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ABSTRACT
Complex, human-intensive systems, such as those used in hospital
Emergency Departments, typically require the effective support of
many types of resources, each governed by potentially complex
utilization policies. Resource utilization policies range from sim-
ple, e.g., sickest patient first, to extremely complex, responding to
changes in system environment, state, and stimuli. Further, policies
may at times conflict with each other, requiring conflict resolution
strategies that further increase the complexity. Sound policies for
the management of these resources are crucial in assuring that these
systems achieve their key goals.

To help system developers make sound resource management
decisions, this paper presents a resource utilization policy specifica-
tion and analysis framework for complex human-intensive systems.
We provide (1) a precise specification language to describe very
diverse and potentially complex resource utilization policies, (2) a
process- and resource-aware discrete-event simulation engine that
executes simulations to dynamically evaluate the policies’ effects
on the outcomes achieved by systems that use the resources, and
(3) a process- and resource-aware finite state verification framework
that supports formal verification that resource management policies
are correctly implemented by these simulations.

CCS Concepts
•Computing methodologies → Model verification and valida-
tion; •Software and its engineering → System modeling lan-
guages;

Keywords
Resource specification, Discrete-event simulation, Finite state verifi-
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1. INTRODUCTION
Human-intensive systems, where human, software, and hardware

resources must be synergistically integrated to perform key func-
tions, play an important role in our society. Because access to
these resources is usually limited both by their small quantity and
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by restrictions on their availability, contention for them is often a
serious problem. The problem is addressed by creating policies
that are driven by system goals, regulations, or the need to satisfy
the interests of different stakeholders. Resource utilization policies
usually significantly impact system behaviors and results. Thus, for
example, a hospital’s staffing policy influences staff workload, costs,
quality of patient care, etc. Therefore, resource utilization policies
should be thoroughly evaluated and rigorously analyzed.

In addition to the inherent complexity of some policies, an ad-
ditional major challenge in analyzing resource utilization policies
is that policies can conflict with each other. When such conflicts
arise in a hospital system progress may stall, and life-threatening
situations may arise. Ideally such conflicts should be anticipated so
that if they arise smooth operation of the system can nevertheless
continue. However, as system size and complexity grow policies
tend to grow as well, both in number and in complexity. This in-
creases the likelihood of conflicts and the difficulty of anticipating
and resolving all of them.

This paper presents a framework for resource utilization policy
specification and analysis for human-intensive systems. This frame-
work extends an iterative process improvement framework [1] by
focusing on resource utilization improvement. The specification
approach separates resource utilization policy concerns from other
system issues such as activity and artifact specification. We propose
three types of policy specifications: permission constraint policies
that restrict the activities that a given resource can support, schedul-
ing policies to define precedence among both requests and resources,
and conflict resolution policies to resolve conflicts between multiple
resource utilization policies. In previous work [10,11], we described
a process- and resource-aware discrete-event simulator that adheres
to resource utilization policy specifications to support dynamic anal-
ysis of the effects of diverse resource utilization policies. That work
incorporated rudimentary facilities for specifying policy conflicts
and their resolution. The contribution of this paper is that it presents
a comprehensive approach to policy conflict specification and res-
olution and also present a process- and resource-aware finite state
verification technique that supports static analysis of resource uti-
lization policies and their potential conflicts. Specifically, our static
resource analyzer is able to provide guarantees of the absence of
violations of resource utilization policies as well as other general
resource utilization properties related to resource capacity, deadlock,
and starvation.

The rest of this paper is structured as follows. Section 2 moti-
vates the need for our resource utilization policy specification and
analysis framework in a hospital’s patient care system. Section 3
describes our approach. Section 4 places our work in the context of
related research. Section 5 summarizes our contributions and future
research.
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2. RESOURCES IN A HOSPITAL
Assuring sound management of the diverse kinds of human and

other resources in a hospital Emergency Department (ED) is com-
plex, and made more so by the need for policies that must be flexible
enough to deal with many different kinds of circumstances. Thus,
for example, nurses may perform technicians’ activities such as
Electrocardiogram (EKG) testing in crowded situations to allevi-
ate the heavy workload on technicians, whereas these activities are
only performed by technicians under normal circumstances. In ad-
dition, hospital staff can care for patients only during their shift
hours. However, their shift hours may be changed if the hospital
decides to make scheduling policy changes, for example to prepare
for increased incidence of accidents during a vacation season. There-
fore, these dynamic changes in resources’ system participation must
be carefully considered to assure efficient and effective resource
management.

In addition, the participation in patient care of hospital staff is
restricted by various resource utilization policies that often conflict
each other. For instance, a patient in a hospital ED should be cared
for by the same doctor and nurse while the patient stays in the
ED. Under unusual circumstances, however, a hospital may allow
violation of this policy to improve efficiency in patient care. For
instance, if a high-skilled nurse is too busy to care for his non-severe
patients, he may be allowed to delegate his work (e.g., monitoring
or discharge) to another nurse even though this delegation policy
conflicts with the same nurse policy. Similarly, policies that define
work hour shifts may also lead to conflicts with the same doctor
policy, for example when a patient must be discharged after the end
of the shift of the admitting doctor. To address this policy conflict,
hospitals necessarily incorporate a handoff policy requiring that
a departing doctor hands over her patients to an incoming doctor.
This handoff policy becomes even more complex when taking into
account a doctor’s workload, length of patient stay (LOS), and other
patient care quality measurements.

Suboptimal policies for resolving hospital resource management
conflicts can result in such problems as overcrowding, inefficient
staff utilization, very long LOS, and other medical or financial prob-
lems. To address these problems, hospitals are always seeking better
resource utilization policies. We believe our approach supports
such efforts by facilitating (1) the exploration of various changes in
resource utilization policies through the concentration of resource
utilization policy issues into a separate component containing all
resource allocation and conflict resolution specifications, (2) the
use of discrete-event simulation to evaluate the effects of diverse
alternative resource utilization policies, and (3) the verification of
the adherence of these simulations to specified resource utilization
and conflict resolution policies.

3. RESOURCE UTILIZATION POLICY
SPECIFICATION AND ANALYSIS

We now describe our approach to helping system developers de-
vise sound resource utilization policies. We provide a language
that addresses the challenges of creating precise and detailed spec-
ifications of resource utilization policies. Given the language, we
present tools that use both discrete-event simulation and finite state
verification to support using both dynamic and static analysis to
determine the effects of the specified policies.

3.1 Resource Utilization Policy Specification
Our resource utilization policy specifications are built atop specifi-

cations of the resources to be governed by these policy specifications.
Our resource specification language has been described in earlier

Resource Attribute Capacity Capability

MD shiftStart 1 Treat Patient
shiftEnd

(a) Resource characteristics

MD instance Attribute value

md0 shiftStart:0AM, shiftEnd:8AM
md1 shiftStart:8AM, shiftEnd:4PM
md2 shiftStart:4PM, shiftEnd:0AM

(b) Resource instances

Permission Request Resource Guard

SameMD Treat Patient MD SameGuard
ShiftMD Treat Patient MD ShiftGuard

(c) Permission policies

Figure 1: Examples of resource characteristics (a), resource in-
stances (b), and permission constraints (c) in a hospital ED. For
exposition, we omit full specifications, and include only the key
features specifications.

: XOR relation : AND relation : Entity 

Legend 

Resource Utilization Policy 

Conflict  
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Schedule 

Case Priority Contention 

Permission 

resource request Selection guard 

Figure 2: The structure of the resource utilization policy spec-
ification describes the static relations between the policy’s enti-
ties.

work, and so in this paper we only suggest its specification capabili-
ties through a small pictorial example. Full details of this language
can be found in [11]. Thus, note that Figure 1(a) contains a represen-
tation of our definition of the MD resource type (a doctor working in
the ED). Figure 1(b) also indicates how this resource type can be in-
stantiated into three doctor resource instances, namely md0, md1 and
md2 representing the three doctors all working in the same ED. The
attributes shiftStart and shiftEnd represent the MD’s shift work
hours (e.g., md0 works from 0AM to 8AM). Capacity 1 restricts an
MD to care for only one patient at a time. The specification further
indicates that MD can provide the Treat Patient capability to care
for a patient, but note that the Treat Patient specification could
be decomposed further into such more specific patient care activities
as assess, prescribe, and discharge, as needed by the specific details
of more detailed patient processes that may need to be modeled and
simulated.

Given the existence of such resource definitions, we now present
some example resource utilization policies. Figure 2, shows that we
currently provide facilities for the specification of three different
kinds of resource utilization policies, namely permission constraint
policies, scheduling policies, and conflict resolution policies, which
we now describe in turn.

3.1.1 Permission Policies
A Permission policy specifies the permissibility of a Resource
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to handle a Request as restricted by a specified Guard condition.
Thus, for example, the SameMD and ShiftMD permission policies
can be specified as shown in Figure 1(c). The SameMD permission
policy is used to determine which MD resource instance is available to
handle a request requiring the Treat Patient capability. Similarly,
the ShiftMD permission policy is used to define the physician’s
shift, namely the hours during which an MD resource is allowed to
handle Treat Patient requests. Guard is represented as a boolean
expression that is evaluated to be true only when a resource instance
can handle a request. For instance, we specify ShiftGuard as t >=
r.shi f tStart && t < r.shi f tEnd where r is one of the MD resource
instances, md0, md1, or md2. The boolean expression is evaluated to
be true only when an MD resource instance r is working on her shift
when a request Treat Patient happens at time t.

3.1.2 Schedule Policies
The next policy specification approach, the Schedule policy,

supports the specification of Contention and Selection policies.
Contention policies specify precedence among requests. Specifi-
cally, we support specification of built-in policies such as random,
first-in first-out (FIFO), last-in first-out (LIFO), and priority-based;
and custom-built policies that can be built based on the use of dy-
namic system state variables, such as patient load. In a hospital
ED, for instance, when multiple patient care activities for differ-
ent patients require the service of more doctors than are currently
available for allocation, an appropriate scheduling policy is neces-
sary to resolve the contention problem among the requests for the
services of all doctor resources. As can be seen in the following
Contention policy example, the sickest patient first policy is a
contention policy that is often used in a hospital ED, specifying that
a doctor cares for patients according to the urgency of their need,
patient.severityLevel. The effects of the contention policy
should be carefully evaluated, however, as enforcing it rigorously
can result in the needs of very sick patents to cause resource starva-
tion of non-acutely ill patients who might then fail to receive timely
treatment. Simulation studies should facilitate such evaluations.

Contention policy: SickestPatientFirst
Request = {Treat Patient},
Contention Policy = (Priority, patient.severityLevel)

The Selection policy complements the Contention policy, sup-
porting specification of precedence among the resources that are able
to handle a resource request. If there are many candidate resources
able to handle a given request, an effective selection policy can lead
to more efficient and effective utilization of those resources. For
instance, when a new patient arrives in an ED, there are usually more
than two doctors who can assess the patient. An appropriate work-
load policy can do much to balance the workloads of the different
doctors. We provide built-in selection policies such as random, least
recently used (LRU) and most recently used (MRU); and custom
policies that can be defined based on the use of system dynamic state
variables. Thus, for example, a least utilized resource first policy
might be used to balance the workloads of hospital staff members.
As can be seen in the following example, LeastUtilizedFirst is
a custom policy that uses such system state variables as the system’s
execution duration and resource allocation periods, to calculate a
level of resource utilization that might then be used as the basis for
allocating the least utilized resource first.

Selection policy: LeastUtilizedFirst
Request = {Treat Patient},
SelectionPolicy = LeastUtilizedFirst::CustomBuilt

3.1.3 Conflict Resolution Policies
Conflict resolution policies specify how to deal with other policies

that may come into conflict with each other. For the circumstances
under which two or more policies cannot be enforced at the same
time we provide capabilities for specifying Conflict Resolution
policies. We provide two kinds of conflict resolution policies: a
Priority conflict resolution policy and a Case conflict resolution
policy. We now describe each of them.

3.1.3.1 Priority Conflict Resolution.
The ED policy that we described above, specifying how doctors

hand off patients at the end of their shifts, can be defined using the
following Priority conflict resolution policy:

Priority conflict resolution policy: HandoffMD
{SameMD, ShiftMD} > {ShiftMD}

This conflict resolution policy, {SameMD, ShiftMD} > {ShiftMD},
specifies that enforcing both the SameMD and ShiftMD permission
policies has higher priority than enforcing only the ShiftMD permis-
sion policy. In other words, this states that the need to satisfy both
SameMD and ShiftMD is considered first in doing resource allocation.
However, if no resource is able to satisfy all the permission poli-
cies, the permission policy ShiftMD is applied next in considering
possible resource allocations. For instance, if md0 ends her shift at
8PM, then md0 is not able to care for her patients at 8PM because
that would violate the ShiftMD policy. According to the above
priority specification, however, another doctor, either md1 or md2
is then permitted to provide care for the patients of md0, assuming
these other doctors are on shift in the ED (i.e. assigning them must
still satisfy the ShiftMD policy). After resolving such a conflict
condition, the system returns to full enforcement of all policies for
subsequent resource allocation requests. Thus, for example, either
md1 or md2 (whichever has taken the handoff) is obliged to satisfy
the same doctor policy until her shift ends.

This kind of conflict resolution specification seems to have broad
applicability. We note, for example, that the use of more highly
skilled medical providers is generally preferred because it typically
results in the provision of higher quality patient care. But less skilled
providers may be allocated to these tasks instead in order to improve
the overall efficiency of the healthcare system in providing patient
care in various kinds of complex situations. Moreover, as described
in Section 2, in a particularly overcrowded condition, nurses may
perform technician tasks such as taking EKGs. Conversely, even
though nurses may be the preferred providers of certain kinds of
patient care, a technician-use policy might dictate that technicians be
allowed to provide these kinds of care to certain classes of patients
when nurses are not available, perhaps due to nurse workload limit
policies. Similarly, the above priority policy allows the delegation
of a doctor’s work to another doctor when the first doctor’s shift
ends.

3.1.3.2 Case Conflict Resolution.
In addition to Priority, we provide another form of specifi-

cation for conflict resolution, namely the Case conflict resolution
policy. While Priority seems more suitable for specifying rela-
tively straightforward conflict resolution, Case seems more suitable
for complex conflict resolution situations. Further experimentation
is underway to validate this hypothesis.

A Case conflict resolution policy specification is defined as an
ordered pair, (conflict situation, resolution action). Thus, as an
example, consider the FastTrackBedUse policy.
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Case conflict resolution policy: FastTrackBedUse
Conflict situation:
EmptyBed(

√
), InFastTrack(×), FastTrackOpen(×)

Resolution action:
enforce {EmptyBed}

Many hospital EDs offer their patients care in two separate lo-
cations, with separate facilities, and using somewhat different pro-
cesses. These are often referred to as the main-track (for seriously
ill patients) and the fast-track (for all other patients), and they are
operated separately in order to improve their overall efficiency and
quality in providing ED patient care. While the main-track operates
24 hours of every day, the fast-track is often closed during periods
of slack demand, such as late at night, in order to save money. If
the locations of the two tracks are not far from each other, hospi-
tals often, especially during periods of heavy load, find it useful
to utilize fast-track beds, even if the fast-track is closed. Although
fast-track beds may be used in this way, hospitals will not use any
other fast-track resources when the fast-track is closed. This policy
can be be defined clearly and concisely using the Case policy spec-
ification, FastTrackBedUse. We do this by building upon some
lower-level policies and combining them using the Case conflict
resolution specification approach. Thus, we use the EmptyBed pol-
icy, which enforces that a bed must not already be occupied in order
for it to be used to care for a new patient. We use the InFastTrack
policy, which specifies that only fast-track patients are allowed to
use beds in the fast-track. And we use the FastTrackOpen pol-
icy, which specifies the times during which the fast-track is open
and closed. Given these three policies, we can specify the typi-
cal use of a fast-track ED bed, when it is allocated to care for a
new fast-track patient in an open fast-track to be: only when a bed
is not occupied (EmptyBed(

√
)), the bed and patient are located

in the fast-track (InFastTrack(
√
)), and the fast-track is open

FastTrackOpen(
√
).

But a Case conflict resolution policy specification can, in addition,
support the specification of the previously described conditions un-
der which a fast-track bed can be allocated for main-track use even
when the fast-track is closed. This Conflict situation as de-
scribed above, is defined as Conflict situation: EmptyBed(

√
),

InFastTrack(×), FastTrackOpen(×), which defines the situa-
tion in which a bed is not occupied, a patient is not located in the fast-
track, and the fast-track is closed. It then specifies the Resolution
action as described by, enforce {EmptyBed}, which specifies
that it is allowable to enforce only the EmptyBed policy to resolve
the conflict situation (note that another conflict resolution policy
might be defined to enforce a preference for using a main-track
bed over a fast-track bed, when both are available). Therefore, this
conflict resolution policy specifies a flexible management of hos-
pital bed resources by utilizing fast-track beds when the fast-track
is closed. Note in addition that there is no specified resolution for
conflicts over non-bed resources when enforcing the three policies:
EmptyBed, InFastTrack, and FastTrackOpen. Thus this conflict
resolution, as desired by ED policy, does not allow the allocation of
fast-track resources other than beds.

3.2 Discrete-Event Simulation
As noted above, our interest in the specification of complex con-

straints on diverse resources has arisen from our earlier interest in
the discrete-event simulation of hospital EDs [3, 10, 11]. This paper
only summarizes our previous work briefly to provide motivation
for our static analysis research. But it is certainly the case that this
simulation work, in addition to motivating our work on resource
policy, has also served as an excellent vehicle for demonstrating the
effectiveness of this work. In order to support this resource- and

Process- and Resource-Aware 
Discrete-Event 

Simulator 

System Specifications 
- activity, artifact, resource utilization policy 

Simulation Specifications 
- Discrete events: external, agent 

  
 

activity execution trace resource utilization history 

Resource Manager requests 
resource 
utilization 
policies 

resources 

dynamic resource constraint enforcement 

Figure 3: Process- and resource-aware simulator separates
the resource manager for dynamically enforcing resource con-
straints. The simulator extends a prior resource manager [11]
to incorporate resource utilization policies.

resource-conflict- sensitive discrete-event simulation, we require a
specification of a process within which our specified resources are
to be allocated and utilized. Thus our work assumes the existence
of a process definition that defines system aspects such as activity
coordination and data flow as well as specifications of the kinds of
resources that are required at different points in the performance of
the process. In our work we have used the Little-JIL process defini-
tion language [14] to specify patient care processes in a hospital ED.
A Little-JIL specification is a graphical, hierarchical decomposition
of activities that provide rich semantics that support diverse sequenc-
ing of activity executions and data flows. The rich semantics of
Little-JIL have proven to be very useful in supporting the capture of
the complex nature of ED processes. We assume that the execution,
either real or simulated, of a Little-JIL-defined process generates
a stream of requests for the allocation of the resources needed to
perform specified activities. We built our ED process models based
on real-world data and the knowledge of a domain expert who has
extensive experience as an emergency department physician and ED
manager at the Baystate Medical Center, in Springfield, MA, USA.
The full ED process model that we used in our work is publicly
available at http://people.cs.umass.edu/~shin/ed/.

We used the JSim [8] simulator as a discrete-event simulation
engine, augmenting it beyond the capabilities described in [11] to
additionally incorporate the resource utilization policies and policy
conflict specifications that we have just described. As can be seen
in Figure 3, our simulator took System and Simulation specifica-
tions that included some resource utilization policy specifi-
cations as well. In our simulator, the enforcement of the resource uti-
lization policies is concentrated into the Resource Manager com-
ponent, which facilitates keeping track of resource utilization history
such as resource allocation traces, counts of policy conflicts, wait
times to allocate resources, and other resource related simulation
results.

3.2.1 Dynamic Verification
Our prior work [3,10,11] described a variety of simulation studies

that we carried out using the earlier version of our simulator. Here
we present only one, again presenting this example study largely
to provide the basis for supporting the presentation of our work on
static analysis of resource specifications.

In many studies of patient care processes [3, 8, 12], bed time, the
total time that a patient spends in a bed during an ED stay, is an
important measurement of efficiency and effectiveness in patient
care. Bed time is influenced by many factors, such as the total
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Figure 4: Two simulations showing bed-time results. The poli-
cies for the gray box plot simulation fail to adhere to the same
doctor-nurse constraint, while the white box plot simulation ad-
heres to that constraint.

number of ED beds, the arrival distribution of patients at an ED at
various times, the nature of the patient care processes themselves,
and the ways that resources are constrained by their utilization
policies. To study bed time, our ED model includes the following
important ED characteristics: (1) varying patient arrivals over a
24 hour day; (2) six different patient care processes, one for each
ED patient acuity level; (3) diverse kinds of resources such as beds,
medical devices (e.g., x-ray and CT machines), and human resources
(e.g., doctors and nurses); and (4) resource utilization policies such
as the same doctor-nurse, shift, and handoff policies.

Figure 4 compares the results of two simulation studies, showing
simulated bed times for patients in each of the EDs six acuity levels.
The gray box plot shows the bed times obtained from simulations
that were not required to adhere to the same doctor-nurse policy.
In contrast, the white box plot shows the bed times for simulations
that did adhere to the same doctor-nurse policy. As can be seen,
the two simulations provide significantly different bed time results,
especially for the Critical patients. As might be expected, one
key source of observed differences was the amount of time that
patients had to spend waiting to be cared for by doctors and nurses.
In particular, when a patient is ready to be discharged, if her doctor
is busy caring for another patient, the patient must wait in her
bed because of the same doctor policy. This type of result is but
one of many that provide a variety of suggestions about policies
that ED administrators should consider, based upon studies such
as ours. However, hospital administrators can be quite skeptical
about simulation results, partly because it is difficult to be sure
that simulation results are correct. Discrete-event simulations are
complex programs that pose the usual difficulties for testing. Thus,
for instance, if a violation of the same doctor-nurse policy happens
in only one specific patient care trace out of a plethora of possible
simulation traces, it requires herculean effort to search for and
identify this rare trace. Indeed, such a problem trace may not even
be executed in some simulations. More fundamentally, because
simulations are intended to produce results that cannot be obtained
any other way, the correct results of a simulation run are not known
in advance (there is no oracle for these programs), making it difficult
to verify the quantitative results of a discrete event simulation run
with traditional testing approaches. These difficulties in the dynamic
testing of simulations, and especially in verifying that simulations
always correctly enforce resource utilization policies, and policy
conflict specifications, has caused us to explore the use of static
analysis approaches to support such verifications.

Finite State Verifier 
(FLAVERS) 

Resource 
Constraint FSMs 

Trace Flow Graph 
(with Resource Events) 

Resource utilization policy specification 

Resource 
Constraint FSM 

Translator 

Trace Flow Graph 
Translator 

Property FSMs 

Other Specifications 
- Activity 
- Artifact 

Verification  
Results 

Research Boundary 

Figure 5: Our static resource analysis framework relies on
FLAVERS, a finite state verification tool. The approach auto-
matically generates the FLAVERS inputs that encode resource
utilization policies.

3.3 Finite State Verification
Finite State Verification is a static analysis technology that has

long been used in order to either demonstrate that all possible exe-
cutions of a program must always adhere to specified properties, or
to identify one or more paths on which a property can be violated.
In this past work the properties were typically event sequence speci-
fications characterizing program functionality. In this current work
we have used this technology to statically verify that all simulation
executions must always adhere to resource utilization specifications
defined using the policy specifications presented above. Our belief
is that such verifications should increase the credibility of the results
of our simulation studies.

Our static analysis of resource utilization relies on the use of
FLAVERS [2], a static analysis tool that can verify that all execu-
tions of a system satisfy a given property, or will report a counterex-
ample scenario that violates the property. FLAVERS requires three
kinds of inputs: a trace flow graph (TFG), a property finite state
machine (FSM), and a set of constraint FSMs. A TFG is a conser-
vative representation of all syntactically-feasible event execution
sequences of a system, automatically derived from our Little-JIL
ED process specification. A property FSM is a representation of
a mechanism for accepting only desired system event execution
sequences. A property FSM has special accepting states that define
what is meant by successful satisfaction of a property. A constraint
FSM is a representation of a mechanism for identifying when a sys-
tem event execution sequence has become infeasible. The constraint
FSM has special trap states to eliminate infeasible execution paths
from the analysis search space.

As can be seen in Figure 5, our static resource analysis approach
extends the Trace Flow Graph Translator and Resource Con-
straint FSM Translator components that generate the inputs
to the FLAVERS Finite State Verifier. The TFG extensions
have the effect of augmenting this graph with representations of re-
source allocation events and resource utilization policies in addition
to the TFG’s existing specifications of activities and artifact flows.
Augmentations to the Resource Constraint FSM Translator
convert the various resource policy specifications into constraint
FSMs that are used to exclude infeasible resource allocation behav-
iors from the analysis search space.

As an example, we demonstrate how we use this approach to ver-
ify that simulations always adhere to the same doctor property. First
note that Figure 6 shows a part of generated TFG that represents
the allocation and deallocation of a doctor resource. We assume
that there are two doctors that might be allocated, and thus show
that either one or the other is allocated prior to execution of the
assess patient care task, and either one or the other is deallocated
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allocate md0 

assess 

release md1 

Allocate md1 

release md0 

… 

/assess.r = md0 /assess.r = md1 

[assess.r == md0] [assess.r == md1] 

Figure 6: A part of the generated trace flow graph, including
resource allocation and resource release events for the md0 and
md1 resource instances.

1 trap 0 

allocate 

allocate 

release 

release 

Figure 7: This resource constraint FSM encodes the capacity
limit of resource allocations. This FSM allows a resource to be
allocated at most once.

afterwards. Accordingly, two kinds of resource events (allocate
and release) for two MD resource instances (md0 and md1) are
included in the TFG, before and after the assess event node rep-
resenting the choices between the two MD’s. Because the TFG is
a conservative representation it includes infeasible paths such as
allocate md0→ assess→ release md1. These infeasible re-
source allocation sequences are eliminated by associating variable
update actions or guards to transition edges in the TFG. For instance,
if the allocate md0 event happens on an execution path, the action
/assess.r = md0 updates the assess.r variable. Then, the the
guard [assess.r == md0] causes only the following event trace
to be feasible: allocate md0→ assess→ release md0.

With resource allocation events embedded in the TFG as just
shown (and with the additional assurance that only allocated re-
sources will be deallocated) it is now possible to create the basis for
verifying that no resource can ever be allocated to more than one
task at a time (as mandated by the specification in Figure 1(a) in Sec-
tion 3.1, which shows that an MD resource is only allowed to care for
one patient at a time (see Capacity 1)). Given this resource capac-
ity policy specification, Resource Constraint FSM Translator
creates the appropriate resource constraint FSMs. Figure 7 shows
such a constraint FSM encoding the capacity limit constraint for
the MD. This FSM specifies that if an MD resource is allocated twice,
without an intervening deallocation, the FSM will be driven into
the trap state, indicating the presence of a path along which the
capacity constraint has been violated. If the trap state is entered,
then FLAVERS excludes the path causing this infeasible resource
allocation behavior from the analysis search space.

The last input component of FLAVERS is a property FSM. Fig-

idle trap care 
reserved 

treat patient 

treat by others, 
reserved 

treat by others 

treat patient 

Figure 8: This FSM encodes the same doctor property. The
idle and care states are accepting states. The trap state is
a violation state.

ure 8 shows the same doctor property. For FLAVERS verification,
the events in the property FSM (e.g., treat patient) are matched
to the nodes in the TFG that represent patient care activities. For in-
stance, the reserved abstract event is matched to activity of having
a doctor allocated to begin treating a new patient. For this property
we also create treat patient, an abstract event consisting of the
set of all concrete events, that cause the allocated doctor to perform
patient care activities, and treat by others an abstract event con-
sisting of the set of events that cause other doctors to deliver care
to the patient. The property FSM contains the states that a given MD
resource can be in. The idle state means that the doctor is not in
charge of caring for the patient p. The reserved event indicates that
doctor is reserved to care for a patient p. After the doctor is reserved
to care for the patient p, the property FSM allows (treat patient)
by only the same doctor. If the patient p is cared for by another MD,
the property FSM reaches the trap state which indicates a violation
of the same doctor property.

Given the three kinds of inputs, FLAVERS uses its state propa-
gation algorithm to verify whether all the resource allocation paths
of a given TFG always satisfy a property FSM (see Figure 8). The
analysis algorithm associates a set of tuples of states in the property
FSM and constraint FSMs to each event node in the TFG. While
propagating the tuples based on events in the TFG, if a constraint
FSM reaches a trap state, the corresponding execution path is ex-
cluded from the analysis search space (e.g., the deallocation after
a task of a doctor other than the one who had been allocated to do
that task) If the property FSM has reached an accepting state at the
end of state propagation, the analysis has thus guaranteed that all
possible simulation executions must always obey the same doctor
constraint.

3.3.1 Preliminary Evaluation
Given the same doctor property in Figure 8, we verified whether

the specified patient care processes in an ED satisfy the property or
not. For this verification, we used three doctors (md0, md1, and md2
all working on the same shift) and one patient. We verified the ED
model, incorporating the same doctor policy (see the simulations of
gray box plot in Figure 4). The verification was run on a computer
with four 3.7GHz processors and 4GB memory. The ED process
definition incorporated 178 Little-JIL activity nodes, which in con-
junction with our process- and resource-aware policy specifications,
resulted in the generation of a TFG with 1517 nodes, 6635 edges,
and 11 tasks. 28 constraint FSMs were also generated, aggregat-
ing a total of 1601 states and 119714 transitions. This verification
required approximately 10 seconds.

The following counterexample (md2 is caring for a patient until
md1 discharges the patient), was uncovered by our initial analysis,
which thus showed that the original ED simulation did contain a
doctor allocation trace that violated the same doctor property. After
appropriate modifications the ED specifications were then verified
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to adhere to the same doctor policy.

Counter example (resource allocations):
(allocate md2 to prepare patient) →
(allocate md2 to assess) →
(allocate md2 to reassess) →
(allocate md2 to check x-ray result) →
... →
(allocate md2 to reassess) →
(allocate md1 to discharge)

Our evaluation shows that the formal resource utilization policy
specifications allow verifying properties related to resource utiliza-
tion policies, although the initial verifications were for relative small
examples. Indeed, verification of processes involving the concurrent
care for multiple patients causes search space explosion. As we
address this problem we hope to find that this verification capa-
bility will help domain experts gain additional confidence in the
correctness of the results produced by simulations such as ours.

4. RELATED WORK
Systems enforce policies to guide behavioral decisions of par-

ticipants to help them achieve system goals. Much prior work has
suggested security policy or access control policy languages to spec-
ify that only authorized entities are permitted to access entities such
as services or resources. Sandhu et al. [9] provide role-based access
control models. XACML [7] defines information access control
policies for securely browsing documents over the Internet. The
Rei [4] policy specification language is based on deontic concepts
and provides constructs for rights, prohibitions, obligations and dis-
pensations. However, we have found that most of this prior work
has difficulty in specifying diverse and complex resource utilization
policies in a flexible manner.

Simulations are widely used to dynamically analyze complex
systems in software development, healthcare, manufacturing, and
other domains. For instance, SimEvents [6] is a discrete-event
simulator built based on Matlab functions. Wang et al. [12] use
a simulation model to identify potential changes in operational
policies to reduce patients’ length of stay. Despite the large number
of these previous studies, in our view, none of them has supported
the evaluation of complex resource utilization policies in a flexible
manner because most of them exclude resources as entities in their
activity coordination models.

Static verification techniques are also widely used to complement
the inherent limitations of dynamic verification such as the impossi-
bility of exhaustive executions of a system. Li et al. [5] provide a
resource constraint analysis approach for workflow specifications.
Wang et al. [13] introduce a resource-constrained workflow model
as well as a resource requirement analysis approach. In contrast to
our static resource analysis, this prior work has focused on only a
specific resource utilization problem such as resource contention
and capacity limits based on relatively simplified resource models.

5. CONCLUSIONS AND FUTURE WORK
We have presented a framework of resource utilization policy

specification and analysis. To incorporate the diverse, complex char-
acteristics of resource utilization policies in a manageable manner,
we separate resource utilization policy concerns into permission
constraints, schedule, and conflict resolution policies. Given these
formal resource utilization policy specifications, we support dy-
namic analysis of the effects of different resource utilization policies
through process- and resource-aware discrete-event simulation. In

addition, a process- and resource-aware finite state verification sys-
tem verifies properties and adherence to resource utilization policies.

Our preliminary results show promise that our framework helps
system developers evaluate, validate and verify diverse and complex
resource utilization policies in a system. Encouraged by this, we
are continuing our research on (1) evaluating our framework by
applying it to a complex hospital ED patient care system, (2) val-
idating our simulation models through close comparison between
real-world data and simulation outputs, and (3) identifying key sys-
tem properties in a hospital that needed to be verified. We will
continue to investigate the relative efficacies of our different conflict
resolution specification approaches. We will continue to investigate
the scalability of our static analysis approach, as we have recognized
that scaling up to multiple patients, for example, leads to serious
state space explosion problems, which we are now addressing.
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