-the property does not hold.

A 

B C 

D 

A 

D 

B,C 

Control flow Property FSM Resource requests: 
- B requires r1  RB 
       and r2  RC 
- C requires r1  RB 
       and r2  RC 

Resource objects: 
- RB = {rb1} 
- RC = {rc1} 

Figure 5.3. An example that shows the difference in verification results between the analysis
technique C and R caused by resource deadlock. C-the property holds. R-the property does
not hold.

objects (RB = {} and RC = {}). Therefore, R technique analyzes the property does not hold

because in that situation both A,B,D and A,C,D are infeasible.

The control flow in Figure 5.3 has two feasible traces A,B,C,D and A,C,B,D assuming

atomicity of all nodes in the control flow without considering resource utilization. Both

A,B,C,D and A,C,B,D are held by the given property using C technique. However, analysis

by R resource-aware static analysis technique reveals that the property does not hold if the

semantic of resource allocations allows the following resource utilization scenario. B node

in the control flow graph requires two resource objects of r1 ∈ RB and r2 ∈ RC. C node
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also requires two resource objects of r1 ∈ RB and r2 ∈ RC. However, if B acquires rb1 and

C acquires rc1, both B and C nodes are not able to make progress. This trace of resource

deadlock is not held by the property FSM.

In addition to considering functional control events (A, B, C, and D events in this section),

resource events such as resource allocations and releases help analysts specify property

FSMs. My resource-aware static analysis allows analysts to describe the desired utilization

of resources as property FSMs based on using resource events.

5.2 Platform for Process- and Resource-Aware Finite State Verifica-

tion

My static analysis of resource utilization relies on the use of FLAVERS [21]: FLow

Analysis for VERification of Systems. To be specific, I develop my static resource analysis

approach based on FLAVERS/Little-JIL [10] which provides the Little-JIL to BIR (Bandera

Intermediate Representation) [27] translation method. This section describes background

information of FLAVERS and BIR which are relevant to my approach.

5.2.1 FLAVERS: FLow Analysis for VERification of Systems

FLAVERS is a model checking tool that can verify that all executions of a system satisfy

a given property or will report a counterexample scenario that violates the property. This

counterexample helps analysts identify the reason for the violation. FLAVERS requires

three kinds of inputs for verification: a trace flow graph (TFG), a property FSM, and a set

of constraint FSMs. A TFG is a conservative representation of all syntactically-feasible

event execution sequences of a system. A property FSM is a representation of a mechanism

for accepting only desired system event execution sequences. A property FSM has special

acceptance states to check the satisfaction of a property. A constraint FSM is a representation

of a mechanism for identifying when a system event execution sequence violates a specific
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constraint that causes the sequence to become unacceptable. A constraint FSM has special

trap states to eliminate infeasible execution paths.

Given the three kinds of inputs, FLAVERS uses the state propagation algorithm to verify

whether all the execution paths of the given TFG always satisfy the property FSMs. The

analysis algorithm associates a set of tuples of states in the property FSMs and constraint

FSMs with each event node in the TFG. While propagating the tuples based on events in the

TFG, if a constraint FSM reaches a trap state, a corresponding execution path is excluded

from the analysis searching space. If a property FSM stays in an acceptance state at the end

of state propagation, analysis guarantees the system executions represented in the TFG hold

the property FSM.

Constraint FSMs in FLAVERS allow analysts to refine the entire system model incre-

mentally. TFG is a conservative representation of system executions that includes infeasible

execution paths in a system. Therefore, even though FLAVERS reports a counterexample,

this may not actually occur in real system executions. However, FLAVERS incorporates

constraint FSMs to exclude infeasible paths. This approach helps analysts add complexity

incrementally to analyze the entire system in a tractable manner.

5.2.2 BIR: Bandera Intermediate Representation

BIR is a guarded command language designed to support the translation of Java programs

to a variety of model checkers. FLAVERS/Little-JIL translates Little-JIL specifications to

a BIR program that consists of variable declarations, threads, and predicates. Given the

BIR program, FLAVERS/Little-JIL generates the inputs of FLAVERS to verify Little-JIL

specifications. This section describes BIR features which are relevant to understand my BIR

templates, that encodes resource utilization policies, described in the following sections.

BIR supports seven basic types of variables such as boolean, integer range, enumerated,

locks, arrays, records, and references. Among them, I use boolean and integer range variables

to encode the use of resources. An activity can be started only after necessary resource
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objects have been allocated. A boolean variable is used to check whether a necessary

resource object is allocated or not. A request is often handled by one of multiple candidate

resource objects. These candidate resource objects are encoded by using an integer range

variable. The integer range variables are also used to enforce resource utilization policies

that restrict an allocation of a specific resource objects.

A BIR program is a single process consist of multiple threads. A thread is a directed

graph with a set of locations and transitions constrained by guard expressions. The thread

structure of a BIR program is determined by a given process specification which includes

various sequencings such as parallels, choices, and exceptions. States of an activity such as

STARTED and COMPLETED are encoded in a single BIR thread. I encode resource utilization

for each activity in an associated thread to the activity. A resource utilization policy often

restricts the use of resources over multiple activities in multiple threads. The enforcement

of the policy is encoded by using global variables that are accessible from multiple threads.

Predicates in a BIR program are named boolean expressions to capture states of the BIR

transition system. I use predicates to test thread locations which are related to resource uti-

lization of the system and a given resource property FSM. A predicate to test thread location

is evaluated to be true when the indicated thread is at the corresponding location. These

predicates are eventually used to generate resource events while FLAVERS is analyzing a

translated trace flow graph.

5.2.3 XPath: XML Path Language

XPath [74] is used to navigate through the elements and attributes in an XML document.

XPath selects a set of nodes through a hierarchic navigation path of a XML document tree.

Path expressions of XPath are similar to the file paths of a traditional computer file system.

For instance, an XPath expression /a/b means that /a selects the a element, then /b selects

all the b elements under the a element in an XML document. I use XPath expressions to
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Figure 5.4. Little-JIL diagram to illustrate how to use XPath expressions to navigate
activities.

1 <A UID="A_0">
2 <B UID="B_1">
3 <D UID="D_2">/D>
4 <B UID="B_3">
5 <D UID="D_4"></D>
6 <B UID="B_5"></B>
7 </B>
8 </B>
9 <B UID="B_6">

10 <D UID="D_7"></D>
11 <B UID="B_8">
12 <D UID="D_9"></D>
13 <B UID="B_10"></B>
14 </B>
15 </B>
16 <C UID="C_11">
17 <F UID="F_12"></F>
18 <G UID="G_13"></G>
19 </C>
20 </A>

Figure 5.5. XML representation of an unrolled Little-JIL diagram in Figure 5.4. This XML
document is used only for purposes of explaining XPath.

navigate through activities in a graphical Little-JIL specification. XPath expressions are

used in specifying a resource property which is described in the following Section 5.3.4.
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XPath expression
Activities in Figure 5.4
(Activities in Figure 5.5)

//*
all activities
(all activities)

/A/C
C activity
(C UID="C 11")

/A/B[1]//*
all activities under the first occurrence of B activity.
(D UID=D 2, B UID=B 3, D UID=D 4 , B UID=B 5)

/A//F
F activity
(F UID="F 12")

Figure 5.6. XPath expression examples that select activities in Figure 5.4.

.

Figure 5.4 is an example Little-JIL diagram to illustrate how to use XPath expressions

to navigate activities in the specification. XPath expressions for Little-JIL are specified

based on an unrolled Little-JIL structure. In this example, the ? cardinality above the B

activity indicates that there are zero or many B activities having child activities. In addition,

the B reference activity without including child activities represents a recursion to repeat

the D activity. To explain XPath expressions for Little-JIL, I use an XML document which

describes an unrolled Little-JIL structure. Figure 5.5 is an XML document which describes

an unrolled Little-JIL diagram in Figure 5.4 by fixing the ? cardinality to be 2 and repeating

the D activity twice. As can be seen in Figure 5.5, sequencing information in Figure 5.4 is

omitted because the information is not required to distinguish each activity in a Little-JIL

diagram by using XPath. Figure 5.6 shows some example pairs of XPath expression and

a set of selected activities in Figure 5.4 which help to clarify XPath expressions in the

remaining sections.

5.3 Process- and Resource-Aware Model Checking

Figure 5.7 shows the overview of my static resource analysis approach. I extend

the components at Translation part of FLAVERS/Little-JIL. Process Builder cre-
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Property 
FSM 

Resource Specifications 
- Resource Characteristics 
- Resource Requests 
- Resource Utilization Policies 

Process Specifications 
- Activity Coordination 
- Artifact Flow 

User Input 

Process Builder Resource Builder 

Resource Utilization 
Policy Builder 

Predicate Creator 

BIR template 
BIR template 

BIR program 

Characteristics, 
Requests Policies 

Resource Predicate 
Creator 

BIR program 

Process 
Specifications 

Translation 

TFG Translator Constraint FSM Translator 

BIR program w/ resource predicates 

Characteristics 

Model Checker (FLAVERS) 

TFG 
w/ resource events 

Verification Results 

Constraint FSMs 
w/ resource constraints 

Verification 

Figure 5.7. Overview of static process- and resource-aware model checking approach. My
approach translates resource specifications into the inputs of FLAVERS.

ates a BIR template for each activity based on given Process Specifications that

include Activity Coordination and Artifact Flow. Process Builder collaborates

with Resource Builder to encode resource allocation and release behaviors into a BIR

template. Resource Builder uses the specifications of Resource Characteristics

and Resource Requests to encode which resource objects must be allocated and released

for a request. Resource Utilization Policy Builder is responsible for extending

a BIR template to enforce resource utilization policies based on the specifications of

Resource Utilization Policies. Predicate Creator creates necessary predicates

to generate events at the Verification phase. Resource Predicate Creator makes

predicates associated with resource events such as resource reservations, assignments, and re-

leases related to Constraint FSMs and Property FSM for a resource property verification.

TFG Translator converts the BIR program to a TFG with resource events for allocations
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(reservations and assignments) and releases. Constraint FSM Translator generates a

set of constraint FSMs including resource constraints such as resource capacity constraints

based on a BIR program and the specifications of Resource Characteristics. Model

Checker (FLAVERS) takes the TFG and Constraint FSMs as inputs to verify whether the

system specifications satisfy a given Property FSM.

5.3.1 BIR Translation Templates Encoding Resource Utilization

FLAVERS/Little-JIL provides seven BIR template types to encode Little-JIL semantics

such as an activity start, completion, and other activity execution semantics. This section

presents seven new BIR templates by focusing on resource utilization.

5.3.1.1 BIR Template: Single Resource Allocation

Figure 5.8 is a BIR template that encodes resource allocation traces to handle a single

request from an activity. The template takes three parameters: Activity, Query, and

RequestMode. Activity is an activity object which sends a request. Activity information

comes from the specification of activity coordination. A request information described in the

resource request specifications is further decomposed into Query for a required capability

and RequestMode for either reservation or assignment. ResourceVar is an integer range

variable that encodes the number of resource objects which can handle the given request.

The integer range is determined by the specifications of resource characteristics that describe

the number of resource objects and sets of capabilities which resource objects provide. In

this example, ResourceVar can be either 0 or 1 that represents two resource objects can

handle a request (Query and RequestMode) from Activity.

Resource Allocation Traces in Figure 5.8 includes a set of locations and transitions

to encode a single thread transition system for a resource allocation. The first location, loc

Activity Query RequestMode REQUEST encodes that an Activity sends a request of the

Query by RequestMode. After sending a request, the transition system changes its location

from line 1 to line 4 (loc Activity Query RequestMode BRANCH). This transition is a
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Template Parameters

1 template <Activity, Query, RequestMode>

Resource Variable Declarations

1 /* e.g., two resource objects that can handle Query */
2 ResourceVar: range 0..1:= 0;

Resource Allocation Traces

1 loc Activity_Query_RequestMode_REQUEST:
2 when true do {} goto Activity_Query_RequestMode_BRANCH;
3
4 loc Activity_Query_RequestMode_BRANCH:
5 when true do invisible { ResourceVar := 0; }
6 goto Activity_ResourceVar0_RequestMode_ALLOCATE;
7 when true do invisible { ResourceVar := 1; }
8 goto Activity_ResourceVar1_RequestMode_ALLOCATE;
9

10 loc Activity_ResourceVar0_RequestMode_ALLOCATE:
11 when true do invisible { }
12 goto Activity_Query_RequestMode_ALLOCATED;
13 loc Activity_ResourceVar1_RequestMode_ALLOCATE:
14 when true do invisible { }
15 goto Activity_Query_RequestMode_ALLOCATED;
16
17 loc Activity_Query_RequestMode_ALLOCATED:
18 when true do invisible { } goto /* Activity Start */;

Resource Allocation Events

1 predicates
2 (REQUEST,Activity,Query,RequestMode) =
3 THREAD@Activity_Query_RequestMode_REQUEST;
4 (ALLOCATE,Activity,ResourceVar=0,RequestMode) =
5 THREAD@Activity_ResourceVar0_RequestMode_ALLOCATE;
6 (ALLOCATE,Activity,ResourceVar=1,RequestMode)=
7 THREAD@Activity_ResourceVar1_RequestMode_ALLOCATE;
8 (ALLOCATED,Activity,Query,RequestMode)=
9 THREAD@tepObject_Query_RequestMode_ALLOCATED;

Figure 5.8. BIR template that handles a single resource allocation request. This example
template assumes two resource objects that can handle Query without user specified resource
utilization policies.
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visible transition to other threads which is allowed to be interleaved. Actual request handling

times are determined by complex conditions combined with schedule policies and system

contexts, so these resource allocation traces can be interleaved after sending a request. The

other transitions are invisible to other threads which encode the atomicity of actual resource

allocation traces (reservation or assignment). Lines 4-8 encode the ResourceVar value

setting by either 0 or 1 to keep the state of resource allocation for the Activity, then the

transition system changes its locations to loc Activity ResourceVar0 RequestMode -

ALLOCATE or loc Activity ResourceVar1 RequestMode ALLOCATE, respectively. loc

Activity ResourceVar0 RequestMode ALLOCATE represents that a resource object as-

sociated with 0 value has been allocated. Similarly, loc Activity ResourceVar1 -

RequestMode ALLOCATE indicates that a resource object associated with 1 value has been

allocated. Last, as can be seen in Lines 10-15, the transition system changes its location to

loc Activity Query RequestMode ALLOCATED for starting the Activity.

predicates in Figure 5.8 is generated from the Resource Allocation Traces to rec-

ognize resource allocation events such as REQUEST, ALLOCATE, and ALLOCATED events during

the model checking phase. For instance, (REQUEST,Activity,Query,RequestMode) is

evaluated to be true when a THREAD execution reaches to the Activity Query RequestMode -

REQUEST location. Then, FLAVERS eventually recognizes the event (REQUEST,Activity,-

Query,RequestMode) while analyzing a TFG node related to the location Activity Query -

RequestMode REQUEST.

5.3.1.2 BIR Template: Single Resource Release

Figure 5.9 shows a BIR template that releases an allocated resource from an Activity.

The template takes three parameters: Activity, ReleaseQuery, and RequestMode. An

Activity is executed with an allocated resource object. ReleaseQuery requests which

resource object is needed to be released. RequestMode distinguishes the allocated resource

object is either reserved or assigned.
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Template Parameters

1 template <Activity, ReleaseQuery, RequestMode>

Resource Release Traces

1 loc Activity_ReleaseQuery_RequestMode_REQUEST:
2 when ( ResourceVar == 0) do { }
3 goto Activity_ResourceVar0_ReleaseQuery_RequestMode_RELEASE;
4 when ( ResourceVar == 1) do { }
5 goto Activity_ResourceVar1_ReleaseQuery_RequestMode_RELEASE;
6
7 loc Activity_ResourceVar0_ReleaseQuery_RequestMode_RELEASE:
8 when true do invisible { }
9 goto Activity_ReleaseQuery_RequestMode_RELEASED;

10 loc Activity_ResourceVar1_ReleaseQuery_RequestMode_RELEASE:
11 when true do invisible { }
12 goto Activity_ReleaseQuery_RequestMode_RELEASED;
13
14 loc Activity_ReleaseQuery_RequestMode_RELEASED:
15 when true do { } goto /* Next Step */;

Resource Release Events

1 predicates
2 (RELEASE,Activity,ResourceVar=0,ReleaseQuery,RequestMode)=
3 THREAD@Activity_ResourceVar0_ReleaseQuery_RequestMode_RELEASE;
4 (RELEASE,Activity_ResourceVar=1_ReleaseQuery_RequestMode)=
5 THREAD@Activity_ResourceVar1_ReleaseQuery_RequestMode_RELEASE;

Figure 5.9. BIR template that handles a single resource release request that matches
Figure 5.8.

While completing an Activity execution, an allocated resource object must be re-

leased. Resource Release Traces in Figure 5.9 represents the template traces of the

release of a single resource object that matches Figure 5.8. The resource release traces

follow REQUEST, RELEASE, and then RELEASED sequences. During the release phase, an

allocated resource object must be released after performing an Activity. This example

considers two resource objects that can be allocated and released. As can be seen in lines

2 and 4 of Resource Release Traces, the integer range variable, ResourceVar used in

Figure 5.8, enforces the release of an allocated resource object. For instance, lines 2-3

59



show that a transition from loc Activity ReleaseQuery RequestMode REQUEST to loc

Activity ResourceVar0 ReleaseQuery RequestMode RELEASE is only possible when

ResourceVar == 0.

Resource Release Events in Figure 5.9 shows when resource release events are hap-

pening while traversing the Resource Release Traces. Unlike with resource allocation

events, resource release events are always handled without being restricted by any policies.

Therefore, the resource analysis requires that the events of actual resource release happenings

as can be seen in the predicates. For instance, (RELEASE, Activity, ResourceVar=0,

ReleaseQuery, RequestMode) event happens when the current location reaches to the

Activity ResourceVar0 ReleaseQuery RequestMode RELEASE.

5.3.1.3 BIR Template: Multiple Resource Allocations

Figure 5.10 is a BIR template that handles multiple resource allocations. This example

template handles two resource allocations by taking of the following five parameters:

Activity, Query0, RequestMode0, Query1, and RequestMode1. The Activity sends the

two requests. Each pair of Query0 and RequestMode0; and Query1 and RequestMode1

encodes a request.

Resource Variable Declarations in Figure 5.10 declares two boolean variables

for encoding states of request handling. For instance, Query0Handled == false denotes

that Query0 is not handled. On the other hand, Query0Handled == true represents that

Query0 is handled.

Resource Allocation Traces in Figure 5.10 shows a part of a transition system that

handles multiple resource allocations. As can be seen in lines 1-4, I serialize two requests

to reduce the complexity of a BIR program. In this example, Query0 is requested first

and then Query1 is requested. Even though I serialize the sequence of sending requests,

it does not enforces the order of actual request handles. An order of request handle is

determined through Lines 6-12 that encode the behavior of fetching requests. If both requets

60



Template Parameters

1 /* E.g., a step object sends two requests */
2 template <Activity, Query0, RequestMode0, Query1, RequestMode1>

Resource Variable Declarations

1 Query0Handled: boolean;
2 Query1Handled: boolean;

Resource Allocation Traces

1 loc Activity_Query0_RequestMode0_REQUEST:
2 when true do { } goto Activity_Query1_RequestMode1;
3 loc Activity_Query1_RequestMode1_REQUEST:
4 when true do { } goto Activity_REQUEST_FETCH;
5
6 loc Activity_REQUEST_FETCH:
7 when (Query0Handled == false)
8 do invisible {Query0Handled := true;}
9 goto Activity_Query0_RequestMode0_BRANCH;

10 when (Query1Handled == false)
11 do invisible {Query1Handled := true;}
12 goto Activity_Query1_RequestMode1_BRANCH;
13
14 loc Activity_Query0_RequestMode0_BRANCH:
15 /* Allocate a resource object */
16 loc Activity_Query0_RequestMode0_ALLOCATED:
17 when true do invisible {} goto Activity_REQUEST_FETCH_LOOP;
18
19 loc Activity_Query1_RequestMode1_BRANCH:
20 /* Allocate a resource object */
21 loc Activity_Query1_RequestMode1_ALLOCATED:
22 when true do invisible {} goto Activity_REQUEST_FETCH_LOOP;
23
24 loc Activity_REQUEST_FETCH_LOOP:
25 when ((Query0Handled == false) || (Query1Handled == false))
26 do { } goto Activity_REQUEST_FETCH;
27 when ((Query0Handled == true) && (Query1Handled == true))
28 do { } goto /* Activity Start */;

Figure 5.10. BIR template that handles multiple allocation requests. This example template
handles two allocation requests.
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Template Parameters

1 template <Activity, ReleaseQuery0, RequestMode0,
2 ReleaseQuery1, RequestMode1>

Resource Release Traces

1 loc Activity_ReleaseQuery0_RequestMode0_REQUEST:
2 /* Release a resource allocated for Query0 */
3 loc Activity_ReleaseQuery0_RequestMode0_RELEASED:
4 when true do invisible { }
5 goto Activity_ReleaseQuery1_RequestMode1_REQUEST;
6
7 loc Activity_ReleaseQuery1_RequestMode1_REQUEST:
8 /* Release a resource allocated for Query1 */
9 loc Activity_ReleaseQuery1_RequestMode1_RELEASED:

10 when true do { } goto /* Next Step */;

Figure 5.11. BIR template that handles multiple release requests. This example matches
with Figure 5.10

haven’t been handled, the BIR statements allow nondeterministic choices of handling either

Query0 or Query1. After fetching a request to handle, lines 14-22 allocate a resource object

for the fetched request. Each resource allocation trace, lines 15 and 20, is described in

Section 5.3.1.1. After handling the fetched request, lines 24-28 determine whether there are

remaining requests to be handled before starting the Activity. The Activity that sends

two requests can start its execution only when the two requests have been properly handled.

The generation of resource allocation events is not different between single and multiple

allocation traces. As can be seen in Figure 5.8, REQUEST, ALLOCATE, and ALLOCATED events

are generated for each request.

5.3.1.4 BIR Template: Multiple Resource Releases

Figure 5.11 shows a BIR template that encodes multiple resource releases. In this

example, an Activity sends two release requests of ReleaseQuery0, RequestMode0 and

ReleaseQuery1, RequestMode1.
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Resource Release Traces in Figure 5.11 releases two allocated resource objects in

Figure 5.10. As can be seen in the traces, two releases are sequentialized to reduce the

complexity of the entire transition system. The serialization does not influence the analysis

results because a resource manager releases resource objects immediately without being

restricted by any policies. Actual resource release traces at lines 2 and 8 can be found in

Figure 5.9.

Each resource release generates RELEASE event as can be seen in Figure 5.9. This

example generates two RELEASE events when the transition system reaches a location that

actually releases a resource object at either line 2 or 8.

5.3.1.5 BIR Template: Permission Constraint Policy

Figure 5.12 encodes the enforcement of permission constraint policies. An Activity

sends a request (Query, RequestMode). The request can be handled by two candidate

resource objects which are encoded by using an integer range variable, ResourceVar,

in Resource Variable Declarations part. An allocation for the given request by the

two resource objects is determined by two permission constraint policies: PA and PB.

PA.G0 and PB.G0 are guard expressions that are evaluated to be true when the resource

object encoded by the range variable 0 can handle the given request while satisfying

permission constraint policies PA and PB, respectively. Similarly, PA.G1 and PB.G1 are

guard expressions associated with the resource object encoded by 1.

In this example, two permission constraint policies PA and PB must be satisfied while

allocating a resource object. For instance, as can be seen at line 5 in Resource Allocation

Traces, a resource object 0 can handle the given request only when PA.G0 && PB.G0 ==

true.

As can be seen in Figure 5.12, permission constraint policies influence only guards on

transitions, lines 5 and 8. Actual resource allocation and release traces can be found in

Figure 5.8 and Figure 5.9, respectively.
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Template Parameters

1 template <Activity, Query, RequestMode,
2 PA.G0, PA.G1, PB.G0, PB.G1>

Resource Variable Declarations

1 /* e.g., two resource objects that can handle Query */
2 ResourceVar: range 0..1:= 0;

Resource Allocation Traces

1 loc Activity_Query_RequestMode_REQUEST:
2 when true do { } goto Activity_Query_RequestMode_BRANCH;
3
4 loc Activity_Query_RequestMode_BRANCH:
5 when ((PA.G0 && PB.G0) == true)
6 do invisible { ResourceVar := 0; }
7 goto Activity_ResourceVar0_RequestMode_ALLOCATE;
8 when ((PA.G1 && PB.G1) == true)
9 do invisible { ResourceVar := 1; }

10 goto Activity_ResourceVar1_RequestMode_ALLOCATE;
11
12 /* Allocate a resource object */
13
14 loc Activity_Query_RequestMode_ALLOCATED:
15 when true do invisible { } goto /* Activity Start */;

Figure 5.12. BIR template that handles multiple permission constraint policies. This
example template encodes two permission constraint policies that restrict the possible
allocation of two resource objects for a given request.

5.3.1.6 BIR Template: Priority Conflict Resolution Policy

Figure 5.13 is an example of a BIR template that encodes a priority conflict resolution

policy. In this example, enforcing a set of PA and PB permission constraint policies has

a higher priority than enforcing only PB permission constraint policy. A request (Query,

RequestMode) from an Activity is restricted by this priority conflict resolution policy. This

example template considers two resource objects as can be seen in Resource Variable

Declarations.
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Template Parameters

1 template <Activity, Query, RequestMode,
2 PA.G0, PA.G1, PB.G0, PB.G1>

Resource Variable Declarations

1 /* e.g., two resource objects that can handle Query */
2 ResourceVar: range 0..1:= 0;

Resource Allocation Traces

1 loc Activity_Query_RequestMode_REQUEST:
2 when true do { }
3 goto Activity_Query_RequestMode_BRANCH;
4
5 loc Activity_Query_RequestMode_BRANCH:
6 when (((PA.G0 && PB.G0)==true)
7 || ((((PA.G1 && PB.G1)==false)
8 && ((PA.G0 && PB.G0)==false))
9 && (PB.G0==true))

10 do invisible { ResourceVar := 0; }
11 goto Activity_ResourceVar0_RequestMode;
12 when (((PA.G1 && PB.G1)==true)
13 || ((((PA.G0 && PB.G0)==false)
14 && ((PA.G1 && PB.G1)==false))
15 && (PB.G1==true))
16 do invisible { ResourceVar := 1; }
17 goto Activity_ResourceVar1_RequestMode;
18
19 /* Allocate a resource object */
20
21 loc Activity_Query_RequestMode_ALLOCATED:
22 when true do invisible { } goto /* Activity Start */;

Figure 5.13. This example BIR template encodes a priority conflict resolution policy. A set
of permission constraint policies of PA and PB has higher priority than a set of permission
constraint policies of PB.

Resource Allocation Traces in Figure 5.13 shows the transitions for the enforce-

ment of a priority conflict resolution policy. For instance, line 6 shows that a resource object

0 can handle the given request if the high prioritized a set of permission constraint policies of

PA and PB are satisfied, PA.G0 && PB.G1 == true. In this example template, the priority
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conflict resolution policy enforces only the PB permission constraint policy when there are

no candidate resource objects that satisfy both the PA and PB permission constraint poli-

cies. Lines 7-8, ((PA.G1 && PB.G1) == false) && ((PA.G0 && PB.G0) == false),

represents that both resource objects 0 and 1 are not able to satisfy PA and PB together. Then,

line 9 encodes that enforcing only PB permission constraint policy, PB.G0 == true.

5.3.1.7 BIR Template: Case Conflict Resolution Policy

Figure 5.14 shows a BIR template that encodes a case conflict resolution policy. In

this example, a conflict condition of the case conflict resolution policy happens when PA

permission constraint policy is satisfied, but the PB permission constraint policy is not

satisfied. When this conflict condition happens, the case conflict resolution policy enforces

only PB. A request (Query, RequestMode) from the Activity is restricted by this case

conflict resolution policy. As can be seen in Resource Variable Declarations, this

example template considers two resource objects as candidates to handle the given request.

Resource Allocation Traces is a template transition system that enforces the case

conflict resolution policy. For instance, if no conflict happens such as line 6, (PA.G0 &&

PB.G0) == true, 0 resource object can handle the given request. However, if a conflict

happens, the case conflict resolution policy allows the enforcement of only PB. Lines 7-8,

((PA.G1 && PB.G1) == false) && (PA.G0 == true && PB.G0 == false), encode

the specific case of a conflict condition. Given the satisfaction of the condition, line 9 allows

enforcing only PB permission constraint policy.

5.3.2 Trace Flow Graph Encoding Resource Utilization

After generating a BIR program, TFG Translator in Figure 5.7 translates the BIR

program to a TFG for FLAVERS. FLAVERS/Little-JIL already provides the BIR to TFG

translator. Therefore, this section describes some examples to illustrate how the BIR

templates in Section 5.3.1 are translated to TFGs. The generated TFG varies depending

on various optimization techniques provided by FLAVERS/Little-JIL such as the variable
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Template Parameters

1 template <Activity, Query, RequestMode,
2 PA.G0, PA.G1, PB.G0, PB.G1>

Resource Variable Declarations

1 /* e.g., two resource objects that can handle Query */
2 ResourceVar: range 0..1:= 0;

Resource Allocation Traces

1 loc Activity_Query_RequestMode_REQUEST:
2 when true do { }
3 goto Activity_Query_RequestMode_BRANCH;
4
5 loc Activity_Query_RequestMode_BRANCH:
6 when (((PA.G0 && PB.G0)==true)
7 || ((((PA.G1 && PB.G1)==false)
8 && (PA.G0==true && PB.G0==false))
9 && (PB.G0==true))

10 do invisible { ResourceVar := 0; }
11 goto Activity_ResourceVar0_RequestMode;
12 when (((PA.G1 && PB.G1)==true)
13 || ((((PA.G0 && PB.G0)==false)
14 && (PA.G1==true && PB.G1==false))
15 && (PB.G1==true))
16 do invisible { ResourceVar := 1; }
17 goto Activity_ResourceVar1_RequestMode;
18
19 /* Allocate a resource object */
20
21 loc Activity_Query_RequestMode_ALLOCATED:
22 when true do invisible { } goto /* Activity Start */;

Figure 5.14. This example template encodes a case conflict resolution policy. A conflict
condition is defined when a permission constraint policy PA is satisfied, but PB is not
satisfied. This specific conflict case is resolved by enforcing only PB.

inlining heuristic, partial order reduction, and other optimization algorithms. This section,

however, shows an intuitive translation approach to better explain how a BIR program with

resource utilization is represented by using a TFG.
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a5 a6 

a7 

Figure 5.15. BIR to TFG translation: resource allocation BIR template in Figure 5.8.

Figure 5.15 shows how the BIR template of resource allocation transitions in Figure 5.8

is translated into a TFG. Each location that encodes states of resource allocation in the

BIR template is mapped to a unique node in the TFG. In addition, each resource variable

assignment action (e.g., ResourceVar := 0) in the BIR template is also mapped to a unique

node in the TFG because the assignment changes a system state. In this example, either

ResourceVar := 0 or ResourceVar := 1 restricts the feasible resource release traces

(see Figure 5.9).

Figure 5.16 illustrates a transition from the BIR template of resource release transitions

in Figure 5.9 to a TFG. In addition to the mapping from BIR locations to TFG nodes, each

guard condition in the BIR template is also mapped to a unique node in the TFG. For

example, ResourceVar == 0 and ResourceVar == 1 are mapped to two different TFG

nodes. The evaluation of these guard expressions determines resource utilization traces after

the evaluation. Therefore, the guard expressions associated with resource utilization must be

included in a TFG for analyzing resource utilization. For example, if ResourceVar := 0

68



r1 

r2 r3 

r4 r5 

r6 

Figure 5.16. BIR to TFG translation: resource release BIR template in Figure 5.9.

in Figure 5.15 is traversed, traces after ResourceVar == 1 in Figure 5.16 must be excluded

from analysis space.

The other templates in Section 5.3.1 are translated into a TFG in a similar way. Spec-

ification of resource utilization policies often generates complex guard expressions in a

BIR program; however, translation from a guard expression in a BIR program to a TFG is

straightforward.

5.3.3 Resource Constraint Finite State Machine

A TFG is a conservative representation that includes infeasible traces. For instance,

assuming the TFG in Figure 5.15 and the TFG in Figure 5.16 are associated with the same

activity, then the resource utilization trace, a1 → a2 → a3 → a5 → a7 → . . .→ r1

→ r3 → r5 → r6, is an infeasible trace because ResourceVar := 0 at a3 is executed in

this example trace, but ResourceVar == 1 at r3 is evaluated to be false. These infeasible

traces in a TFG are excluded from the analysis searching space in FLAVERS by using

a set of constraint finite state machines. Constraint FSM Translator in Figure 5.7

generates constraint FSMs to exclude infeasible resource utilization traces in a BIR program.

FLAVERS/Little-JIL provides the Constraint FSM Translator component, but I extend
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ResourceVar := 1 
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ResourceVar == 1 
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ResourceVar == 0 
ResourceVar != 1 
ResourceVar < 1 

Figure 5.17. Constraint FSM associated with the integer range variable (ResourceVar:
range 0..1) to reference two resource objects.

the component to enforce resource capacity constraints. This section focuses on describing

constraint FSMs related to excluding infeasible resource utilization traces and enforcing

resource capacity constraints.

Figure 5.17 shows a constraint FSM that restricts valid expressions at each state re-

lated to ResourceVar: range 0..1 integer range variable such as ResourceVar <= 0,

ResourceVar == 0, and other expressions. The constraint FSM has three states: 0, 1, and

violation. 0 and 1 states represent the value of ResourceVar variables. State violation

represents a trap which means all expressions are invalid at the violation state. This

constraint FSM is used to enforce resource allocation-release matching and resource utiliza-

tion policies. For instance, a trace a1 → a2 → a3 → a5 → a7 → . . .→ r1 → r3

→ r5 → r6 in Figure 5.15 and Figure 5.16 is determined to be an infeasible trace. a3
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Figure 5.18. Constraint FSM that excludes infeasible traces of handling multiple requests
from an activity.

generates ResourceVar := 0 event, so the event triggers staying in 0 state. However, r3

generates ResourceVar == 1, then the event triggers the transition from 0 to violation

state. FLAVERS uses the violation state to determine whether a trace is infeasible or

not. Concerning resource utilization policies, as can be seen in Figure 5.12, 5.13, and

5.14, resource utilization policies are encoded by using guard expressions in a BIR program.

Thus, constraint FSMs similar to Figure 5.17 is generated to enforce the specified resource

utilization policies.

Figure 5.18 shows a constraint FSM that enforces valid sequences of handling multiple

requests from an activity. The constraint FSM has three states: false, true, and violation.

false and true states represent the value of the Query0Handled boolean variable. As can

be seen in Figure 5.10, Query0Handled variable is used to keep distinguishing whether

the Query0 request is handled or not while handling multiple requests. For instance, if

Query0Handled is updated as true at the line 8 in Figure 5.10, the constraint FSM changes

its state from false to true. Then, a trace that revisits the line 8 is infeasible because

Query0Handled == false at line 7 changes the constraint FSM’s state from true to
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1 0 violation 

(RELEASE,Activity,ResourceVar=0,ReleaseQuery,RequestMode) 
… other release events … 

(RELEASE,Activity,ResourceVar=0,ReleaseQuery,RequestMode) 
… other release events … 

(ALLOCATE,Activity,ResourceVar=0,RequestMode) 
… other allocation events … 

(ALLOCATE,Activity,ResourceVar=0,RequestMode) 
… other allocation events … 

Figure 5.19. Template constraint FSM that excludes infeasible resource utilization traces
that violate resource capacity constraints.

false. Similar constraint FSMs are generated to handle each request when an activity

requires multiple resources.

A resource object has capacity limits for handling multiple reservation and assignment

requests and spends a certain amount of effort while providing capabilities. This capacity

constraint of a resource object is encoded by using a resource capacity constraint FSM.

To generate the constraint FSM, Constraint FSM Translator takes a specification of

resource characteristics and a BIR program. The capacity constraint is specified in a

specification of resource characteristics (see Section 3.1). A BIR program includes the

information of resource allocation and release events. The creation of a resource constraint

FSM is straightforward, but it assumes static capacity and effort-needed values because

FLAVERS supports finite state verification.

Figure 5.19 shows a template of a resource capacity constraint FSM assuming a resource

object has the capacity limit of 1 for the RequestMode of either reservation or assignment,

and spends 1 amount of effort in providing a requested capability from the Activity. 1 and

0 states represent the remaining capacity of a resource object. violation state is a trap

state to test the feasibility of allocation and release event traces. Transitions between the
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reserved 
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treat by the same staff 

Figure 5.20. This property FSM encodes the same staff (e.g., MD and RN) property. The
idle and care states are accepting states. The violation state is a trap state.

states are derived from resource allocation and release events in an input BIR program. The

constraint FSM encodes that a resource object represented by ResourceVar=0 is allowed to

be allocated only once. For instance, the constraint FSM will reach the violation state

when the resource object is allocated twice. In other cases, the FSM will stay in either 1 or

0 state.

5.3.4 Resource Property Finite State Machine

To verify a property FSM related to resource utilization requires a mechanism to bind

events in the property FSM with resource utilization events in a system such as resource

allocation and release events (see Section 5.2.2). FLAVERS/Little-JIL provides a mechanism

to bind events in a property FSM with Little-JIL events such as activity started/completed,

artifact defined/used, and other events. However, the existing approach does not support

new resource events. This section describes my approach to bind events in a property FSM

with resource allocation and release events.

Figure 5.20 shows the same staff (e.g., MD and RN) property. The property FSM

contains the states that a given staff resource object can be in. The idle state means that the

staff is not in charge of caring for a patient. The reserved event indicates that the staff is

reserved to care for the patient. After the staff is reserved to care for the patient, the property

FSM allows treating the patient by only the same staff (treat by the same staff event).

73



If the patient is cared for by another staff, the property FSM reaches the violation state

which indicates a violation of the same staff property.

For FLAVERS verification, the events in the property FSM (e.g., treat by the same

staff) are matched to the nodes in the TFG that represent resource utilization such as

resource allocations or releases. To select a set of resource utilization events by users, I

provide the following six resource event templates:

• request reserve(resource object, XPath expression): a set of resource reserva-

tion request events that are associated with the requests of a resource object from

activities pointed by an XPath expression.

• request assign(resource object, XPath expression): a set of resource assign-

ment request events that are associated with the requests of a resource object from

activities pointed by an XPath expression.

• reserve(resource object, XPath expression): a set of resource reservation events

that are associated with the reservations of a resource object to perform activities

pointed by an XPath expression.

• assign(resource object, XPath expression): a set of resource assignment events

that are associated with the assignments of a resource object to perform activities

pointed by an XPath expression.

• release reserved(resource object, XPath expression): a set of resource release

events that are associated with the releases of a reserved resource object from

activities pointed by an XPath expression.

• release assigned(resource object, XPath expression): a set of resource release

events that are associated with the releases of a assigned resource object from

activities pointed by an XPath expression.

For instance, Figure 5.21 shows an example of resource event binding for the prop-

erty FSM in Figure 5.20. The reserved event is associated with a set of resource reservation

events by reserve(md0, /ED//InsideED[1]). The reserve(md0, /ED//InsideED[1])
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Event name Resource event binding

reserved reserve(md0, /ED//InsideED[1])
treat by the same staff assign(md0, /ED/InsideED[1]//*)

treat by others
assign(md1, /ED//InsideED[1]//*),
assign(md2, /ED//InsideED[1]//*)

Figure 5.21. An example of resource event binding for the same MD property assuming
three MD resource objects (md0, md1, and md2). The event names are declared in Figure 5.20

.

represent a resource reservation event that happens when the md0 is reserved to perform the

InsideED activity to care for the first patient. Figure 5.22 shows which activity is pointed

by /ED//InsideED[1]. After the reservation, only the same md0 is allowed to care for

the first patient. Therefore, the treat by the same staff event is mapped to a set of

resource assignment events by assign(md0, /ED//InsideED[1]//*). As can be seen

in Figure 5.22, the /ED//InsideED[1]//* selects a set of activities which cares for the

first patient under the InsideED activity. The treat by others event is mapped to a set

of resource assignment events associated with md1 and md2. Similarly, users can bind RN

resource objects to verify the same RN property.

5.3.5 Reachability Analysis for Resource Utilization

Even though property FSM verifications using FLAVERS is applicable to verify a variety

kinds of resource related properties, system analysts require additional analyses to achieve

sound resource utilization which are free from resource leaks, resource deadlocks, and

conflicts between policies of resource utilization. FLAVERS uses the state propagation

algorithm to verify a property FSM with a TFG and a set of constraint FSMs. For instance,

while FLAVERS propagates states, a trace that causes a resource deadlock is deleted

from analysis searching space because the trace violates the resource capacity constraints.

To be specific, if both two concurrent activities, A and B, require two resource objects,

r0 and r1, this system has a resource deadlock problem assuming both r0 and r1 are
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/ED//InsideED[1] 

/ED//InsideED[1]//* 

Figure 5.22. Overall ED process structure of Little-JIL and XPath expressions.

allowed to be assigned once at most. For example, if r0 resource object is assigned

to A activity and r1 resource object is assigned to B activity, A waits to acquire r1 and

B waits to acquire r0. While FLAVERS analyzes the system, for instance, all traces

after assign r0 to A→ assign r1 to B are deleted because they violates the resource

capacity constraints. Therefore, the problem traces are not captured at the end of state

propagation when FLAVERS tests the property satisfaction. I utilize a node-tuple graph of

FLAVERS to facilitate reachability analysis for the verification of the soundness of resource

utilization: free from resource leaks, resource deadlocks, and conflicts between policies.

FLAVERS/Little-JIL generates a node-tuple graph for purposes of detailed examination

of analysis. A node-tuple graph is a representation of how FLAVERS propagates states asso-

ciated with a property FSM and constraint FSMS while traversing a given TFG. Therefore,

the node-tuple graph presents all the possible state changes of a system. Each vertex in the

graph represents a unique state combination in a property FSM, a set of constraint FSMs,
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request r0 for B 
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Figure 5.23. A node-tuple graph example: each vertex is associated with a unique state
combination in a property FSM, a set of constraint FSMs, and a TFG node. Edges represent
feasible state transitions.

and a TFG node. Edges in the graph represent feasible state transitions. Given the node-tuple

graph, I associate resource events with relevant vertices in the graph. Given the association,

I provide a reachability analysis for a pair (e1,e2) of two resource events representing e1

must be followed by e2. Resource leaks can be analyzed by using a pair of allocation and

release events. For instance, if the md0 resource object is assigned to the activity MDCkCT,

the release event of md0 from MDCkCT must be followed. Resource deadlocks and conflicts

between policies can be found by a pair of resource request and allocation events because

both problems cause failures in resource allocation after requesting resources.

Figure 5.23 shows an example of a node-tuple graph. The trace to L vertex in Figure 5.23

is not reached to the end node of the node-tuple graph. This means that all the following

states from the L state is infeasible. This kind of partially feasible trace is captured in a node-

tuple graph that allows the analysis of problematic resource utilization. As can be seen in
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Figure 5.23, all the resource request events are not followed by related resource assignment

events (see request r1 for A is not followed by assign r1 to A). The problem trace

can occur for various reasons such as resource deadlocks or conflict between policies. A

counterexample trace that violates the matching between request and assign events helps

users figure out the reason for the problem trace.
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CHAPTER 6

EVALUATION

I evaluate my framework of resource utilization policy specification and analysis through

a case study applying the framework to a patient care system in a hospital ED. The evaluation

aims to test the following main hypothesis:

Main hypothesis: Separated resource utilization policy concerns in the specification

and analysis framework helps design sound resource management decisions in human-

intensive systems.

This main hypothesis of my framework will be tested through several decomposed

secondary hypotheses (described in the remaining sections) related to specification, process-

and resource-aware discrete-event simulation and process- and resource-aware finite state

verification. My evaluations show feasibility and effectiveness of my framework of resource

utilization policy specification and analysis.

6.1 Resource Modeling
Secondary hypothesis 1: Separation of resource utilization policy concerns allows

specifying complex resource management constraints in a manageable manner.

A real-world hospital ED governs diverse and complex resource utilization policies to

achieve high quality patient care. Therefore, proper specification of the hospital resource

utilization policies is essential to reflect important real-world resource utilization policies.

In addition, flexible changes in resource utilization policies by simple modification of

specifications are required to expedite the evaluation of the effects of diverse alternatives of
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resource utilization policies. Through my evaluations, I test the above secondary hypothesis

through qualitative comparisons with other approaches. In addition, Section 6.2 also

demonstrates the flexibility of my resource modeling approach through the evaluations of

various staffing options.

6.1.1 Patient Care Model Comparison

Patient care processes in a hospital ED have been widely studied by using analytical

approaches [13, 23, 35]. Many analytical approaches address scheduling problems in a

hospital ED. Green et al. [23] develop a method to create staffing with the consideration of

varying patient arrival rates, focusing on the lag between patient arrival and start of treatment

by using queuing models. Cochran et al. [13] provide a method for the capacity planning

of beds and staff resources. Li et al. [35] develop an analytical framework and suggest

redistributing resources to mitigate bottlenecks. These analytical approaches are attractive

because of closed form expressions can be relatively easy to calculate; however, most of

these studies simplify ED care processes considerably without incorporating key hospital

resource utilization policies such as the same doctor policy.

To compensate the limitations of creating reasonably complete and detailed analytical

models, discrete-event simulations are widely used to analyze the patient care processes [8,

69, 76]. Wang et al. [69] use a simulation model to identify potential changes to reduce

patients’ length of stay such as combining registration with triage, adding float nurses, and

so on. Zeng et al. [76] use a simulation model to study the ED of a community hospital

and suggest that a team nursing policy can significantly improve ED efficiency. Brenner

et al. [8] use simulations to identify bottlenecks and investigate the optimal numbers of

staff and equipment resources. In contrast to my work, these simulations still oversimplify

hospital resource utilization policies. For instance, none of these simulation studies include

the handoff policy.
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(b) With Handoff

Figure 6.1. Partial patient care process model by using Arena which incorporates six MDs
working in three separate 8-hour shifts. (a) The shift and same doctor policies are included.
(b) The shift, same doctor, and handoff policies are included.

Arena discrete-event simulation tool [54] is widely used to study patient care processes

in a hospital ED [3, 6, 20]. Figure 6.1 presents how the handoff policy increases complexity

in a patient care model using Arena. I built the model based on advice from a professor who

teaches Arena in his class and referenced an ED model in [6]. Arena uses a resource module

to specify resources in a system. Resources can be grouped together as a set of resources

(see {md0,md1, md2, md3, md4, md5} in Figure 6.1). These resources are allocated and

released by using process modules (rectangular box in Figure 6.1). At first, to support

the same doctor policy, for instance, I use an attribute named r associated with a patient
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arrival in Figure 6.1(a). Assess activity is performed by a resource r which is one of the six

resources. To enforce the Treat activity to be performed by the same doctor who performs

the Assess activity, I specifically allocate the r resource to perform the Treat activity.

Second, I use a schedule module to specify the shift policy. A resource has a capacity which

determines the number of resource units. The capacity can be varied over a simulation run

by using a schedule module. A schedule module adjusts the capacity of a resource for a

given period of time. By using a schedule model, I can specify three separate shifts for each

resource (for instance, md0 and md1 work from 0 to 8 hours, md2 and md3 work from 8 to 16

hours, and md4 and md5 work from 16 to 24 hours a day). However, if availability depends

on the resource’s own characteristics, the resource model of Arena seems unsuitable to

specify this dependency because the resource module hasn’t been abstracted to characterize

a resource in general. For example, a doctor working in the fast-track cannot care for a

patient in the main-track. In addition, if the doctor moves to the main-track to help resolve a

crowded condition in the main-track, the doctor then becomes available to care for patients

only in the main-track. Last, Arena has difficulties specifying a conflict resolution among

multiple resource utilization policies. As can be seen in Figure 6.1(b), handoff logic is

embedded in the process model. For instance, when a patient arrives at 7.9 time (t ∈ [0,8)),

Assess1 is performed and r associated with a patient arrival is used to enforce the same

doctor policy. After Assess1, if the time becomes 8.1, the patient treated by r resource

must be handed over to another doctor. Then, Treat2 is executed to handle this handoff. In

addition, Arena supports schedule policies by adjusting patient queues that are associated

with each process module; however, if an administrator wants to change the constraints

from sickest-first to heuristic-based, entire patient queues have to be changed to support this

single change.

Many other simulation tools are used to study patient care processes such as SAS Simu-

lation Studio [56], SimEvents/Matlab [40], FlexSim [22], Simio [60], and ProModel [49].

In general, these simulation systems specify a resource as stationary or mobile resources
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which are embedded in their process model. None of these simulation systems abstract

out resource management concerns which facilitates flexible support of complex resource

utilization policies as I did.

Static analysis techniques are also widely used in many application domains. However, to

the best of my knowledge, none of this previous work has been applied to study patient care

processes in a hospital ED. Li et al. [34] provide a resource constraints analysis approach for

process specifications. They classify resources into two types: shared and private resources.

They detect a potential resource contention by using resource dependency and reachability

information. Wang et al. [68] introduce resource-constrained process model as well as a

resource capacity analysis approach. They formally define resources and their participation

such as resource consumption for starting a task and resource production after executing a

task. In contrast to my approach, these previous studies have difficulties in specifying and

analyzing complex resource utilization policies. These prior static analyses have focused on

only a specific resource utilization problem such as resource contention and capacity limits

based on relatively simplified resource models.

6.2 Process- and Resource-Aware Discrete-Event Simulation

Secondary hypothesis 2: A separated resource management component enables anal-

yses of detailed behaviors of resource participants.

Resource utilization policies are related to other components of a system such as activi-

ties, artifacts, resources and even other resource utilization policies. Therefore, even small

changes in a resource utilization policy may greatly influence executions of the entire system.

Because of the influence of a resource utilization policy, domain experts require sufficient

information to make an efficient and effective resource utilization policy. My evaluations test

whether the detailed simulation traces of resource utilization provides sufficient information

to answer my domain expert’s questions.
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This section describes how I used my simulation-based scheduling approach to study

the effects of different staffing levels and policies on the operational characteristics of my

example ED. For this work, I used the process model presented in Chapter 4, and the

resource specifications presented in Chapter 3. The ED model includes 2 triage nurses, 5

clerks, 48 beds, 2 x-ray rooms and 4 CT rooms. This ED resource distribution was based

on Baystate Medical Center data. I executed enough simulation replications to obtain 95%

confidence intervals and a half-width within 2% of the mean of staff utilizations. For each

replication, I simulated 72 hours of ED operations, using only the output of the middle

24-hours in my analysis to ensure that each replication had adequate amounts of warm-up

and wind-down times, but that these times did not influence my mean estimates. I used

Amazon EC2 to create a virtual server (c4.8xlarge type) to run my simulations. The server

instance took about 41 minutes for 100 simulation replications.

In these simulations I measured utilization rates for MDs and RNs, the average patient

LoS, the ED contribution margin, and the impact of staff shift scheduling on the number

of patient handoffs. I defined LoS as the time from a patient’s arrival to departure, and ED

contribution margin as the total revenue (using Medicare reimbursement levels) derived

from treating all patients in the simulated 24-hour period minus costs for staffing, supplies,

and medications.

I begin by presenting results of the staffing demands algorithm, which yields the number

of MDs and RNs needed in each hour of the day to ensure that utilization falls in a pre-

specified range. I tested this algorithm for various combinations of MD and RN utilization

levels suggested by my domain expert. Figure 6.2 shows some example results where I have

assumed that staffing levels can change every hour as needed, allowing shifts to be as short

as one hour, but assuring that the number of MDs and RNs is equal exactly to the results

produced by the staffing demands algorithm.

Figure 6.3 compares LoS for a number of different combinations of staff utilization

levels. The figure uses a gray band to indicate average LoS that lies between 130%-140% of
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Figure 6.2. MD and RN staffing demands curves using the staffing demands algorithm in
Figure 4.5. For example, (a) is MD and RN staffing demands curves when MD’s and RN’s
lower and upper utilization limits are set as 50% and 60%, respectively. I omitted other
combinations of resource utilization ranges for exposition.

the minimum possible value (116 minutes). The average LoS range as determined by my

domain expert’s expertise is used as an objective for staff scheduling. I define the minimum

average LoS based on ignoring all wait times caused by resource contention problems (i.e.,

assuming infinite supply of resources). The calculation of the minimum average LoS is

straightforward by using the static process structure and steps’ execution times of my ED

model. The Figure shows that four staffing solutions, MD(50%–60%) RN(70%–80%),

MD(60%–70%) RN(70%–80%), MD(70%–80%) RN(50%–60%), and MD(70%–80%)

RN(60%–70%), satisfy that LoS objective. Among them, MD(70%–80%) RN(60%–70%)

staffing maximizes the contribution margin at 55,113 USD/day.

6.2.1 Impact of Shift Length and Overlap

To consider the impact of shift length and overlap, I ran simulations that allowed RN

shift lengths to be 6, 8 or 12 hours, and compared the effect of prohibiting shifts to overlap

(i.e. start and stop at the same time) to the case where overlap is allowed. Figure 6.4

shows RN staffing solutions output from the ILP-based staffing algorithm in Section 4.3.1.2,

compared to results generated by the staffing demands algorithm. Note that the results
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Figure 6.3. Simulation results of patient’s LoS, contribution margin according to each
utilization boundary. LoS Requirements is the LoS objective,so that four staffing, MD(50-
60) RN(70-80), MD(60-70) RN(70-80), MD(70-80) RN(50-60) and MD(70-80) RN(60-70)
satisfy it.

produced by the ILP for a given shift length and overlap constraint are always equal to or

higher than the staffing demands curve.

Figure 6.4(a) and Figure 6.4(c) show that 12-hour shift lengths cannot cover staffing

demands as closely as 8-hour shift lengths, and comparing Figure 6.4(c) to Figure 6.4(a),

shows that overlapping shifts cover the staffing demands curves more closely than non-

overlapping shifts. Figure 6.4(d) shows that staffing with overlapped shifts of 6, 8 or 12-hour

lengths (flexible staffing) is almost indistinguishable from the staffing demands curve itself.

Figure 6.5 shows that average LoS for the different shift length and overlap combinations

does not differ significantly, although Figure 6.5 shows staffing based on 12-hour shift

lengths, with or without overlapped shifts, creates shorter LoS than 6-hour and 8-hour

staffing. This makes intuitive sense because 12-hour shifts allow more RNs to be scheduled

in more hours (see Figure 6.4(c) and Figure 6.4(a)), reducing RN contention and thus
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(b) 8-hour shift length, no-overlap
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(c) 12-hour shift length, overlap
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(d) 6/8/12-hour shift length, overlap

Figure 6.4. ILP solutions of various RN staffing patterns: (a) and (C) 12-hour shifts
disallowing and allowing shift overlap, respectively; (b) 8-hour shift disallowing shift
overlap; and (d) allowing for combinations of overlapping 6-, 8-, and 12-hour shifts. Staff
salaries (USD/day): (a) 27,720, (b) 24,640, (c) 27,060 and (d) 21,560. I omitted other
combinations such as 6-hour shifts allowing and disallowing shift overlap for exposition.

reducing patient waiting time. In general, staffing without overlap creates lower LoS than

staffing with overlap. Comparing 1-hour and flexible staffing options in Figure 6.5, flexible

staffing results in longer LoS than 1-hour staffing. This long LoS is caused by the same MD

and RN: the patient will more frequently have to wait to be attended by the same MD and

RN.

Figure 6.6 compares the number of handoffs among various staffing options. Shorter

shifts (especially one-hour shifts) necessitate more handoffs, which should be minimized,

as my domain expert believes they lead to increased errors. Indeed, Figure 6.6 shows that
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Figure 6.6. Number of handoffs comparison among various staffing

longer shifts result in fewer handoffs and that 1-hour staffing produces a larger number of

RN handoffs than all other staffing options.

Finally, Figure 6.7 shows mean RN utilization for all the staffing options. It shows that,

because overlapped staffing is closer to the staffing demands curve than staffing without

overlap, overlapping leads to higher utilization. In addition, 6-hour and 8-hour staffing
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Figure 6.7. Utilization comparison among various staffing

show subtle differences in utilization, but 12-hour staffing shows lower utilization both for

overlapping and non-overlapped staffing.

6.2.2 Comparison with Baystate Staffing Schedule

Figure 6.8 depicts RN staffing data for Baystate Medical Center (RN(BMC)), while

RN(50-60), RN(60-70) and RN(70-80) represent the RN staffing results obtained from

my scheduling studies. Figure 6.8 compares LoS and contribution margin. As can be seen,

when I set the utilization range to 70% - 80% RN(70-80), the simulation results obtained

are similar to RN(BMC) staffing. Note also that the simulations designed to assure lower staff

utilization levels provide interesting contrasts. For example, LoS is 20 minutes lower in

RN(50-60) but so is the contribution margin.

Figure 6.9, comparing average RN utilizations for a 24-hour day, and their standard

deviations, shows that the variation in RN utilization levels is much lower in staffing results

generated by my approach, and also for the RN(70-80) case, which has approximately the

same average as RN(BMC).

Figure 6.10 provides insight into why RN(BMC) has higher utilization variation compared

to RN(70-80), showing that RNs are underutilized in the less busy hours of the night, but

are overutilized in the busy hours of the afternoon. Higher utilization in these busy hours

implies increased LoS, while low utilization during less busy hours implies that personnel
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Figure 6.8. Patient’s LoS and contribution margin comparison: RN(BMC) RN staffing of
Baystate Medical Center, RN(50–60) RN staffing derived by utilization limits 50%–60%,
RN(60–70) RN staffing derived by utilization limits 60%–70%, and RN(70–80) RN staffing
derived by utilization limits 70%–80%

costs are being wasted. However, as can be seen in Figure 6.10, my scheduling approach

creates the improved RN staffing from the perspective of balancing the level of resource

utilization over 24-hour period. The balanced resource utilization is one of the important

goals in hospital resource management which leads to keeping the same quality of patient

care over 24-hour period while optimizing resource utilization.

6.3 Process- and Resource-Aware Model Checking

Secondary hypothesis 3: Formal resource policy specifications allow verifying re-

source properties.

My process- and resource-aware discrete-event simulation provides detailed trace in-

formation about resource utilization to dynamically analyze different resource utilization

policies. However, this dynamic analysis is valid only when the simulations of resource
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Figure 6.9. Utilization comparison: RN(BMC) RN staffing of Baystate Medical Center,
RN(50–60) RN staffing derived by utilization limits 50%–60%, RN(60–70) RN staffing
derived by utilization limits 60%–70%, and RN(70–80) RN staffing derived by utilization
limits 70%–80%

utilization always adhere to the intended resource utilization policies. Therefore, I test the

above secondary hypothesis to show that the formality of my specification enables analysts

to verify resource properties such as the absence of violations of resource utilization policies

and the absence of deadlock.

Given the entire ED specifications in Chapter 4, this chapter demonstrates how my static

analysis approach verifies the adherence to policies/constraints such as the same doctor

policy, shift policy, and capacity constraints in Section 6.3.1; and finds conflict among

policies or detects a resource deadlock in Section 5.3.5. Last, Section 6.3.3 shows scalability

characteristics of my approach.

6.3.1 Verification of Adherence to Resource Utilization Policy

First, I verified whether the specified patient care processes in an ED satisfy the same

doctor property or not. For this verification, I used three doctors (md0, md1, and md2 all
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Figure 6.10. Utilization comparison over 24 hours a day: RN Utilization(BMC) RN
utilization of Baystate Medical Center, RN Utilization(70-80) RN utilization derived by
utilization limits 70%–80%

working on the same shift) , one patient, and including only the same doctor policy. Even

though I include only one patient in this verification setting, there are still many possible

cases that can violate the same doctor property such as faults in the specified policies. Given

the same staff property in Figure 5.20, I bound events in the property FSM to concrete

resource utilization events as presented in Figure 5.21. My verification reports that the ED

model always adheres to the same doctor policy.

Second, I verified the adherence to the shift policy in my ED model. To verify the

adherence, I specified the shift property FSM as presented in Figure 6.11. My approach

of using FLAVERS and Little-JIL does not support continuous times. To verify the shift

property which requires time information, I added a timer process into my patient care

processes which generates three discrete time events: time 0, time 8, and time 16.

Figure 6.12 shows a timer process specifying the time progress of (0→ 8→ 16→

0→ . . .). As can be seen in Figure 6.12, the timer process is parallel with the patient care
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8 16 assign 0, 
time 0 

time 8 time 16 

assign 8, 
time 8 

assign 16, 
time 16 

time 0 

assign 8, 
assign 16, 
time 16, 

assign 0, 
assign 16, 
time 0, assign 0, 

assign 8, 
time 8, 

Figure 6.11. This property FSM encodes the shift property assuming there are three discrete
time events: time 0, time 8, and time 16.

Figure 6.12. Timer process that generates three discrete time events: time 0, time 8, and
time 16.

processes. This parallel structure allows all possible interleaving executions between the

time progress and sequences of patient care activities. Time events of the shift property FSM

in Figure 6.11 are bound to the associated start events of Time leaf activities in Figure 6.12.

To verify the shift property, I used three MD resource objects: md0, md1, and md2 where

md0 works [0,8) times, md1 works [8,16) times, and md2 works [16,24) times. Thus, as can

be seen in Figure 6.13, assign 0 event, resource assignments at 0 time, is bound to all

resource utilization events of the md0’s assignments to any patient care activities (see //* in

Figure 6.13). Similarly, I mapped assign 8 and assign 16 events to concrete resource
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Event name Resource event binding

assign 0 assign(md0, //*)
assign 8 assign(md1, //*)
assign 16 assign(md2, //*)

Figure 6.13. An example of resource event binding for the shift property assuming three
MD resource objects (md0, md1, and md2). The event names are declared in Figure 6.11.

3 2 violation 1 0 

reserve reserve reserve 

release 
reserved 

reserve 

release reserved 

release 
reserved 

release 
reserved 

(a) Reservation capacity property FSM

1 0 violation 

release assigned 

release assigned 

assign 

assign 

(b) Assignment capacity property FSM

Figure 6.14. Doctor’s capacity property FSMs. (a) A doctor can be reserved for three
patients at most. (b) A doctor can care for one patient at the same time.

utilization events. This verification study includes only the shift policy. Based on the shift

verification, I can assure that my ED model always adheres to the shift policy.

Last, I verified my ED model to see whether it always adheres to the capacity constraints.

Since I decompose an allocation into a reservation and assignment, the resource capacity

properties can be specified by using reservation and assignment events as can be seen in

Figure 6.14. Given the event binding in Figure 6.15, Figure 6.14(a) states that a doctor

must not be reserved for more than three patients. Figure 6.14(b) represents that a doctor is
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Event name Resource event binding

reserve reserve(md0, //*)
assign assign(md0, //*)
release reserved release reserved(md0, //*)
release assigned release assigned(md0, //*)

Figure 6.15. An example of resource event binding for the capacity property of an resource
object (md0). The event names are declared in Figure 6.14.

allowed to care for only one patient at a time. For the verification of the two properties, I

did not include other policies and I separately verified each patient care process of different

patient acuity level (i.e., acuity level 1, 2, 3, 4, 5, and critical patient care processes) due to

the scalability issues described in Section 6.3.3. For instance, I verified the acuity level 1

patient care process with four patient arrivals and 1 doctor resource object. This verification

reported that the two properties hold.

As can be seen in this section, my approach allows analysts to select which policies to

include in verification. This policy selection capability enables identifying which policies

create a conflict condition while enforcing them together (see Section 6.3.2). In addition, the

policy selection facilitates incremental verifications of resource utilization policies. However,

even though the above verifications demonstrate the feasibility of verifying adherence to

resource utilization policy, their verification settings related to patients, doctors, other

resources, and patient care processes are simpler than the simulation settings because of the

scalability issues (see Section 6.3.3). The scalability issues require further research.

6.3.2 Reachability Analysis

As described in Section 5.3.5, the existing FLAVERS is not able to detect the conflict

problem between multiple policies. For instance, even if I include the shift and same

doctor policies in my ED model, both the shift and same doctor properties still hold when

using FLAVERS because the problem traces are deleted by a set of constraint FSMs. This
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Counter example (resource utilization):
(time 0) →
...→
(request assign MD from assess) →
(assign md0 to assess) →
(request assign from procedure) →
(assign md0 to procedure) →
...→
(time 8) →
(request assign from check CT)

Figure 6.16. A counterexample violates that a request assign event must be followed by
an associated assign event.

section shows my evaluation results that demonstrate how my reachability analysis detects a

problem trace that happens while enforcing multiple policies such as the same doctor and

shift policies. In addition, this section demonstrates my deadlock analysis results.

First, given the ED model with the timer process in Figure 6.12, this reachability analysis

study includes one patient and three doctor resource objects: md0, md1, and md2. md0 works

on [0,8)] time period, md1 works on [8,16) time period, and md2 works on [16,24) time

period. In this example, I include only the same doctor and shift policies. After running

my reachability analysis to verify that all request events must be followed by associated

allocation events, a counterexample in Figure 6.16 is generated. Figure 6.16 shows a

counterexample trace that is paused after time 8 due to the conflict between the shift and

same doctor policies. As can be seen in the counterexample, md0 working on [0,8) time

period cares for a patient until time 8. After time 8, however, md0 is not able to care for

the patient because of the shift policy. Even though md1 working during the [8,16) time

period can handle the patient, care by md1 violates the same doctor policy.

Second, the above verification proves that there is a conflict between the same doctor and

shift policies. To resolve this conflict, I include the handoff policy described in Section 3.3.

After this modification, the verification results show that there are no conflicts; however,
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shift start 

shift end, 
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Figure 6.17. This same staff property represents a medical provider can care for a patient
only during the medical provider’s shift hours.

Event name Resource event binding

assign assign(md0, //*)
assign others assign(md1, //*), assign(md2, //*)

Figure 6.18. An example of resource event binding for the same staff property in Fig-
ure 6.17.

the same doctor property in Figure 5.20 is violated. This violation is caused by the handoff

policy that allows a situation in which a patient can be cared for by other doctors. I edit the

same doctor property by using shift restriction as presented in Figure 6.17, resource event

bindings in Figure 6.18. shift start and shift end events in Figure 6.17 is bound to

start events of time0 and time8 activities in Figure 6.12. Given this verification setting,

my verification results show that the same doctor and shift properties hold without having a

conflict between the same doctor and shift policies.

Last, based on this reachability analysis, I could find a resource deadlock trace in my

initial version of ED model. When I verified the critical patient care process in my ED model

with two patients, one doctor, and one nurse, a counterexample in Figure 6.19 is generated.

The counterexample trace is stopped after assigning md0 to prepare patient activity to

care for patient 1 and rn0 to prepare patient activity to care for patient 2. Resource

deadlock process in Figure 6.20 is a part of my critical care process which models the
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Counter example (resource utilization):
...→
(request assign MD from prepare patient[1]) →
(request assign RN from prepare patient[1]) →
(assign md0 to prepare patient[1]) →
(request assign MD from prepare patient[2]) →
(request assign RN from prepare patient[2]) →
(assign rn0 to prepare patient[2])

Figure 6.19. A resource deadlock trace in the critical patient care process in my ED model.

Resource deadlock No resource deadlock 

Note: PreparePatient requires md0 and rn0 

Note:  
    MDPrepare requires md0 
    RNPrepare requires rn0 

Figure 6.20. Two process specification having a resource deadlock problem and not having
the problem.

preparation of a doctor and nurse for an arriving critical patient. Based on my domain

expert’s guide, I assume a critical patient is arriving by ambulance. While the patient is in

the ambulance, a doctor and nurse are preparing for the arrival (see PreparePatient activity

requires md0 and rn0). In this verification setting, if two patients arrive at the same time,

two PreparePatient activities for each patient can be blocked from waiting to acquire

resources which are held by each other as can be seen in the counterexample. This resource

deadlock problem is unlikely to happen in my simulations because critical patient arrivals

rarely happen in my ED model and the modeled ED has always sufficient doctors and nurses
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to care for multiple critical patients. However, this resource deadlock problem can still occur

and if so, can influence the simulation results. To avoid the resource deadlock problem,

I decomposed PreparePatient activity into MDPrepare and RNPrepare activities where

each activity requires md0 and rn0, respectively. This modification eliminates the resource

deadlock problem because it does not create a condition of circular resource waiting among

multiple activities. Each of MDPrepare and RNPrepare requires only one resource object to

be executed.

6.3.3 Scalability Characteristics

To test the scalability of my static analysis approach, my verification evaluations were

run on an Amazon EC2 server (c3.8xlarge) with 34 virtual CPUs (2.5GHz) and 60GB

memory. Given the ED model, I ran various verification scenarios by changing the combina-

tions of policies, capacity constraints, the number of patients, and the number of resource

objects/types. Among the verification results, this section includes some experiments that

show the scalability characteristics of my approach. In this section, AL1, AL3, and AL4

stand for the patient care process to care for acuity level 1, 3, and 4 patients, respectively.

Critial stands for the patient care process to care for critical patients. All stands for the

entire patient care processes to care for acuity level 1,2,3,4,5, and critical patients. For the

scalability study, I terminated a verification run if it required more than 2 hours.

Figure 6.22 compares how many patients can be included in a verification setting to

verify each within 2 hours. No policies verification results came from verifications

without any policies. Same MD policy results are derived from verifications including only

the same MD policy. Shift policy verifications were run by including only the shift

policy. Same MD and Shift policies include both the same MD and shift policies in the

verifications. In this example, I included 2 doctor resource objects, did not include capacity

constraint FSMs, and verified the ED completion property in Figure 6.21. As can be seen in

Figure 6.22, there are subtle differences between No policies verifications and Same MD
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Figure 6.21. This property FSM represents a patient care process must be completed once
started. started event is bound to the started event of the root activity of my ED activity
model. completed event is bound to the completed event of the root activity of my ED
activity model.
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Figure 6.22. Comparison of how many patients can be included in analysis settings which
vary the combination of policies.

policy verifications. However, adding Shift policy significantly worsens the scalability

of handling multiple patients. However, interestingly, adding both Same MD and Shift

policies yields better results of the scalability than only including Shift policy. As can

be seen in Figure 6.23, the TFG size of the Same MD and Shift policies is smaller than

the Shift MD policy. In addition the verification of the Same MD and Shift policies

took 6 minutes which is shorter than the verification time of the Shift policy case, 19.8

minutes. Same MD policy creates dependency between resource allocations to allocate the

same doctor resource object to care for a patient. This dependency provides a better chance

for FLAVERS optimization.
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  No policies Same MD policy ShiftMD policy Same MD and Shift policies 

# TFG nodes 304 446 1045 851 

# TFG edges 12226 41181 124633 43838 

# Tasks 21 21 21 21 

# Constraint FSMs (CFSMs) 47 51 48 52 

Mean # of States in CFSMs 9 11 25 19 

Mean # of Transitions in CFSMs 41 58 200 174 

Figure 6.23. Comparison of the sizes of analysis problems associated with verifications
with all processes in Figure 6.22.

  ED completion property Shift property 

# TFG nodes 1045 1217 
# TFG edges 124633 124761 
# Tasks 21 21 
# Constraint FSMs (CFSMs) 48 48 
Mean # of States in CFSMs 25 28 
Mean # of Transitions in CFSMs 200 211 

Figure 6.24. Comparison of the sizes of analysis problems by only changing property
FSMs.

Figure 6.24 compares analysis problem sizes between two verification settings that vary

property FSMs (ED completion property and Shift property). For this verification

comparison, I used 2 doctor resource objects and 2 patients with all patient care processes

and only the shift policy (no capacity FSMs). As can be seen in Figure 6.24, there are subtle

differences between the two cases. Therefore, verification times for the two cases are also

similar: 19.8 minutes (ED completion property) and 20 minutes (Shift property).

I found similar results when I compared the verification of ED completion property

with the verification of Same MD property. The similarity in these sizes of the analysis

problems is caused by a resource utilization policy already adding associated resource

utilization complexities such as resource events and constraint FSMs to the analysis problem.

Therefore, verifying a resource property does not significantly worsen scalability.

Figure 6.25 compares the number of patients which can be verified within the 2 hours

verification time limit by configuring capacity constraint FSMs and policies. For this

comparison, I verified the ED completion property with 2 doctor resource objects. As can

be seen in Figure 6.25, adding capacity constraint FSMs worsens the scalability of handling

multiple patients significantly. Capacity constraint FSMs include all resource allocation and
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Figure 6.25. Comparison of how many patients can be included in analysis settings which
vary capacity constraint FSMs and policies.

  Same MD and Shift policies + Handoff policy 

# TFG nodes 775 2239 
# TFG edges 5448 7636 
# Tasks 11 11 
# Constraint FSMs (CFSMs) 30 30 
Mean # of States in CFSMs 29 78 
Mean # of Transitions in CFSMs 296 457 

Figure 6.26. Comparison of the sizes of analysis problems by changing only handoff policy.

release events which influence increasing the size of a TFG to encode all the resource events.

After adding capacity constraint FSMs, additional policies do not influence scalability.

Figure 6.26 compares two analysis problem sizes between the *without* (Same MD,

Shift, and Capacity) and *with* handoff policy (Same MD, Shift, Capacity, and Handoff).

To compare this case, I verified the ED completion property based on 2 doctor resource

objects and 1 patient with all patient care processes and capacity constraint FSMs. As can

be seen in Figure 6.26, + Handoff policy increases the TFG size significantly because

a conflict resolution policy creates additional control flows in a BIR program which is

translated to a TFG (see Section 5.2.2).

Figure 6.27 shows the verification results by changing only the number of doctor resource

objects. To test the scalability of varying the number of resource objects, I verified the ED

completion property by using 1 patient with all patient care processes, all policies (shift,
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Figure 6.27. Verification results by changing the number of doctor resource objects. (a) com-
pares the number of TFG nodes. (b) compares the elapsed verification times.

  2 MDs, 0 RNs 0 MDs, 2 RNs 2 MDs, 2 RNs 

# TFG nodes 2255 2471 4784 
# TFG edges 7624 5215 15378 
# Tasks 11 11 11 
# Constraint FSMs (CFSMs) 30 30 34 
Mean # of States in CFSMs 79 86 144 
Mean # of Transitions in CFSMs 459 482 679 

Figure 6.28. Comparison of the sizes of analysis problems by changing the combinations
of including different resource types.

same MD, and handoff), and resource capacity constraints. As can be seen in Figure 6.27, the

number of TFG nodes increase linearly as the number of doctor resource object increases. As

can be seen in Section 5.3.2, TFG size depends on the number of resource objects. Similarly,

the number of constraint FSMs increases linearly. However, the verification time increases

exponentially because the verification time of FLAVERS is dependent exponentially on the

number of constraint FSMs.

Figure 6.28 shows the impacts of three resource configurations on the sizes of the analysis

problems: 2 MDs, 0 RNs, 0 MDs, 2 RNs, and 2 MDs, 2 RNs. For the comparison, I

verified the ED completion property with 1 patient, all patient care processes, all policies

(shift, same MD-RN, and handoff), and capacity constraints. As can be seen in Figure 6.28,

the TFG size of 2 MDs, 2 RNs is approximately similar to the sum of the TFG sizes of 2
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MDs, 0 RNs and 0 MDs, 2 RNs. In addition, Figure 6.28 shows that the number of tasks

does not depends on the number of resource objects.
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CHAPTER 7

RELATED WORK

Sound resource management is a very important but hard problem. Resource man-

agement problems have been widely studied in many kinds of systems such as healthcare

systems, operating systems, cloud systems and so on. This chapter describes prior works

that are closely relevant to my proposed research.

7.1 Modeling

Related to my model-based approach, there are many studies to specify various dimen-

sions of systems. In this section, I present prior work by focusing on how their approaches

describe resources. Based on my investigations, most of this prior work has difficulty in

specifying complex resource concerns such as resource utilization policies in a flexible man-

ner. However, my resource specification approach is capable of specifying diverse resource

characteristics, complex management constraints and conflict resolutions by separating these

resource concerns.

7.1.1 Process Modeling

Business Process Model and Notation (BPMN) [46] was developed by the Object

Management Group (OMG) to provide a single standard notation for business processes.

BPMN provides graphical notations for conceptual business processes that are intended to be

readily understandable by all business process stakeholders such as analysts, developers and

business people. This modeling approach specifies business processes through collaboration

diagrams, process diagrams and choreography diagrams. First, collaborations are defined
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by a collection of participants in pools and their interactions by message flows. Second,

a process describes a sequence of activities in an organization. Third, a choreography

formalizes interactions between participants by focusing on the exchange of information. To

specify resources, BPMN uses two basic abstractions: resource and resource class. BPMN

defines a resource as anything or anyone involved in the performance of a process activity. A

resource class defines a set of resources with shared characteristics that can be referenced by

activities. A resource class can represent either a role or a group. A role classifies resources

based on what a resource can do or is expected to do. On the other hand, a group classifies

resources by an organization’s structure. These resource classes are captured by using pools.

Therefore, a collaboration diagram represents collaborations between resources by using

message flows. A choreography defines expected behavior - a procedural business contract

between interacting resources. However, BPMN does not include resource management

issues such as resource allocation under various constraints or conflict among multiple

utilization policies.

Yet Another Workflow Language (YAWL) [65] provides a workflow specification lan-

guage based on Petri nets. YAWL extends Petri nets to support various kinds of workflow

patterns [70] such as control-flow, data, resource, exception handling and managing process

model complexity patterns. YAWL divides workflow specification into control-flow, data

and resource perspectives. Control-flow perspective defines tasks and their interaction flow

relations. Data perspective specifies how and when data values are created, passed and

populated. Resource perspective defines what human and non-human resources are required

to perform the work items in a selected task. YAWL divides resources into primary and

secondary resources. Primary resources are human resources that actually perform a work

item. However, secondary resources consist of both human and non-human resources that

assist primary resources. Related to resource decisions such as work item offers, resource

allocations and work item starts, YAWL provides two interaction strategies (decision by

system and by user) for work items of a selected task. Interaction strategies can be decided
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at three interaction points such as the offer, allocation or start. Offer by system strategy

means that a system selects a resource automatically to perform a work item. Offer by user,

however, requires an administrator to select a resource for a work item at runtime. In the

offer specification, YAWL provides constraints that specify which work items are allowed

or prevented from being performed by primary resources. At the allocation point, allocated

by system means that resources are selected by the system; however, allocated by user

allows resource participants to decide their work items by themselves. At start point, started

by system indicates work items will be immediately started after allocation. On the other

hand, started by user allows manual start of the work items by resource participants. This

approach separates resource concerns from control-flow and data perspectives. However,

the specification capabilities of resource constraints are restrictive. For instance, YAWL

does not support conflict resolution strategies among multiple resource utilization policies.

Web Services Business Process Execution Language (WS-BPEL) [44] specifies business

processes based on web services. WS-BPEL supports two kinds of specifications for

executable and abstract business processes. To support business transactions, WS-BPEL

extends the Web Services interaction model. WS-BPEL uses several XML specifications

such as WSDL, XML schema, XPath and XSLT. To define a data model, WS-BPEL specifies

the model by using WSDL messages and XML schema type definitions. XPath and XSLT

provide support for data manipulation. All business partners or external resources are

represented by using WSDL services that describe the functionality offered by a web service.

However, WS-BPEL does not include human interactions essential to business processes.

Therefore, BPEL4People [14] has been extended from WS-BPEL to incorporate role-based

human activities as well as web services. In contrast to my approach, WS-BPEL does not

provide any explicit specification to capture resource management characteristics in business

processes.
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7.1.2 Policy Modeling

Systems incorporate policies to guide behavioral decisions of participants to achieve

system goals. Many prior studies have focused on policies to implement flexible and

adaptive systems for management of internet services, distributed systems and security

systems. Damianou et al. [16] divide policy specification languages into security and

management policies. Many prior works have provided security policy (or access control

policy) languages to specify that only authorized subjects are permitted to access targets

such as services or resources [19, 24, 45, 53, 55]. Sandhu et al. [55] provide role-based

access control models (RBAC). RBAC defines users, permissions and sessions that are

related to roles. In addition, they specify role hierarchy as well as constraints to restrict the

assignments of users or permissions to specific roles. Ribeiro et al. [53] provide an event-

driven policy language that supports access control, history-based and obligation-based

policies. XACML [45] defines information access control policies for securely browsing

documents over the Internet. In contrast to these security policy specification languages,

management policy specification languages define dynamically adaptable management

strategies [9, 36, 38, 42, 62] that facilitate modifying the management approach in a flexible

manner. Moore et al. [42] define a policy core information model for network policies.

Network policy defines the relation between clients using network resources and the network

elements providing those resources. Burgess et al. [9] provide configuration policies for a

system administration tool which automates configuration of all networked hosts. However,

none of these policy specification languages aim to address resource management problems

that my proposed research is considering. Resource utilization policies are important to be

considered carefully in system design and analysis phases as well as these access control

and configuration management policies of these prior studies.

Rei [30] is a policy specification language for pervasive computing applications. The

policy language, Rei, aims to be very expressive but lightweight and easily extensible. Rei

is based on deontic concepts and provides constructs for rights, prohibitions, obligations and
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dispensations. An entity has rights of permission to perform the associated action only when

certain conditions are true. On the other hand, prohibitions are negative authorizations that

indicate an entity is not authorized to perform an associated action. Obligations are special

actions that an entity must perform when a set of conditions is true. Dispensations, however,

are special actions that an entity waives from existing obligations. To control these policies,

Rei provides four speech acts: delegation, request, cancel and revocation. Delegation allows

a transfer of a right between entities. Request defines queries for an action or a right.

Revoke acts as a prohibition by removing a right. An entity can cancel any requests by the

cancel speech act. Rei defines three cases of possible policy conflicts such as (1) conflict

of right and prohibition, (2) conflict of obligation and dispensation, and (3) conflict of

obligation and prohibition. Rei resolves these potential conflicts among multiple policies

by priority and precedence meta policies. For instance, a priority meta policy can state

that an ED policy overrides a hospital policy in the case of conflict. Precedence specifies

negative or positive modality precedence. If negative modality holds, prohibitions hold

over rights and dispensations are stronger than obligations for the entities that fulfill the

associated conditions in the precedence meta policy. My proposed resource utilization policy

specification is inspired by Rei. Resources have permissions that allow to perform an activity.

I separate conflict resolution specifications in order to resolve conflicts among multiple

resource utilization policies. However, Rei does not support any resource management

issues such as request or resource selection for effective and efficient management, complex

constraints in resource management and conflicts between multiple permissions.

7.2 Simulations

Simulation has been widely used to dynamically analyze the behavior of complex sys-

tems. This section describes prior works of simulations and their limitations from resource

management perspective. Overall, despite the large number of these previous studies, in my

view, none of them has supported the evaluation of complex resource utilization policies
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in a flexible manner because most of them treat resources as other entities in their activity

coordination models. My approach separates resource concerns to facilitate flexible support

of resource decisions.

7.2.1 Simulations Tools

Arena [54] uses a resource module to specify resources in a system. The resources can

be grouped together as a pool of resources (i.e., resource set). These resources are allocated

and released by using seize and release modules. A resource has capacity which determines

the number of resource units. The capacity can be varied over a simulation run by using a

schedule module. A schedule module adjusts the capacity of a resource for a given period of

time. Arena supports change of resource availability through variable capacity specification;

however, if the availability depends on the resource’s own characteristics, the resource model

of Arena seems unsuitable to specify this dependency. For example, a doctor working in a

fast-track cannot care for a patient in a main-track. In addition, if the doctor moves to the

main-track to help resolve a crowded condition in the main-track, the doctor then becomes

available to care for patients only in the main-track. In addition, Arena has difficulties

specifying a conflict resolution among multiple resource utilization policies, for instance,

the handoff in a hospital. Arena supports multiple schedule policies by adjusting patient

queues; however, if an administrator wants to change the constraints from the sickest-first to

a heuristic-based, entire patient queues and related patients’ attribute modifiers have to be

changed to support this.

SAS Simulation Studio [56] provides mobile resources as a special type of entity that

flow in the model. A resource entity has attributes which can be used in processing like

other entities. Because resources are a special type of entity, they have to be first created

and then sent to a resource pool block to handle resource requests. Seize and release blocks

are used to model resource allocation and release. There is a predefined entity attribute

called ResourceUnits, which defines the number of units of a resource. By using a resource
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schedule, the number of available resources can be varied during a simulation run. Attribute

values of a resource can be used to specify different characteristics of resources. However, it

is not sufficient to specify different kinds of resources that have different kinds of specialized

capabilities. For instance, a nurse can provide patient-care capabilities such as assessment,

ECG, blood work and so on. If the nurse becomes too busy to maintain high quality of

patient care, she could hand over her ECG and blood work to a technician. What’s more,

SAS Simulation Studio also has limitations in supporting complex resource utilization

policies as does Arena.

SimEvents [40] does not have resource-specific modeling modules; however, this does

not mean that resource management systems cannot be modeled by using SimEvents. Like

the approach of resource modeling in SAS Simulation Studio, an entity can be used to model

a resource. An entity generator creates a number of resource entities, and then a queue

stores the created resource entities. An entity combiner and an entity splitter can be used to

model resource allocation and release, respectively. However, the lack of resource-specific

modeling modules inherently increases the complexity of the entire system specification if

an analyst want to study the resource constraints of a system.

FlexSim [22], Simio [60], and ProModel [49] incorporate physical location information

in their models. In general, these simulation systems model a resource as stationary or mobile

resources. Stationary resources handle an arrival entity at their fixed locations; however,

mobile resources move to pick-up an entity to provide a service such as carrying an entity

to other locations. These simulation systems help us see how a system operates visually.

However, it is relatively difficult to specify resource constraints which involve inter-relations

among entities, resources and activities. For instance, the same doctor constraint in an ED

requires pairing a patient with a doctor. If the location of a patient is changed by a nurse, the

patient’s doctor should be aware of this changed location. These kinds of interactions would

significantly increase the complexity of their communication specifications.
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7.2.2 Hospital Patient Care Simulations

Related to my case study , many studies use simulations to analyze hospital resource

management [6, 15, 20, 41, 47, 61]. Wang et al. [69] use a simulation model to identify

potential changes in operational policies to reduce patients’ length of stay. They suggest

reassignment of nurse jobs, combining registration with triage, adding float nurses, manda-

tory requirement of physician’s visit within 30 min, and the simultaneous improvement of

durations of the most sensitive procedures to decrease the length of stay. Zeng et al. [76]

use a simulation model to study the ED of a community hospital. Based on their sensitivity

analysis, they suggest that adding nurses and CT scanners can reduce patient waiting times

and length of stay. They also suggest that a team nursing policy (creating pooled capacities)

can significantly improve ED efficiency. Brenner et al. [8] use simulation to identify bottle-

necks and investigate the optimal numbers of human and equipment resources. In contrast to

my work, these simulations oversimplify hospital resource utilization policies and even not

include time-varying patient arrival rates, which are particularly important to model patient

care in a hospital.

7.3 Static Analysis

My static analysis approach relies on the use of FLAVERS which is a finite state

verification tool to analyze resource utilization policies. This section presents prior static

analysis work which is related to formal verification and resource analysis. In contrast to

my static resource analysis, this previous work has difficulty analyzing complex resource

utilization policies. Encoding and analyzing complex resource utilization policies require a

lot of efforts in using prior formal verification techniques. In addition, prior static analyses

focusing on only a specific resource utilization problem such as resource contention and

capacity limits based on relatively simplified resource models.
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7.3.1 Formal Verification Tools

Formal verification techniques guarantee that system specifications are free from the

violations of a given system property. Due to the fact that the precision demanded by today’s

systems is critical; many researchers have extensively studied formal verification techniques

such as model checking [12, 26, 31] and theorem proving [11, 37, 57]. Model checking

approaches build a system model by using a form of state transition system. They define a

system property based on temporal logic. Given these system models and properties, model

checking verifies whether the system satisfies the given property in all system executions.

A basic analysis algorithm incorporates exploring a set of reachable states of models to

assure a given property holds. These model checking approaches have wide applications.

For instance, SPIN [26] model checker is used to verify a banking system [58]. On the

other hand, theorem proving techniques do not require exhaustive searching of a system’s

state space to verify properties. Various kinds of logic and proof techniques, such as Hoare

logic and inductive proof, are used in many theorem provers. Theorem proving techniques

are also widely used in many applications. For example, Coq [11] theorem prover is used

to formalize and verify a mail server (SMTP server) [1]. However, tools for these formal

verification approaches often require a great deal of user expertise and effort. Analyzing

complex resource utilization policies by using these verification approaches requires much

intensive work by analysts. To circumvent this, my proposed research provides an automated

translation algorithm from my resource specifications to describe transition systems (such as

a FSM and an event trace graph) that can be used in a model checking approach (FLAVERS).

7.3.2 Static Resource Analysis

Li et al. [34] provide a resource constraints analysis approach for workflow specifications.

They classify resources into two types: shared resources and private resources. Shared

resources can be accessed by different activities; however, private resources are allowed to be

accessed by only one activity. Given this classification of resources, Li et al. are interested in
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shared resources because these resources may create a conflict between competing activities

requiring the same shared resources. If multiple activities require the same shared resources,

Li et al. relate these activities as a resource dependency relation. Then, they define a

potential conflict in resource utilization as the simultaneous scheduling of activities in

a resource dependency relation. Their analysis aims to detect this potential conflict in

a workflow specification. They detect this conflict by using resource dependency and

reachability information. Briefly, they first check the reachability of two activities with

resource dependency. If an activity is reachable from another, they do not compete with

each other for the shared resources. Otherwise, they further check whether scheduling these

activities at the same time could result in a potential resource conflict. They extend this

potential conflict detection algorithm for timed workflow specifications. However, their

analysis capability is restricted to the resource contention problem. In addition, they do

not consider any complex constraints in resource management such as resource utilization

policies.

Wang et al. [68] introduce resource-constrained workflow model as well as a re-

source requirement analysis approach. They extend Workflows Intuitive Formal Approach

(WIFA) [67] to take resources into account when modeling and analyzing workflows. Given

the formal workflow definitions in WIFA, they formally define resources and their participa-

tion such as resource consumption for starting a task, resource production after executing

a task, and resource-ready for the required amount of resources to start a task and state

transition rules related to resources. Given a formal workflow description, they are interested

in a sufficient resource set (SRS). If an SRS is satisfied in a workflow, the workflow can

be executed without of resource shortage. To analyze an SRS, they find out the maximum

amount of each type of resources that can be held or consumed in the execution of a work-

flow by examining a workflow task-by-task from the starting task to ending task. Wang

et al. [66] improve this algorithm’s efficiency by using block or branch information in a

workflow. However, this approach analyzes resource capacity based on very simplified
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resource models. Complex resource utilization policies significantly influence resource

capacity management that aims to improve efficiency in a workflow.

Besides these resource analyses in a workflow (or process) domain, many program

analysis techniques have been developed to address resource analysis problems related to

resource utilization such as deadlock [18, 43, 71] and resource leak [29, 63, 64]. Naik et

al. [43] provide an effective static deadlock detection approach for Java. Their algorithm uses

novel combinations of static analyses to detect a set of conditions that cause a deadlock. Sui

et al. [63] introduce a static memory leak detection algorithm by using full-sparse value-flow

analysis. They use a sparse value-flow graph to capture def-use chains and value flows for

all memory locations. Given the value-flow graph, they perform reachability analysis to

detect a memory leak. However, these resource analysis techniques for software programs

depend on specific resource types and resource utilization constructors provided by specific

languages. For instance, memory leak detection approaches depend on languages such

as C or Java based on the difference between explicit memory management and garbage

collection.

Unified Modeling Language (UML) is often used to design software; however, scattered

resource information in UML diagrams increase the difficulty in analyzing resource prop-

erties. Petriu et al. [48] introduce Core Scenario Model (CSM) to bridge between UML

based software specifications and performance analysis models such as layered queuing

networks and Petri Net. CSM extracts resource use information from UML specifications

because UML specifications have scattered resource information. They categorize resources

as ExternalOperation, ProcessingResource, and Component; and model resource usage flow

by using resource acquisition and release to specify how long resources are used and what

order they follow. However, CSM does not directly address the specification and analysis

challenges inherent in complex resource utilization policies.
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7.4 Resource Management

This section presents prior work related to resource management in the area of broad

system research. In contrast to my approach, most of this resource management research

centers on strategies of resource allocation and scheduling. They have focused relatively

less on modeling diverse and complex resource characteristics and utilization policies.

7.4.1 Resource Management in Operating Systems

One of the main responsibilities of an operating system is resource management. Com-

peting applications share system resources such as processors, memory, caches, storage,

and I/O devices. These resources should be managed adequately to respond to changes in

application contexts under various constraints such as response time and power consump-

tion. Boyd-Wickizer et al. [7] provide a scheduling algorithm that maximizes utilization of

distributed on-chip memory in multicore processors. The main challenge in maximizing

on-chip memory utilization is that the memory be split up among the cores in the form of

many small caches. Their approach shows that scheduling based on scheduling objects and

operations to caches and cores, rather than scheduling to optimize CPU cycle utilization,

is better in terms of utilizing on-chip memory. Holey et al. [25] provide a novel shared

cache management policy for a heterogeneous multicore processor that takes advantage of

the CPU’s tolerance for memory access latency. Their shared cache management policy

not only improves performance but also reduces energy consumption in the cache module.

Xu et al. [75] provide automated power management approaches in OS-level for devices.

Current approaches place power management burdens on device driver developers, who have

often failed in the development of efficient power management. To address this problem,

they develop a central power management agent that automatically performs runtime power

management. Most of this research focuses on a specific resource type because system

resources’ utilization is often followed by fixed specifications of operating systems.
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7.4.2 Resource Management in Clouding Systems

Resource management in a cloud environment plays a key role in today’s Internet ser-

vices. Jennings et al. [28] categorize the subjects of a cloud resource management system by

categorizing types of resources such as compute resources, networking resources, storage

resources, and power resources. Compute resources are a collection of physical machines. In

a clouding environment, physical machines are typically hidden by virtual machines which

may share the same physical resources. Ahn et al. [2] provide two cluster-level virtual ma-

chine scheduling techniques for traditional system resources such as cache and non-uniform

memory access affinity to mitigate the contentions among them. Efficient management of

networking resources is important because these physical machines are interconnected with

a high-bandwidth network. To provide predictable latency and bandwidth in a data center

network, the virtualization of a data center network is considered a promising approach [5].

Wood et al. [73] provide optimized support for live WAN migration of virtual machines that

minimizes the cost of transferring storage and virtual machine memory during migrations

over low bandwidth and high latency Internet links. Management of storage resources is

different from traditional database systems because scalability is critical in cloud systems.

Depending on the number of users, load, or data volume, storage services should be dynami-

cally scaled. To achieve scalable storage, distributed key-value stores such as Cassandra [32]

and Dynamo [17] are used for Facebook and Amazon, respectively. To address power

management issues in cloud systems, prior work has developed energy efficient techniques

for energy-aware resource management, low power components to improve hardware energy

efficiency, more efficient cooling systems, and applications. Mathew et al. [39] provide an

energy efficient content delivery network using an algorithm for cluster shutdown based on

realistic power models. Most of this prior work has focused on non-human resources and

plays little attention to the nature of resources and their utilization policies from a general

perspective.
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CHAPTER 8

CONCLUSIONS

Contemporary systems often require effective support of many types of resources, each

governed by complex utilization policies. Efficient and effective management of these

resources is crucial in assuring that these systems achieve their key goals. To help system

developers make efficient and effective resource management decisions, I have developed a

framework of resource utilization policy specification and analysis.

8.1 Discussions

Many systems integrate various resources such as human, software, and hardware

resources necessary to perform activities in the systems. System participation by these

resources is often restricted by diverse resource utilization policies. Further, policies may

at times conflict with each other, requiring conflict resolution strategies that add extra

complexity. My resource specification approach (1) separates resource utilization policy

concerns from other system aspects, (2) creates an expressive specification notation for

utilization policies and (3) creates a policy conflict resolution capability. My approach

enables creating specifications of policies that are sufficiently precise and detailed to support

static and dynamic analyses of how these policies affect the properties of systems governed

by these policies.

I have built a process- and resource-aware discrete-event simulation engine for simu-

lating system executions that adhere to resource specifications. The engine’s evaluation

of a hospital ED healthcare system demonstrated that it supports considerable flexibility

in resource and utilization policy specification and provides powerful dynamic analyses.
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Given the simulation’s capability, I developed an approach for scheduling the staffing of

hospital EDs by integrating simulations with integer linear programming. Because staffing is

dependent on the patient-care process, interactions among resources, and other operational

constraints, I have developed detailed and precise simulation models for the ED process of

caring for patients and for the relevant resources.

My simulation research shows promising results for flexible support of diverse resource

decisions and effective dynamic analysis through process- and resource-aware discrete-event

simulations. However, the approach is inherently limited because of the impossibility of

exhaustive simulations of all scenarios. To complement the simulation approach, I have

developed process- and resource-aware static analysis approach. My static analysis approach

utilizes powerful model checking techniques, building on the existing FLAVERS model

checking tool, to verify properties of complex systems that are also verified to conform

to complex resource utilization policies. In doing this, my research demonstrates how my

analysis framework can be effective in guiding the domain expert towards sound decisions

about policies for the management of hospital resources, while also providing rigorously-

based assurances that the guidance is reliable and well-founded.

8.2 Future Work

My case study shows promise that my framework helps system developers evaluate,

validate and verify diverse and complex resource utilization policies in a hospital ED system.

Related to this case study, my ED models are continuously evolving based on newly observed

real-world data and interactions with my domain expert. Therefore, continuous validation

through close comparison between real-world data and simulations outputs are required.

Concerning verifications, I have verified the adherence to hospital policies of my ED models.

However, key functional properties in a hospital ED, that needed to be verified, should be

identified.
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Some continuations of my research may require long term research. I believe that the

following research questions also lead to very interesting research topics related to efficient

and effective resource management.

Future research question 1: How does my resource manager guarantee that it always

adhere to all the specified resource policies?

I have developed a process- and resource-aware discrete-event simulator by separating

a resource management component that adheres to my resource specifications. However,

developing software components of a resource manager may create errors that violate my

resource utilization policy specifications. Therefore, further research is required to guarantee

my resource manager always adheres to all the specified resource policies.

Future research question 2: How can analysts be guided to build resource function

properties?

A resource must sometimes follow a sequence of activities while participating in a

system. In my approach, this resource function property is satisfied by using a combination

of activity coordination and resource utilization policy specifications. Activity coordination

constrains a sequence of requests from activities. Resource utilization policies then constrain

which resources must be selected for given requests. My approach allows analysts to specify

these resource function properties by using a property FSM; however, specifying such

property specifications is often difficult for domain experts. Therefore, systematic guidance

is required to assist domain experts both identify and define resource function properties.

Future research question 3: How can resource time constraints be included in a static

analysis framework?

Static analysis of time constraints is well-known as an important but hard problem.

Some resource utilization policies are constrained by time. For example, shift policy in a
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hospital ED is directly related to the time of a day. However, FLAVERS, that I use for static

resource analysis, does not support time analysis. Therefore, further research to specify

time-enriched static analysis models and time-analysis techniques is required to analyze

time-related resource utilization policies.

Future research question 4: How do my static and dynamic analyses assure that they

follow the same semantic of my resource specifications?

I have implemented behaviors of a resource manager for dynamic and static analysis.

These two different versions of implementations are intended to follow the same semantic

of my resource specifications. The absence of a proper analysis to verify that both imple-

mentations always adhere to the same semantic of resource specifications may threaten the

validity of analysis results. Therefore, further research is required to verify the equivalence

between different implementations that adhere to the same specifications.

Future research question 5: What aspects should be included to define resources in

systems?

My research provides a specification approach to define resource characteristics through

attributes (e.g., capacity and effort-needed) and capabilities. Even though the specification

approach aims to specify diverse kinds of resources across different domains, many issues

remain to be addressed.

A system integrates diverse kinds of components often including resources. In general, a

system distinguishes resources from other components based on an intuitive understanding

about resources in the system. For instance, a resource is an entity needed to perform an

activity in a system. However, an intuitive informal definition likely leads toward limitations

in analyzing complex and dynamic resources. Identifying key aspects to precisely define

resources in complex systems is a challenging problem. My approach attempts to identify

key aspects of resources to support powerful dynamic and static analyses of resource
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utilization; however, further evaluations should follow by applying it to other complex

systems.

Resources in a system has complex relations with other system components such as

activities, artifacts and the resource themselves. My approach handles these relations from

the perspective of resource allocations. However, there are many research opportunities

investigating the relational aspect of resources. For instance, configuration of resources

varies over different phases in system operations such as build, runtime, upgrade, and

other phases. Each phase in a system may require and allow different forms of resource

configurations. Specifying and analyzing such complex resource relations present interesting

problems.

Future research question 6: What aspects should be included to define policies in

systems?

My research focuses on resource utilization policies in complex systems and provides

a resource-aware specification and analysis framework. In addition to resource utilization

policies, systems often incorporate diverse kinds of policies such as access controls, business

rules, guidelines, regulations and other policies. All these different policies influence system

behaviors by having direct or indirect relations among them. These policies also vary over

dynamic contexts such as time and a system’s environment. The complexity of policies

requires careful analyses to satisfy system requirements. However, it is hard to characterize

these policies precisely enough to support analyses.

I characterize resource utilization policies through permission constraints, schedules, and

conflict resolution policies. However, this approach should be further evaluated by applying

it to other complex systems. In addition, identifying common and various characteristics

among other kinds of policies (e.g., access control) across many systems is necessary to

understand the nature of policies which eventually allows policy analyses. Clear separation

of these policies and tractable interactions among policies and a system are required to

support policy analyses such as consistency checks, policy evaluations, and other analyses.
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Any inconsistency between policies likely creates a conflict situation in which a system

has a problem in delivering its functions as required. There are many kinds of inconsistencies

or conflicts exist among diverse policies. In addition, there are different kinds of methods to

address each conflict condition. For instance, if two different access control policies enforce

a permission and a prohibition to access the same data entity at the same time, this conflict

should be avoided before or resolved after the conflict occurs. Different kinds of policies

may also create a conflict condition. For example, a resource utilization policy allocates a

resource to an activity; however, the resource does not have the authority to access artifacts

associated with the activity. Even though my research addresses analysis issues related to

resource utilization policies, further research should follow to address the analysis issues

concerning diverse policies.

Future research question 7: What are the differences between a model and a real-

world system from the perspective of policies?

In general, there are gaps between a model and a real-world system. Modeling activity

usually abstracts out unnecessary details in the real-world based on modeling purposes,

domain experts’ expertise, observed data, and other modeling related factors. For instance,

if a hospital administrator wants to evaluate the effects of a new staffing policy by using

a simulation, what aspects should be included in a simulation model? In addition, the

evaluation of new policy is challenging because there are no oracles for the new policy.

The hospital administrator, in this example, needs some kind of supporting evidence that

the simulation results are also expected in a real-world implementation of the new policy.

The details which were abstracted out may, in fact, greatly influence the real-world system

behaviors. A systematic approach to analyze the differences helps a system developer

improve policies in complex systems.

Executions in a model and a real-world system are also different. For instance, my

analysis framework uses a discrete time clock, interleaving semantics, strict enforcement

of policies, and other semantics facilitate my simulations and model checking. However,
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a real-world human-intensive system does not exactly follow these semantics. The gap

between the different semantics may result in significantly different effects of the policies in

the two worlds. For instance, my constraint-aware scheduling approach assumes there are no

dramatic changes between discrete time blocks. However, if significantly dramatic changes

occur in a real-world system, my approach is not applicable. Developing new semantics or

providing exact differences and their consequences may bridge the semantic gap. In both

directions, my approach has to be further refined.
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