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Abstract—Publicly released software implementations of net-
work protocols often have bugs that arise from latent specification
violations. We present APE, a technique that explores program
behavior to identify potential specification violations. APE
overcomes the challenge of exploring the large space of behavior
by dynamically inferring precise models of behavior, stimulating
unobserved behavior likely to lead to violations, and refining the
behavioral models with the new, stimulated behavior. APE can
(1) discover new specification violations, (2) verify that violations
are removed, (3) identify related violations in other versions and
implementations of the protocols, and (4) generate tests. APE
works on binaries and requires a lightweight description of the
protocol’s network messages and a violation characteristic. We
use APE to rediscover the known heartbleed bug in OpenSSL,
and discover one unknown bug and two unexpected uses of three
popular BitTorrent clients. Manual inspection of APE-produced
artifacts reveals four additional, previously unknown specification
violations in OpenSSL and µTorrent.

I. INTRODUCTION
Despite significant effort and resources spent on ensuring

software quality, software systems often ship with bugs and
security vulnerabilities. These vulnerabilities enable cybercrime,
which in 2010 cost $114 billion globally [45] and has affected
one-third of U.S. households [19]. Finding violations against
a software specification and fixing security bugs is expensive,
time consuming, and difficult [3], [12], [44]. Discovering dif-
ferences between a protocol specification and implementations
is especially hard in networked software. Networked communi-
cation introduces an inherent nondeterminism, error states are
difficult to reproduce, and undefined or unspecified behavior is
often not handled consistently by different implementations.

This paper describes and evaluates APE, a technique for
testing and detection of specification violations in networked
software. Such violations can result in unexpected behavior,
incompatibilities, bugs, and vulnerabilities.

APE can be used in four ways: First, APE can apply
limited human insight to explore system behavior and discover
specification violations in system implementations. Second,
given a patch for an exploit, APE can verify the patch and
provide evidence that there are no other, similar execution
paths that trigger the same exploit. Third, APE can apply
exploits known for some implementation of a protocol to
other implementations, and tweak the exploits to work on
new implementations. This process is particularly useful when
updates only partially fix a vulnerability. Fourth, APE can
generate tests of previously untested behavior. Overall, APE
helps find specification violations, adapt existing exploits, and
test implementations against existing exploits.

APE uses a form of network-based fuzz testing to observe
and explore a target system’s behavior, and infers a precise
state-based model of that behavior. Using the model, APE
identifies unexplored behavior, stimulates the system to execute
that behavior, and iteratively refines the model using the new
observations. Then, APE uses the model and a user-specified
description of a specification violation (e.g., “download a file
without contributing any uploaded data”) to propose a set
of potential candidate executions that satisfy the violation
description. Depending on the precision of the inferred model,
some of these candidate executions may correspond to real
system executions, while others may not. APE verifies the
candidate violation executions using the target implementation.

The paper’s main contributions are:
• APE, a technique for discovering specification violations in

networked software. APE works on compiled binaries and
does not require access to the target system’s source code.
Instead, the user needs to provide executable methods for
sending and receiving network messages, and a description
that identifies when a specification has been violated.

• The process for using APE to (1) verify a patch, (2) apply
known exploits to a multitude of implementations, and
(3) tweak exploits to discover related but distinct exploits.

• A case study applying APE to two versions of OpenSSL
to (1) discover and reproduce the heartbleed vulnerability
in one version, (2) verify it was patched in the other, and
(3) discover two additional specification violations.

• A case study applying APE to three popular implementa-
tions of BitTorrent: µTorrent, Transmission, and Azureus,
discovering five bugs.

• An open-source, prototype APE implementation and all code
used in our evaluations:
http://forensics.umass.edu/ape.php.
APE builds on prior automated behavior exploration and

test generation work (e.g., TAUTOKO [22], ProCrawl [43], and
MACE [16]) by targeting networked systems, and expanding
violation expressiveness by allowing modifying messages, as
opposed to focusing exclusively on method call sequences.

The rest of this paper is structured as follows. Section II
describes APE using a simple example, and Section III details
APE design and implementation. Section IV evaluates our
approach’s utility in discovering specification violations on
OpenSSL, and Section V evaluates that utility on BitTorrent.
Section VI evaluates APE’s efficiency. Section VII places our
work in the context of related research. Finally, Section VIII
summarizes our contributions.
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Fig. 1. APE uses models of its target’s (here TRACKER’s) behavior to guide exploration and generate traces of new executions. For example, using Model 3,
APE explores an execution that generates Trace 3, which APE then uses (together with Traces 0, 1, and 2) to build Model 4. Messages to the target are prefixed
with -, and messages from the target are prefixed with +.

II. MOTIVATING EXAMPLE
APE’s goal is to locate and exploit specification violations in

networked software. The key idea behind APE is to dynamically
infer a model of a target software system behavior (using
recent advances in automated behavioral model inference [9])
and use that model to guide new executions toward potential
violations of the specifications. APE then uses these newly
observed executions to improve the inferred model, and uses
the improved models to better guide future executions, iterating
this guided behavior exploration to find violations. To illustrate
APE, we first develop a running example using the TRACKER
protocol. TRACKER is a simple client-server protocol we built
to keep track of clients connected to a server.

The TRACKER protocol specification. Clients join a
network and identify themselves to the TRACKER server using
a hello message, at which point, the server verifies the client
has permission to join the network. Whenever a client sends a
clients_request message to the server, the server responds
with a clients_response message with a list of all clients
that have connected since the previous update. Clients leave
the network by sending a goodbye message.

Example TRACKER implementation. Consider the fol-
lowing code, part of our Python TRACKER server implementa-
tion.
1 def handle_message(IP, message):
2 if message == "hello" and \
3 self.is_authorized(IP):
4 self.connected_peers.append(IP)
5 self.new_peers.append(IP)
6 elif message == "clients_request":
7 self.handle_clients_request(IP)

8 elif message == "goodbye":
9 self.connected_peers.remove(IP)

The handle_message(...) method determines the server’s
response to clients’ messages. This method contains two bugs
that allow a client to violate the intended operation of the
protocol. First, lines 6–7 fail to check if the client is authorized
before processing the clients_request message. Second, an
already connected client can trick the server into thinking it
is a new peer and cause the server to erroneously broadcast
the peer’s presence with the next clients_response message.
This happens because the server fails to check if the client has
already connected when it handles the hello message in lines
2–5, and appends the IP to the list of new peers in line 5. We
focus on the first bug.

Applying APE to TRACKER. APE can discover these
specification violations with knowledge of only the allowed
messages and without access to the source code. Here, we give
a high-level overview of how APE does so.

We refer to the implementation in which APE is attempting
to discover bugs as the target. APE discovers specification
violations through interaction with the target by observing
how the target reacts to different messages and using these
observation to learn and explore the target’s behavior.

APE has three stages of operation, described here in
the context of TRACKER: exploration, candidate violation
discovery, and violation verification. The descriptions in this
section are high-level to build intuition; Section III describes
the details.

During the exploration stage, APE learns and refines a
model of the target’s behavior by stimulating the target by
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sending it sequences of messages and observing its behavior.
APE systematically chooses which messages to send by using a
model of what it already knows about the allowed behavior, and
by perturbing previously attempted executions. This results in
a form of fuzz testing. Whenever an execution completes, APE
restarts the client and begins a new execution with a different
sequence of messages. APE logs all messages that are sent and
received during the executions and uses this log to refine the
model of known behavior.

APE uses Synoptic [9] to convert observed execution
traces into a finite state machine (FSM) model of the target’s
behavior. (While APE could instead use other model-inference
algorithms [6], [7], [8], [20], [23], [25], [32], [37], [39], [40],
[41], [42], [43], [48], our experience showed that Synoptic
model’s enforcement of observed temporal invariants leads to
sufficiently precise models for APE’s purposes.) Each path
through the FSM model represents an execution, in terms of
the sequence of messages sent and received by APE. Synoptic
models are predictive: they describe all observed executions
and predict unobserved executions that satisfy key temporal
invariants mined from the observed executions.

APE uses the inferred models to guide its behavioral
exploration. APE executes the target, following the previously-
unobserved, predicted paths, probabilistically mutating them to
create more diversity in the exploration. APE refines the model
of the target’s behavior by iteratively executing potentially
mutated paths, collecting execution traces, and inferring models
based on the observed executions. This model-based exploration
is better targeted and more efficient than the alternative fuzz
testing approach of sending random sequences of network
messages and observing the target’s behavior.

Figure 1 illustrates five iterations of the exploration process.
Model 0 shows the starting FSM model, which encodes no
behavior and has just two connected states labeled INITIAL
and TERMINAL. The first round of exploration generates a
single trace (Trace 0): sending a goodbye message (in the
traces, sending is denoted by a -, and receiving by a +)
generates no response. APE improves its understanding of
TRACKER by using Synoptic to infer Model 1 from Trace 0.
Next, using Model 1, APE picks a path (sending a goodbye)
and permutes it slightly to generate a new Trace 1: Sending
a clients_request ahead of the goodbye message results
in receiving a clients_response message. Inferring an
FSM model from the two observed traces together results in
Model 2. Repeating this process further refines the model
of TRACKER’s behavior. Note that Model 5 includes not
only observed behavior, but also predicted behavior, such as
the trace: ⟨-client_request, +client_response, -hello,
-client_request, +client_response, -goodbye⟩. These
predicted paths allow APE to explore the target’s behavior more
efficiently than by guessing randomly or through exhaustive
testing.

APE’s second stage, candidate violation discovery, analyzes
the model for potential specification violations. To run
APE, the user specifies a vulnerability characteristic (see
Section III-A). For example, if a user is interested in finding
if an implementation of TRACKER client can ever receive a
clients_response without having sent a hello, the user
specifies the vulnerability characteristic “clients_response
should always be preceded by hello”. Model 5 in Figure 1
includes one path that violates the characteristic: ⟨INITIAL,
-clients_request, +clients_response⟩. APE searches the
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Fig. 2. A high-level overview of APE and its three stages: exploration,
analysis, and verification.

model to find all such loop-free paths.
Whenever APE finds candidate violation paths, its third

stage, violation verification, executes the candidates against
the target implementation. As some paths in the model are
predicted, rather than observed, this verification step ensures the
candidates are real. APE can report verified violation exploits
to the user, and generate an implementation of the tester that
follows that path of execution to exploit the violation.

APE can both discover specification violations and generate
variations of known exploits to work on new implementations.
To find new exploits, APE starts its guided exploration with
an empty FSM model. To modify existing exploits, APE starts
with an FSM model of behavior that includes those exploits,
and guides the exploration along those exploits. Additionally,
if APE starts its exploration with test suite executions, it will
explore the target’s behavior to first generate and then verify
new executions untested by the test suite.

III. APE SYSTEM DESIGN
Figure 2 shows the process APE follows to find specification

violations in software implementing a protocol. APE has
three required and one optional inputs: (1) a binary of the
target software system implementation, (2) a description of
the messages the system may send as part of its protocol,
(3) a set of descriptions for identifying candidate violations,
and (4) optionally, a set of descriptions for modifying legal
messages. APE does not require access to the target system
source code. APE operates in three stages. First, APE explores
the behavior of the target system. Second, APE analyzes the
model to find likely system executions that fit the violation
descriptions. Third, APE verifies that the executions are real
violations. We now use the TRACKER example from Section II
to describe the inputs and the three stages.

A. APE Inputs
Target implementation binary. APE uses a binary of the

target system and needs to be able to start and stop its execution.
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1 class TesterProtocol(ExploreProtocol):
2 def send_hello(self):
3 self.transport.write(
4 struct.pack(’!I’, 5) + ’hello’)
5
6 def send_clients_request(self):
7 self.transport.write(
8 struct.pack(’!I’, 15) +
9 ’clients_request’)

10
11 def send_goodbye(self):
12 self.transport.write(
13 struct.pack(’!I’, 7) + ’goodbye’)
14
15 def handle_clients_response(self , data):
16 pass
17
18 def get_message_type(self , message):
19 #Use to determine message type

Fig. 3. A TRACKER message types description written in Python has three
methods for sending messages, one method for receiving a message, and one
method to parse received messages into their event types. The struct.pack
is a standard python function, and transport.write is provided by the
Twisted [46] networking framework.

For TRACKER, this means the command to start and to kill
the TRACKER server process.

Message definitions. APE also requires a description of
the messages that can be sent to and received from the target.
This descriptions consists of executable methods for sending
and receiving messages to and from the target. There is one
method for each message that can be sent, a single method
that receives and parses messages, and a method that returns a
message’s event type.

Figure 3 shows the five-method message description for
TRACKER: three for sending the different message types; one
for handling the received clients_response message; and
one for translating the received payloads into event types. For
TRACKER, this last method is trivial because we can only
receive a single type of message, clients_response. To test
a more complicated system, such as BitTorrent (described in
Section V), a more complex set of methods may be required.
Our BitTorrent executable message description is structured
similarly to the description for TRACKER, but includes the logic
and state necessary to minimally participate in the BitTorrent
protocol.

Specification violation characteristic. As a final required
input, APE needs a way to recognize when executions exploit
a specification violation. APE uses the violations description to
identify which paths in the model have the potential to exploit
the violation. We delay our detailed description of this input
until Section III-C.

Message modifications. Optionally, APE accepts a de-
scription of how messages may be modified. Without such
a description, APE can discover specification violations by
altering the order of legal network messages. With this optional
input, APE can also discover violations by altering the content
(often called payload) of the messages. In our implementation,
this input consists of several executable methods: one for
each sent message that can be modified that describes how to
generate such messages.

We write methods that generate varied message content
by specifying the fields of the message, which fields can
be modified, and how the fields can be modified. For

example, Section IV describes our OpenSSL heartbeat [28]
message generator. The payload field is a random-sized series
of random bits. And the payload_length field is chosen
uniformly at random to be either the size of the payload field,
a random integer larger than the size of the payload field, or
a random integer smaller than the size of the payload field.
Specifying a finite number of values from which each field
can be selected randomly is another approach that could be
implemented.

B. Exploration
The goal of the exploration stage is to interact with the

target implementation and learn how it responds to sequences
of messages. The product of this stage is an FSM model of
the implementation’s behavior. The FSM has a state for each
message that can be sent or received, and two special INITIAL
and TERMINAL states; the paths from INITIAL to TERMINAL
represent potential executions.

The exploration stage executes the target implementation
under varying conditions and collects traces of the network
messages sent and received during execution. APE then uses
Synoptic [9], a model-inference technique, to automatically
infer an FSM from those execution traces. The FSM model is a
generalization of the observed system behavior; it includes paths
that represent all the observed behavior, but it also includes
more paths that the model-inference algorithm deemed similar
enough to be likely possible (although unobserved) executions.

APE uses guided exploration (Section III-B3) to generate
execution traces more efficiently than via random exporation. It
starts with known behavior and perturbs it slightly to increase
the chances that attempted executions are successful. The
goal is to add meaningful information to its knowledge of the
target’s behavior with each generated trace. However, when
APE starts with no knowledge about the behavior, it is forced
to use random exploration (Section III-B1) until it learns a
little behavior and can switch to guided exploration.

1) Random exploration: The base case for APE is to have
no knowledge of a target implementation’s behavior. This case
is represented by a model with only two states, INITIAL and
TERMINAL, as shown in Model 0 of Figure 1. In this case, there
is no known behavior to perturb, so APE explores randomly.

During random exploration, APE uses the model to infer
the most likely state of the target system, and sends messages
that have not been previously sent to the system in that state.
To determine its current model state, APE examines the last k
received messages. APE finds all instances of this k-sequence
as a path in the model and reasons that the current state must
be at the end of one of these sequences. It then chooses a
message uniformly at random from the set of messages not
yet sent from the set of current possible states. If that set of
messages is empty, APE selects a message uniformly at random
from among all messages. If APE fails to find any k-paths,
and thus any candidate states, it repeats the process using a
value of k−1. If there are no valid candidate states for k = 1
then APE selects a message to send uniformly at random from
among all messages. In practice, we found that k = 5 provided
an adequate balance between performance and accuracy.

Example. Recall that the two-state initial model for
TRACKER has no received message events, so APE starts Trace
0 (Figure 1) by sending a single random message, in this
example, a goodbye message. As might be expected, the
TRACKER server does not reply to the goodbye message and
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the trace terminates after a timeout. APE then uses Synoptic
(Section III-B2) to infer Model 1 from Trace 0. Model 1
contains just a single path from INITIAL to TERMINAL via
-goodbye.

Model 1 still has no receive events, so APE again enters ran-
dom exploration mode. This time, it sends a clients_request
message, waits (using a timeout) for a possible response,
receives a clients_response message, and then sends a
goodbye message (Trace 1). APE now uses Synoptic to infer
Model 2 from Traces 0 and 1. Now that the model has a receive
event, clients_response, it will use guided exploration. We
next describe model inference, and then guided exploration.

2) FSM Model Inference: APE uses the observed execution
traces to infer a predictive FSM model. There are many existing
techniques for such model inference [6], [8], [9], [20], [23],
[25], [37], [39], [41], [42], [43], [48], and it is not the focus
of this paper to improve on them. Instead, APE uses Synoptic
because of its precise predictive properties and previous use
for manual software debugging [9].

Synoptic infers a model by mining a set of temporal
invariants present in the observed execution, such as hello
always eventually followed by goodbye. Synoptic then builds
a concise model of the observed traces, and uses model
checking and counterexample-guided abstraction refinement
(CEGAR) [17] to eliminate predicted paths that do not satisfy
the mined temporal invariants. The end result is a precise
and concise model that includes all observed executions and
predicts unobserved executions deemed likely because they
satisfy the mined temporal invariants.

Models represent sending and receiving messages as events.
When all messages of a given type are identical, this abstraction
is straightforward. However, when messages can be modified
(via the user-specified message modification methods), APE
allows for two ways to represent these messages in the model:
(1) APE can create a unique name for each modified message
instance. This approach’s main drawback is that Synoptic’s
predictive power is reduced, which can affect the efficiency of
APE’s exploration. However, the primary benefit is that once
APE finds a candidate violation in a model (Section III-C), the
model contains sufficient information to verify it (Section III-D).
(2) APE can abstract all modified messages with a single
message name. This approach enables Synoptic’s predictive
power, but requires, once a candidate violation path is identified,
reanalyzing the execution traces to identify which executions
led to the path, and how to recreate the executions’ modified
messages. While APE supports both approaches, the evaluation
in Section IV follows the former.

Throughout exploration, APE periodically updates its FSM
model using all of the traces collected up to that point. The
frequency of the model updating is configurable; for exposition,
for the TRACKER example, APE updates the model after every
execution trace.

3) Guided exploration: APE’s guided exploration starts with
an FSM model and explores along the paths already in the
model, but introduces deviations from those paths to discover
new behavior. Because Synoptic’s models are predictive — they
include likely possible but unobserved behavior — both paths
in the model and deviations from those paths can produce
evidence of new, unobserved behavior.

Choosing a destination. To guide its exploration, APE
first selects a destination event, uniformly at random, from
among all message types that appear as received messages

in the model. In other words, APE’s goal is to coerce the
target into responding with a specific message. For TRACKER,
clients_response is the only receivable message, and so it
is the only possible destination.

To avoid falling into local minima, with a low probability,
APE forgoes guided exploration and enters random exploration
mode. This probability is inversely proportional to the number
of distinct event labels in the current model.

Choosing a path. After choosing a destination, APE
randomly picks one of the paths from INITIAL to one
of the states that represent the selected received mes-
sage type. For example, in Model 3 in Figure 1,
there are two possible paths to states labeled with
+clients_response: (1) -clients_request and (2) -hello,
-clients_request. APE’s guided exploration’s goal is to
guide the target to the destination state by inducing an execution
along the chosen path (possibly with some deviations).

Sending messages. An execution consists of a sequence of
sets of sent events and received events. For example, in Trace 2,
APE sends hello and clients_request messages, receives
a clients_response, and sends a hello. Using a path, APE
identifies the first set of messages it needs to send to follow
that path. For each message in that set, APE may perturb the
message with a small probability. APE may randomly skip the
message entirely. If the message is not skipped, then APE may
substitute a different message, chosen uniformly at random
from the set of all possible send messages. In practice, for the
systems and models we have used, we find that a probability
of 1/11 works well for both skipping and substitution. Once
APE chooses and sends the message, it waits up to 0.5 seconds
for the target’s response. If there is no unexpected response,
APE moves on to the next set of send messages in the path,
following the same perturbation procedure until it has traversed
the entire path and received the destination message. APE
then switches to random exploration mode to finish the current
execution and generate a new trace.

Determining the current model state. APE may not
always receive the expected set of messages on the path it
is following. This outcome can happen because APE perturbed
the path, or because the path was predicted inaccurately by
Synoptic. Whenever APE receives an unexpected message, it
attempts to reconcile that message with the current model. To
do this, APE tries to determine its current state in the model
using the last k received messages, just as it did in its random
exploration mode (recall Section III-B1). If that process cannot
find a suitable state, APE switches into random exploration
mode to finish the current execution and generate a new trace.

Naturally, exploring system behavior in this way generates
new, previously unobserved executions. Starting APE from a set
of test case executions will lead it to generate new, behaviorally-
distinct tests.

Example. Since Model 3 contains received events, APE
picks clients_response as the destination event for the new
execution (Trace 3). It selects the -hello, -clients_request,
+clients_response path and sends the first two messages,
by chance, without perturbing them. APE receives the
expected +clients_response and finally switches to random
exploration mode, choosing to send a -hello message. The
target then closes the connection. APE then uses Synoptic to
infer Model 4 from Traces 0–3.

4) Exploration with message modifications: If APE is given
the optional description of how message content may be
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modified, APE uses a two-phase approach to exploration. First,
it uses standard guided exploration without modifying any
messages to build an initial model of the target system’s
behavior. Next, every time it sends a message of a particular
type, it uses the message modification method to generate a new
message of that type and send it. (The message modification
method may choose, of course, to generate an unmodified
message.)

C. Candidate Violation Discovery
After a user-specified number of trace generation and model

refinement iterations, APE takes the current model and searches
it for specification violations. APE uses the violation charac-
teristic (recall Section III-A) to identify candidate violations.

In practice, Ape can be execute the exploration and analysis
stages in parallel, continually refining the model while checking
properties in previous models.

Specification violation characteristic. A violation char-
acteristic is a function whose input is an FSM model and
output is a set of paths through the model. The intent is for
the paths to expose a violation. For example, for TRACKER,
this characteristic could be a function that returns all paths
that allow a peer to receive new peer information without
authenticating, which exposes the first bug in our TRACKER
implementation (recall Section II). However, to simplify the
use of APE, we allow for a highly simplified definition of
the violation characteristic: The user needs only to describe
two conditions, (1) an ordered sequence of states that must be
present in the path, not necessarily contiguously, and (2) a
set of states that must not be on the path. For example,
for TRACKER, the characteristic specifies that the violation-
exposing path contains INITIAL and clients_response, but
does not contain hello.

Enumerating candidate paths. Given a model and a set
of candidate violation characteristics, APE finds candidate paths
using a straightforward graph search algorithm. The current
APE implementation removes the set of states that must never
occur on a candidate path from the model, along with all edges
to or from those states. Then, APE uses depth-first search to
find all (loop-free1) paths between sequential pairs of states
that must occur in the violation-exposing path. Finally, APE
combines the paths between the sequential pairs of states to
produce complete candidate violation-exposing paths.

For example, for TRACKER, APE uses Model 5 from
Figure 1 to remove the -hello state and adjacent edges from
the model and then find the only loop-free path that contains
INITIAL and -clients_response.

D. Specification Violation Verification
Finally, APE uses the target system binary to verify the

candidate violation-exposing paths. It follows the path to
interact with the binary, much in the same way as it does during
exploration except without perturbing the path. For example,
in Section III-C, APE identified INITIAL, -clients_request,
+clients_response as a candidate violation-exposing path,
so it will start TRACKER, send a clients_request message,
and then wait to receive the clients_response message. In

1Cycles produce infinitely many paths, so we have to choose some limit,
e.g., traversing loops a fixed number of times (also a common approach for
symbolic execution). Additionally, because loops start and end at the same
state, traversing the loop has no effect on protocol state from the perspective
of the inferred model.
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Fig. 4. The layout of a TLS heartbeat message.

this example, the buggy TRACKER server will respond with
clients_response, verifying the violation.

APE tries multiple times to verify the path, in case of
nondeterminism. If after verification, APE fails to produce
at least one verified violation-exposing path, it returns to the
exploration stage. While APE uses violation verification to test
automatically discovered candidate violations, it can just as
well test other candidates. For example, it could test a violation
that was present in an earlier version of an implementation,
or in other implementations of the same protocol. By using
exploration, APE can start with a specification violation from
another version or implementation, and explore if the target
implementation is vulnerable to variants of those violations.

IV. EVALUATION: OPENSSL
This section details the application of APE to OpenSSL’s

implementation of the TLS Heartbeat Extension Protocol.
APE was effective in discovering a known buffer-overflow
vulnerability (the heartbleed vulnerability) and verifying that
another OpenSSL implementation had the vulnerability patched.
Further, manual inspection of APE-inferred behavioral model
discovered two additional specification violations in both im-
plementations. We have reported these bugs to the developers.

A. The Heartbleed Bug
Last year, researchers disclosed a bug in OpenSSL’s

implementation of the heartbeat extension protocol for TLS
that allows an attacker unauthorized access to private keys [28].
The heartbeat extension protocol (defined in RFC 6520,
https://tools.ietf.org/html/rfc6520) provides a mechanism for
clients to maintain a connection to the server by sending
a heartbeat message, requesting a response that echoes the
heartbeat. The so-called heartbleed bug allows an attacker
to specify a small payload but request a larger payload to
be echoed back. The vulnerable OpenSSL servers, without
checking the bound condition, respond with internal, private
memory state.

B. Testing the Heartbeat Protocol
We applied APE to the TLS heartbeat protocol on two

different Ubuntu 12.04 servers running Apache with OpenSSL.
One server was vulnerable to the heartbleed bug, and the
other was patched. APE used the payload modification option
described in Section III-A to test these implementations.

Figure 4 shows the layout of a heartbeat request message.
The heartbeat protocol is layered on top of the TLS record
protocol. The record header (the TLS protocol refers to
messages as records) consists of three fields making up 5 bytes:
record_type, protocol_version, and record_length. A
record_type of 0x15 denotes a heartbeat message. The
record_length is a 2-byte integer specifying the length of the
remaining fields of the heartbeat message: heartbeat_type,
payload_length, an arbitrary payload, and padding. The
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Fig. 5. APE-inferred model without message modification. After inferring
this model, APE then explored the effects of modifying the heartbeat message.

padding is random data intended to be ignored by the server.
To test this protocol, a developer needs to provide APE with
a violation characteristic and the methods needed to generate
the aforementioned fields. Both of these inputs can be derived
directly from information in the protocol specification.

We configured APE by specifying the message modification
method (recall Section III-A) to modify four of these fields:
record_length, payload_length, payload, and padding.
The payload and padding fields are each a randomly sized
series of random bits. The payload_length field is uniformly
randomly chosen to be either the size of the payload field, a
random integer larger than the size of the payload field, or
a random integer smaller than the size of the payload field.
Similarly, the record_length field is uniformly randomly
chosen to either be the size of the entire record, a random
integer larger than that size, or a random integer smaller than
that size.

APE first uses exploration to create a basic model of
operation, before modifying the messages. Figure 5 shows
APE’s model of the TLS heartbeat message behavior. For
clarity, the displayed model abstracts the initial handshake as
the -hello message. APE uses this model and the message
modification method to modify the -heartbeat message. For
each implementation, APE generated 100 traces with message
modification and inferred a single model of all the executions.

APE took a total of 713 seconds to analyze the vulnerable
server and 251 seconds for the patched server. For both
servers, APE needed roughly the same amount of time to
generate the 100 traces (106 and 103 seconds) and to search
the inferred model for violations (less than 1 second). The time
difference lies in the model inference stage — 607 seconds for
the vulnerable server and 251 for the patched one. We attribute
this result to the greater number of invariants mined from the
vulnerable server’s traces: 14,952 vs. 7,063.

We omit the final behavioral models APE built for these two
servers because of space limitations, but describe our findings.
The models contained 158 and 108 states for the vulnerable and
patched servers, respectively. When APE’s payload modification
is enabled, we expect the model size to grow continuously as
more traces are added, in contrast to the bounded behavior we
observe in Figure 6. This is a consequence of APE’s message
modification that generates a potentially unbounded number of
message types.

We based our violation characteristic directly on language
in the protocol specification. Specifically, we set the violation
characteristic to be any trace with a heartbeat response that
includes more bytes than sum of the payload and padding of
the original message. When exploring the vulnerable server
implementation, 22 of the 100 traces included a heartbeat
received from the server. Of these 22 paths, 8 included a
heartbeat message that triggered the heartbleed vulnerability.
For the patched server, 8 of the 100 paths led to heartbeat

events, and all of those corresponded to valid heartbeat
messages, indicating the patched server was not vulnerable
to the heartbleed bug.

APE-assisted, manual specification violation discovery.
APE was able to discover the heartbleed vulnerability in the
vulnerable server when asked to look for executions that return
more data than made available in the original heartbeat message.
It also aided the manual discovery of two other specification
violations.

We manually examined the final model of the two servers
and found two specification violations of which we had no
previous knowledge. First, both servers failed to respond to
properly formed heartbeat messages with payloads smaller
than 4,073 bytes. The protocol specification imposes no such
restriction. Second, while the protocol specifies that the server
must silently discard the heartbeat message if the total length of
the message is greater than 214 bytes, APE observed multiple
instances of both servers responding to such messages. We
have reported these bugs to the project’s developers.

V. EVALUATION: BITTORRENT
This section details the application of APE to three imple-

mentations of the BitTorrent protocol. We chose BitTorrent be-
cause of its popularity, and because the protocol is implemented
by an immeasurable number of clients, allowing us to evaluate
APE’s effectiveness in testing different implementations of
the same protocol. APE found one bug and two unexpected
uses of the specification [11] in three popular BitTorrent
clients: µTorrent, Azureus, and Transmission. Further, manual
exploration of the APE-discovered bug led us to discover two
more bugs, one that causes the client to crash, and one that
artificially inflates the client’s upload rate.

A. The BitTorrent Protocol
BitTorrent is a peer-to-peer file sharing protocol. To share

files, a peer creates a small metadata torrent file that contains
information on finding other peers, file size, and a list of hashes
of parts of the file for integrity checking. Peers’ BitTorrent
clients, after discovering each other via trackers that maintain a
list of peers’ IPs, share files by requesting pieces of the file and
responding to others’ requests. Each piece’s integrity can be
verified using the torrent’s hashes. The piece request messages
contain the index, offset, and length of the requested pieces.
Pieces are usually downloaded in chunks of 16KB, so it may
take multiple request messages to download a single piece.

Reciprocation is an important aspect of the BitTorrent
protocol. While implementations are free to use whatever
algorithm to promote reciprocation, in general, a client is
more likely to trade with peers it deems to be contributing.
Clients can send a choke message to non-contributing peers
to stop communication, and may send an unchoke message
to resume communication. To enable new peers without data
to share to download data, BitTorrent clients will periodically
send unchoke messages to random peers in a process called
optimistic unchoking. This process allows new peers to send
several piece requests and begin downloading pieces even
without prior reciprocation.

It is important to note that different BitTorrent clients will
behave differently even though they ostensibly implement the
same protocol. In part, we can attribute these differences
to the developer’s implementation decisions. In other words,
the BitTorrent protocol specification does not completely
define all client behavior; the specification is vague in areas
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and it deliberately leaves some decisions up to the client
developers, e.g., reciprocation strategies. Further, developers
may misinterpret even those areas which are clearing defined.
These differences are precisely the type of protocol violations
APE is designed to detect.

B. Applying APE to BitTorrent Clients
We tested three popular BitTorrent clients running on

Ubuntu 12.04: µTorrent (v3.0 build 27079), Azureus (4.3.0.6-5),
and Transmission (2.51-0-ubuntu-1.3).

To create BitTorrent message definitions for APE to
use, we modified an existing open-source implementation,
AutonomoTorrent [4], adding logging, additional message
types (bitfield_all, bitfield_some, and bitfield_none
messages, described below), and hooks for APE to use
to send BitTorrent’s nine message types [11]. We chose
AutonomoTorrent to take advantage of its code for tasks such as
getting peer lists from the tracker, checking piece hash values,
and file IO. APE users may often choose to reuse existing
protocol client implementations to ease the task of writing
methods that send protocol messages. Our single message-
sending method implementation was sufficient for all three
BitTorrent targets, and could be used to test other BitTorrent
clients.

During normal operation, peers use the bitfield message
to advertise their pieces. For APE, we found it useful to split
the bitfield into three different message types to indicate if the
peer is advertising all, some, or none of the pieces of the file.
This distinction is important as BitTorrent peers will display
different behavior depending on the bitfield value. For example,
by sending a bitfield_all message APE is advertising that
it already has all of the file pieces; consequently, the other
peers will likely never unchoke our APE peer.

During exploration, we configured APE to start the target
implementation with half of the file pre-downloaded. This
allowed APE to both download and share pieces. We did
not use APE’s optional message modification capability for
BitTorrent.

C. Avoiding Reciprocation
We were interested in searching for specification violations

that allow avoiding reciprocation, downloading data without
uploading. We thus encoded a violation characteristic to check
for the peer downloading pieces without uploading.

APE discovered and verified around 100 execution paths
across the three implementations that satisfied this characteristic,
meaning it discovered multiple ways of violating this specifi-
cation. We manually examined all these paths and categorized
three distinct strategies for avoiding reciprocation.

1. The choke/unchoke cycle. During normal operation,
if the client receives and ignores a request message from a
peer, that peer sends a choke message and no longer responds
to messages from the client. However, APE discovered a bug
that allows a peer to ignore requests without repercussions.
Whenever receiving a request message, if the client responds
by sending a choke, followed immediately by an unchoke
message, (in lieu of the requested piece), the peer sends a new
request and continues responding to the client’s requests. All
three tested implementations exhibit this vulnerability.

The next two strategies do not explicitly violate the
specification, but result in an unexpected ability to avoid
reciprocation.

2. The new guy on the block. The client can pretend to
be new to the network by sending a bitfield_none messages,
even when it actually has data [38]. This falsehood causes
other peers to share data without expecting to receive any data
in return. Further, APE discovered that to remain a freeloading
client, it must never send a have message claiming to have the
data other peers need.

3. The parrot. An extension of the above strategy is for
the client to report in the bitfield message only those pieces
that the other peers already have.

After APE identified the choke/unchoke cycle, we used APE
to apply the exploit of this violation — sending a choke and an
unchoke message in response to each received request— to
each of the three target BitTorrent implementations. For all
three implementations, this exploit caused a drastic increase in
both the total number of requests (thousands per minute), and
the number of distinct requests: other peers often requested
different pieces. Over a five minute timespan, Azureus, µTor-
rent, and Transmission sent 172, 593, and 420 distinct piece
requests, respectively. Without sending choke and unchoke
messages, those numbers dropped to 4, 5, and 15 distinct piece
requests, respectively.

This exploration led us to manually uncover two other
related bugs in the µTorrent implementation. First, when
running in resource-constrained environments (less than 512MB
of RAM), sending many choke and unchoke messages to a
µTorrent client would crash that client. Second, it was possible
to manipulate µTorrent clients into thinking a peer’s observed
upload rate was artificially high because µTorrent included the
bandwidth used by the choke and unchoke messages.

VI. PERFORMANCE EVALUATION
To find vulnerabilities in target implementations, APE must

efficiency explore the large state space of the target’s possible
behavior. Our performance evaluation focuses on the TRACKER
server. While TRACKER is small, its size limits the randomness
of the search process and allows us to reliably measure how
quickly APE finds vulnerabilities. We ran 30 trials of APE
discovering vulnerabilities in TRACKER. Each trial consisted
of 100 iterations; each iteration used guided exploration to
generate one new trace, and then inferred a new Synoptic
model of the target’s behavior using all observed traces. We
use these trials to answer three research questions.

RQ1: How quickly does APE find vulnerabilities in
TRACKER?

Recall that the buggy TRACKER server from Section II
has two vulnerabilities. First, an attacker can elicit a
+clients_response by sending a -clients_request even
without previously sending a -hello. Second, an attacker can
cause the server to erroneously announce its presence multiple
times by sending multiple -hello messages. To answer RQ1,
we examined each of the 3,000 models generated over the
30 trials to find at which point in the exploration process the
model first encoded each of the two vulnerabilities.

The first vulnerability is simple for APE to find since it
only needs to generate a model with a path that starts with
-clients_request. In our experiments, each of the 30 trials
found this vulnerability within the first three exploration traces.
In 10 of the trials, the first trace revealed the vulnerability.
This result is consistent with the random exploration procedure,
which dominates APE’s guided exploration when the model is
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Fig. 6. The size of the model (the sum of the number of states and transitions)
approximates the amount of the target’s behavior learned by APE. APE’s guided
exploration learns the behavior and approaches the limit quickly.

empty or small. The procedure picks, at random, a message
to send from the three sendable, previously unsent messages.
One third of the time (10/30) APE picks the -clients_request
messages, and in all instances, after three tries, APE has tried
all three messages.

The second vulnerability is harder to find. In our experi-
ments, APE found this vulnerability in each trial after exploring
at most six traces. In some cases, the guided exploration
generated a trace with multiple +clients_response messages.
In other cases, model inference predicted that such behavior is
allowed.

Running APE on TRACKER took no longer than a few
minutes on average to discover both vulnerabilities.

RQ2: How quickly does guided exploration learn the
target’s behavior?

Critical to APE’s success is being able to explore its target’s
behavior quickly. While it likely takes a long time to explore
the behavior exhaustively, APE’s guided exploration is able to
explore a large fraction of the behavior space after relatively
few iterations. Using model size (the sum of the number of
states and transitions) as an estimate of the measure of how
much of the target’s behavior has been explored, Figure 6
shows that the mean amount of behavior APE has not learned
diminishes exponentially with time. This finding implies that
(1) the TRACKER server implementation’s behavior measure is
bounded, and (2) APE can learn it quickly. Other exploration
strategies could learn slowly, forcing more time to be spent
in the guided exploration stage, and resulting in poor scaling
to larger targets. Note that a threat to validity of this result
is that it is possible that some behavior cannot be discovered
by APE, so the claim that APE discovers the behavior quickly
only applies to that behavior that APE can discover.

RQ3: How does the predictability of the model
change as APE explores the target’s behavior?

The models APE infers from observed executions are
predictive. Model inference can be inaccurate if the temporal
invariants that hold for the observed executions do not accu-
rately describe the target system [9]. Thus, for the predictive
ability of the model to be accurate, guided exploration must
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Fig. 7. The accuracy of the model’s predictive ability depends on the
guided exploration’s ability to diversify observed executions and eliminate false
temporal invariants. APE accomplishes this and quickly eliminates temporal
invariants that are artifacts of small sets of explored executions.

quickly eliminate spurious temporal invariants that are observed
only because of lack of diversity of the observed traces.

Figure 7 shows that the mean number of mined temporal
invariants diminishes quickly with each iteration, implying that
after relatively few iterations, the model accurately predicts
behavior.

An astute reader will notice that in the first iterations, the
number of temporal invariant increases, whereas it decreases
monotonically afterwards. This phenomenon is due to Synop-
tic’s invariant filtering; the inference ignores invariants between
messages it has never observed co-occur in a trace. At first,
new traces increase the number of messages that have been
observed co-occurring, increasing false (and valid) temporal
invariants. Further exploration eliminates the false invariants.

While sets of observed executions with poor diversity
often satisfy many temporal invariants, systems typically
have few true temporal invariants [7], [9]. For TRACKER,
the final inferred models satisfied only a single tempo-
ral invariant: -clients_request is always followed by
+clients_response.

VII. RELATED WORK
TAUTOKO [22], Xie and Notkin [49], ProCrawl [43],

and MACE [16] are the most similar approaches to APE.
TAUTOKO explores the execution space and infers behavioral
models, but is limited to data structure models and method
call events. Xie and Notkin combines model inference and
execution to generate new tests, but focuses on single classes
and unit tests [49]. ProCrawl infers behavioral models of
web applications by guiding the exploration using model
inference. By contrast, APE targets networked systems and
allows modifying messages. MACE detects vulnerabilities
using symbolic and concrete execution, guided by model
inference, which is complementary to APE’s dynamic approach.
Other related prior work [18], [27], [30] had relied on user-
specified descriptions of an input abstraction function, whereas
MACE does not, but still requires an output abstraction function
for the output. These are similar to APE’s message definitions.

APE uses Synoptic [9], which relies on mining temporal
invariants to abstract the observed executions and balance
running time against the conciseness of the final model.
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Synoptic starts with an overgeneralized, compact model and
iteratively refines the model to eliminate violations of the
observed temporal invariants. Synoptic is nondeterministic,
which adds to the nondeterminism already inherent in APE,
although deterministic model inference [6], [7] could be used
instead.

Model-inference research is complementary to our work
and APE can directly benefit from improvements in model
inference. APE uses predictive model inference to abstract
the observed executions into a concise and predictive model.
In general, inferring the most concise model from observed
examples is NP-complete [1], [17], [26], and most model-
inference algorithms approximate a solution [6], [7], [8], [9],
[10], [15], [20], [22], [23], [25], [31], [32], [34], [37], [39],
[42], [47], [49].

The kTails model inference algorithm [10] is the basis for
numerous other model-inference algorithms [15], [20], [31],
[35], [36], [37], [39], [42], [47]. Unlike Synoptic, kTails starts
with the set of observed traces, represents these traces as an
FSM made up of a set of linear graphs, and then iteratively
coarsens the FSM by merging states that are identical in the k
subsequent states.

Synoptic relies on temporal invariants inferred from the
observed traces. The accuracy of this mining and the richness
of the invariants directly affects the model accuracy and APE’s
ability to precisely discover specification violations. There are
numerous algorithms that mine temporal property instances [2].
For example, Javert [24] is a temporal specification mining tool
that infers specifications by composing simpler micropatterns
into larger ones. Javert’s focus is on implementing this
composition efficiently. Synoptic could use Javert to improve
efficiency or richness of its mined invariants.

Some model inference algorithms infer models that are
extensions to FSMs. GK-Tails [39] requires EFSMs and
RPNI [15] requires Probabilistic FSMs. APE currently uses
FSMs but can be extended to use these extended models and
model inference algorithms. Other model inference algorithms
may require other extensions that APE can likely be extended
to handle.

APE’s payload modification is similar to protocol fuzz
testing [5], [27], [30], but APE guides exploration, instead
of randomly searching through the state space. APE also
aims to automate more of the exploration than, for example,
SNOOZE [5] and Gorbunov et al. [27].

Protocol reverse engineering [13], [14], [21] automates
inferring message format, which can be used to automate
APE even further. Prospex [18] combines reverse engineering
message format and fuzz testing and can generate test inputs,
but unlike APE, does not automatically discover specification
violations.

Gatling finds performance attacks in large-scale distributed
networks [33]. Like APE, Gatling simulates behavior on the
network with peers, although using multiple peers is APE’s
future feature at this time. While Gatling allows changing
message fields and dropping messages, APE is more general
in its message modifications. Meanwhile some systems focus
on proving specific protocol properties, such as authentication
and authorization properties [29]. By contrast, APE is more
general and can discover any specification violation that can
be described by a violation characteristic method.

VIII. CONTRIBUTIONS
We have presented APE, a technique for discovering and

verifying specification violations in networked software. APE
explores the large space of behavior by dynamically inferring
precise models of behavior, stimulating unobserved behavior
likely to lead to violations, and iterating by refining the behavior
models with the new, stimulated behavior.

We publicly released an open-source APE prototype:
http://forensics.umass.edu/ape.php.

In evaluating APE, we verified the known heartbleed
vulnerability in OpenSSL, and found seven other specification
violations or unexpected behaviors in OpenSSL and three
popular BitTorrent clients. APE can both discover violations
and help developers better understand system behavior. Our
prototype implementation and its evaluation show great promise
for using model inference, together with fuzz testing, to find
bugs, verify bug patches, and identify related exploits of known
bugs, and augment and generate test suites.
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