
Effects of Centralized and Distributed Version
Control on Commit Granularity

Jochen Wuttke?, Ivan Beschastnikh?, and Yuriy Brun†

?University of Washington
†University of Massachusetts

{wuttke, ivan}@cs.washington.edu, brun@cs.umass.edu

ABSTRACT
Version control systems are critical for coordinating work in large software engineering teams.
Recently, distributed version control (DVC) systems have become popular, as they have many
advantages over their centralized (CVC) counterparts. DVC allows for more frequent commits,
and simplifies branching and merging. These features encourage developers to make smaller, finer-
grained commits that do not interleave changes related to different development tasks. Such com-
mits improve accountability and ease certain tasks, such as reverting changes that later cause
problems.

DVC systems are also better suited for repository mining techniques, making available more useful
information about the development process [2]. For example, approaches that infer collaboration
patterns can benefit from the more detailed attribution of data in DVC. This can be used by
an integration server to send email about failed test cases to just the subset of developers who
authored the relevant code. DVC may also lead to smaller and more focused commits, which could
benefit mining techniques that identify changes relevant to specific development tasks, such as
refactorings [3].

However, to date, there has been no explicit evaluation of the practical differences in mining DVC
over CVC, though some work acknowledges that developers might use DVC and CVC differently [1].
We report on such an evaluation with one counterintuitive finding that raises doubts about certain
DVC promises and opens research questions into what causes DVC and CVC differences. Further,
our finding indicates that repository type should be controlled for in repository mining experiments.

BODY
In a study of six CVC and six DVC repositories we found that the median size
of code commits in DVC is 38% larger than in CVC.

REFERENCES
[1] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and P. Devanbu. Cohesive and

Isolated Development with Branches. In FASE, 2012.

[2] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P. Devanbu. The Promises and
Perils of Mining Git. In MSR, pages 1–10, 2009.

[3] M. Kim, D. Cai, and S. Kim. An Empirical Investigation into the Role of API-Level
Refactorings during Software Evolution. In ICSE, pages 151–160, 2011.

Volume 1 of Tiny Transactions on Computer Science
This content is released under the Creative Commons Attribution-NonCommercial ShareAlike License. Permission to
make digital or hard copies of all or part of this work is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
CC BY-NC-SA 3.0: http://creativecommons.org/licenses/by-nc-sa/3.0/.

mailto:wuttke@cs.washington.edu,ivan@cs.washington.edu,brun@cs.umass.edu

